Semiconductor Group

The Linear Control Circuits Data Book

for

Design Engineers

Second Edition

TEXAS INSTRUMENTS

GENERAL INFORMATION	1
THERMAL INFORMATION	2
ORDERING INSTRUCTIONS AND MECHANICAL DATA	3
OPERATIONAL AMPLIFIERS	4
VOLTAGE COMPARATORS	5
SPECIAL FUNCTIONS	6
MILITARY PRODUCTS	7

TI Sales Offices

ALABAMA: Huntsville, 4717 University Dr., Suite 101, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A. Phoenix, AZ 85069 (602) 249-1313

CALIFORNIA: Costa Mesa, 3186J Airway, Costa Mesa, CA 92626, (714) 540-7311; El Segunde, 831 S. Douglas St.; El Segunde, CA 90245, (213) 973-2571; San Diego, 4333 View Ridge Ave, Suite B., San Diego, CA 92123, (714) 278-9600; Sunnyvale, P.O. Box 9064, 776 Palomar Ave., Sunnyvale, CA 94086, (408) 732-1840.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 751-1780.

CONNECTICUT: Hamden, 2405 Whitney Ave., Hamden, CT 06518, (203) 281-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy, 19 N., Suite 232, Clearwater, Fl. 33515, (813) 725-1861; Fl. Lauderdale, 4605 W. Commercial Blvd., Fl. Lauderdale, Fl. 33319, (305) 733-3300. Winter Park, 1850 Lee Rd., Suite 115, Winter Park, Fl. 3799, (305) 644-3355.

GEORGIA: Atlanta, 3300 Northeast Expy., Suite 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-3000.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174: Indianapolis, 5726 Professional Cir., Suite 103, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 411 Burdette Ave., #1026, Cedar Rapids, IA 52404, (319) 346-1100.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Southfield, Central Park Plaza, 26211 Central Park Blvd., Suite 215, Southfield, MI 48076, (313) 353-0830.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy. Kansas City, MO 64114, (816) 523-2500; St. Louis, 2368 Schuetz Rd., St. Louis, MO 63141, (314) 432-3333.

NEW JERSEY: Clark, 1245 Westfield Ave., Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice N.E., Suite E, Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 13057, (315) 463–2991; Endicott, 112 Anti-coke Ave. P.O. Box 618, Endicott, NY 13760, (607) 754-3900; Melville, 1 Huntington Quadrangle, Suite 1001, Melville, NY 11746, (516) 293–2560; "Oughtkeepsie, COL South Ave., Poughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 461-1800.

NORTH CAROLINA: Charlotte, 1 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 4130 C.2 Camelot Dr., Raleigh, NC 27609, (919) 787-9376.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100. Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa, OK 74128, (918) 749-9548.

OREGON: Beaverton, 10700 S.W. Beaverton Hwy., Suite 565, Beaverton, OR 97005, (503) 643-6759.

PÉNNSYLVANIA: Pt. Washington, 575 Virginia Dr., Ft. Washington, PA 19034, (215) 643-6450.

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy., Johnson City, TN 37601, (615) 282-1100

TEXAS: Dallas, 13531 N. Central Expressway, Suite 2700, Dallas, TX 75243, (214) 238-6531: **Houston,** 9000 Southwest Frwy., Suite 400, Houston, TX 77036, (713) 776-6511.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City UT 84120, (801) 973-6310.

VIRGINIA: Arlington, Crystal Square 4, 1745 Jefferson Davis Hwy. Suite 600, Arlington, VA 22002, (703) 553-2200; Richmond, 3930 Beulah Rd., Richmond, VA 23234, (804) 275-8148.

WASHINGTON: Bellevue, 700 112th N.E., Suite 10, Bellevue, WA 98004, (206) 455-3480.

CAMADA: St. Laurent, 945 McCaffery St., St. Laurent H4T1N3, Quebec, Canada, (514) 341-3232; Richmond Hill, 280 Centre St. E., Richmond Hill L4C181, Ontario, Canada, (16) 884-9181.

TI Distributors

ALABAMA: Huntsville, Hall-Mark (205)837-8700

ARIZONA: Phoenix, Kierulff Electronics (602) 243-4101; R. V. Weatherford (602) 272-7144; Tempe, Marshall Industries (602) 968-6181.

CALIFORNIA: Anaheim, R. V. Weatherford (714) 634-9600. Canoga Park, Marshall Industries (213) 999-5001. Chatsworth, JACO (213) 988-2200. Costa Mesa, Tl. Supply (714) 979-5391: El Monte, Marshall Industries (213) 686-0141: El Segundo, Ti Supply (213) 973-2571. Glendale, V. Weatherford (213) 849-3451. Golder, RPS (805) 964-6823. Ivine, Marshall Industries (714) 556-6400. Los Angeles, Ivine, Marshall Industries (714) 556-6400. Los Angeles, Ivine, Marshall Industries (313) 725-0325. RPS (213) 748-1271. Mountain View. Time Electronics (415) 965-800. Palo Alto. Kerulff Electronics (714) 598-6292. Pomona, R. V. Weatherford (714) 623-1261. San Diego, Arrow Electronics (714) 653-800. Kerulff Electronics (714) 788-780. Santa Barbara, R. V. Weatherford (805) 465-8551. Sunnyvale, Arrow Electronics (408) 739-3011. Marshall Industries (714) 732-1100. If Supply (408) 732-5555. Unnyvale, Arrow Electronics (408) 732-17474. Torrance. Time Electronics (213) 320-0860. Tustin, Kierulff Electronics (714) 731-5711

COLORADO: Derver, Arrow Electronics (303) 758-2100 Diplomat/Derver, (303) 427-5544, Kierulff Electronics (303) 371-6500; **Englewood**, R.V. Weatherford (303) 770-9762

CONNECTICUT: Hamden, Arrow Electronics (203) 248-3801, TI Supply (203) 281-4669; Orange, Milgray/Connecticut (203) 795-0714, Wallingford, Wilshire Electronics (203) 255-3822

FLORIDA: Clearwater, Diptomat/Southland (813) 443-4514 Ft. Lauderdale, Arrow Electronics (305) 776-7790. Diptomat/Ft. Lauderdale (305) 971-7160, Hall-Mark/Mamn (305) 971-9280, Orlando, Hall-Mark/Orlando (305) 855-4020, Palm Bay, Arrow Electronics (305) 725-180, Diptomat/Florida (305) 725-4520. St. Petersburg, Kierulft Electronics (813) 576-1966. Winter Park, Milgray Electronics (305) 647-5747.

GEORGIA: Doraville, Arrow Electronics (404) 455-4054. Norcross, Wilshire Electronics (404) 923-5750.

ILLINOIS: Arlington Heights, TI Supply (312) 640-2964.
Bensonville, Hall-Mark/Chicago (312) 860-3800. Elk Grove
Village, Kierulff Electronics (312) 640-0200: Chicago,
Newark Electronics (312) 638-4411; Schaumburg, Arrow
Electronics (312) 893-9420.

INDIANA: Ft. Wayne, Ft. Wayne Electronics (219) 423-3422. Indianapolis, Graham Electronics (317) 634-8202.

IOWA: Cedar Rapids, Deeco (319) 365-7551

KANSAS: Lenexa, Component Specialties (913) 492-3555. Shawnee Mission, Hall-Mark/Kansas City (913) 888-4747

MARYLAND: Baltimore, Arrow Electronics (202) 737-1700, (301) 247-5200, Hall-Mark/Baltimore (301) 795-9300, Columbia, Diplomat/Maryland (301) 995-1226, Gaithersburg, Cramer/Washington (301) 948-0110. Rockville, Milgray/Washington (301) 468-6400

MASSACHUSETTS: Billerica, Kierulff Electronics (617) 667-8331. Burlington, Wishire Electronics (617) 272-8200. Newton, Cramer/Newton (617) 969-7700. Waltham, TI Supply (617) 890-0510. Woburn, Arrow Electronics (617)

MICHIGAN: Ann Arbor, Arrow Electronics (313) 971-8220. Oak Park, Newark Electronics (313) 967-0600. Grand Rapids, Newark Electronics (616) 241-6681

MINNESOTA: Edina, Arrow Electronics (612) 830-1800. Plymouth, Marshall Industrials (612) 559-2211

MISSOURI: Earth City, Hall-Mark/St. Louis (314) 291-5350 Kansas City. Component Specialties (913) 492-3555. LCOMP-Kansas City (816) 221-2400. St. Louis, LCOMP-St. Louis (314) 291-6200

NEW HAMPSHIRE: Manchester, Arrow Electronics (603) 668-6968

NEW JERSEY: Camden, General Radio Supply (609) 964-8560. Cherry Hill, Milgray/Delaware Valley (609) 424-1300. Clark, Tl Supply (201) 382-6400. Clittlon, Wishine Electronics (201) 340-1900. Fairfield, Kierulff Electronics (201) 575-6750. Moorestown, Arrow Electronics (609) 235-1900. Saddlebrook, Arrow Electronics (201) 797-5800

NEW MEXICO: Albuquerque, Arrow Electronics (505) 243-4566. International Electronics (505) 262-2011. United Components (505) 345-9981

NEW YORK: Endwell. Wilshire Electronics (607), 754-1570. Farmingdale. Arrow Electronics (516) 694-6800. Freedom, Milgray Electronics (516) 546-6800. N.J. (800) 645-3986. Hauppauge. Arrow Electronics (516) 231-1000. JACO (516) 273-5500. Liverpool. Cramer/ Syracuse (315) 652-1000. New York. Wilshire Electronics (212) 682-8707. Rochert. Cramer/Rochester (716) 275-0300. Rochester Radio Supply (716) 545-7800. Wilshire Electronics (716) 235-7620. Woodbury. Diplomat/Long Island (516) 921-7920. NORTH CAROLINA: Kernersville, Arrow Electronics (919) 966-2039: Raleigh, Hall-Mark (919) 832-4465

OHIO: Cleveland, TI Supply (216) 464-2435, Columbus, Hall-Mark/Ohio (614) 846-1882, Dayton, ESCO Electronics (513) 226-1133, Marshall Industries (513) 236-8088. Kettering, Arrow Electronics (513) 253-9176, Reading, Arrow Electronics (513) 761-5432, Solon, Arrow Electronics (216) 246-3990

OKLAHOMA: Tulsa, Component Specialties (918) 664-2820; Hall-Mark/Tulsa (918) 835-8458; TI Supply (918) 749-9543

OREGON: Beaverton, Almac/Stroum Electronics (503) 641-9070 Milwaukie, United Components (503) 653-5940

PENNSYLVANIA: Huntington Valley, Hall-Mark/Philadelphia (215) 355-7300. Pittsburgh, Arrow Electronics (412) 351-4000

TEXAS: Austin. Component Specialties (512) 837-8922 Hall-Mark/Austin (512) 837-2814. Dallas, Component Specialties (214) 357-6511. Hall-Mark/Dallas (214) 234-700. International Electronics. (214) 233-9323. TI Supply (214) 238-6821. El Pago. International Electronics (915) 789-761. Houston. Component Specialties (713) 771-7237. Hall-Mark/Houston (713) 781-6100. Harrisron Equipment (713) 652-4700. TI Supply (713) 776-6511.

UTAH: Salt Lake City, Diplomat/Altalahd (801) 486-4134. Kierulff Electronics (801) 973-6913.

WASHINGTON: Redmond, United Components (206) 885, 1985, Seattle, Almac/Stroum Electronics (206) 763-2300. Kierulff Electronics (206) 575-4420, Tukwila, Arrow Electronics (206) 575-0907

WISCONSIN: Oak Creek, Arrow Electronics (414) 764-6600. Hall-Mark/Milwaukee (414) 761-3000. Waukesha, Kierulff Electronics (414) 784-8160.

CANADA: Calgary, Cam Gard Supply (403) 287-0520. Downsview. CESCO Electronics (416) 661-0220. Edmonton, Cam Gard Supply (403) 426-1805. Halitax. Cam Gard Supply (804) 426-1805. Halitax. Cam Gard Supply (804) 372-3338. Moneton, Cam Gard Supply (506) 855-2200. Montreal (806) 685-2200. Montreal (806) 685-2200. Montreal (806) 685-2200. Montreal (806) 685-2200. Montreal (806) 685-2810. Montreal (806) 685-4824. Toronto, Future Electronics (416) 685-5553. Vancouver, Cam Gard Supply (306) 652-6424. Toronto, Future Electronics (416) 685-5553. Vancouver, Cam Gard Supply (804) 291-1441. Future Electronics (604) 438-5545. Winnipeg, Cam Gard Supply (204) 786-8481.

Texas Instruments

The Linear Control Circuits Data Book

for Design Engineers

Second Edition

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any tme in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supercedes previously published data on linear integrated circuits from TI, including data books CC415 and LCC4241.

ISBN 0-89512-104-2 Library of Congress No. 79-92000

Copyright © 1980
Texas Instruments Incorporated

INTRODUCTION

In this 416-page data book, Texas Instruments is pleased to present important technical information on a broad line of linear control integrated circuits that includes operational amplifiers, voltage comparators, analog switches, timers, analog-to-digital converters, Hall-effect devices, and many others.

You will find specifications on device types initiated by TI (TL series) and on plug-in replacements for many competitive types. The functional indexes and selection guides provide the designer with rapid access to data sheets for specific applications, and the interchangeability guides show both direct and nearest replacement devices for many competitive parts. There are margin tabs to guide you quickly to general circuit categories, and the alphanumeric index lets you locate particular type numbers quickly.

The section on military products describes process and screening requirements for JAN, JAN-processed, /883B Class B, and standard device types.

This volume offers design data and specifications only for linear control integrated circuits, but complete technical data on any Texas Instruments semiconductor component is available from your nearest TI field sales office or authorized distributor and from: Marketing and Information Services, Texas Instruments Incorporated, P.O. Box 225012, MS 308, Dallas, Texas 75265.

General Information

TABLE OF CONTENTS

	PAGE
Section 1, General Information	7
Alphanumeric Index	
Functional Index	
Interchangeability Guide	
merchangeability Guide	22
Section 2, Thermal Information	27
Thermal Considerations	
	-
Thermal Resistance of Integrated Circuit Packages	
Power Dissipation Derating Curves for Integrated Circuit Packages	. 30
	35
Section 3, Ordering Instructions and Mechanical Data	-
Ordering Instructions	
Mechanical Data and Package Outline	38
	47
Section 4, Operational Amplifiers	
Selection Guide	
Glossary of Terms and Definitions	
Individual Data Sheets	59
0 5 DW 10	400
Section 5, Differential Comparators	
Selection Guide	
Glossary of Terms and Definitions	
Individual Data Sheets	195
Section 6, Special Functions	
Selection Guide	268
Individual Data Sheets	270
Section 7 Military Products	407

ALPHANUMERIC INDEX

				8.05
	PAGE	PAGE	PAGE	PAGE
ADC0808	270	MC1545 277	TL071B 131	TL440 319
ADC0809	270	MC1558 85	TL072 131	TL441 325
ADC0816	272	MC3303 89	TL072A 131	TL442 333
ADC0817	272	MC3403 89	TL072B 131	TL480 339
LM101A	59	MC3423 279	TL074 131	TL481 341
LM106	195	MC3503 89	TL074A 131	TL487 343
LM107	62	MC3523 279	TL074B 131	TL489 345
LM111	201	NE555 281	TL075 131	TL490 349
LM124	65	NE556 291	TL080 139	TL491 353
LM139	209	NE5532 93	TL080A 139	TL500 357
LM148	67	NE5532A 93	TL081 139	TL501 357
LM158	71	NE5533 97	TL081A 139	TL502 357
LM193	211	NE5533A 97	TL081B 139	TL503 357
LM201A	59	NE5534 105	TL082 139	TL505 369
LM206	195	NE5534A 105	TL082A 139	TL506 227
LM207	62	RC4136 101	TL082B 139	TL507 377
LM211	201	RC4558 103	TL083 139	TL510 233
LM218	73	RM4136 101	TL083A 139	TL514 237
LM224	65	RM4558 103	TL084 139	TL560 381
LM239	209	SE555 281	TL084A 139	TL601 387
LM248	67	SE556 291	TL084B 139	TL604 387
LM258	71	SE5534 105	TL085 139	TL607 387
LM293		SE5534A 105	TL087 147	TL610 387
LM301A	59	TL022 109	TL088 147	TL702 157
LM306		TL044 112	TL111 219	TL710 239
LM307		TL060 115	TL170 293	TL720 243
LM311	-	TL060A 115	TL172 295	TL810 245
LM318		TL061 115	TL173 297	TL811 249
LM324		TL061A 115	TL175 299	TL820 255
LM339		TL061B 115	TL176 301	uA702 163
LM348		TL062 115	TL182 303	uA709 167
LM358		TL062A 115	TL185 306	uA709A 167
		TL062B 115	TL188 309	uA710 259
LM393		TL064 115	TL191 312	uA711 263
LM1900		TL064A 115	TL287 147	uA733 393
LM2900			TL288 147	uA741 173
LM2901				uA747 173
LM2902				uA747 177
LM2903				The second secon
LM2904	83	TL066B 123		
LM3302		TL070 131	TL322 153 TL331 223	uA2240 401
LM3900		TL070A 131		
MC1445		TL071 131	TL336 225	
MC1458	85	TL071A 131	TL376 315	

For information on other linear and interface integrated circuits manufactured by Texas Instruments, see the "Linear and Interface Circuits Master Selection Guide," "The Interface Circuits Data Book," and "The Voltage Regulator Handbook."

SINGLE UNCOMPENSATED OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

IB nA	V _{IO} mV	IIO nA	A _{VD} V/mV	B ₁ MHz	SR V/μs	I _{CC}	1	cc v	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX	100 3 5 1			
75	2	10	50	1	0.5	3	±5	±22	High Performance	LM101A	J, JG, U, W	59
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL060M	JG	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070M	JG	131
0.2	6	1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080M	JG	139
10,000	5	2,000	1.4	0.5	1.7	6.7		-7, +14	General Purpose	TL702M	J, U, W	157
5,000	2	500	2.5	0.5	1.7	6.7		-7, +14	General Purpose	uA702M	J, JG, U, W	163
200	2	50	25	1	0.3	3.6		±18	General Purpose	uA709AM	J, JG, U	167
500	5	200	25	1	0.3	5.5		±18	General Purpose	uA709M	J, JG	167
500	5	200	50	1	0.5	2.8	±2	±22	General Purpose	uA748M	J, JG, U, W	181

Industrial Temperature Range (-25°C to 85°C)

75	2	10	50	1	0.5	3	±5	±22	High Performance	LM201A	J, JG, N, P	59
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0601	JG, P	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0701	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0801	JG, P	115

Commercial Temperature Range (0°C to 70°C)

250	7.5	50	25	1	0.5	3	±5	±18	High Performance	LM301A	J, JG, N, P	59
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL060C	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL060AC	JG, P	115
0.4	15	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070C	JG, P	131
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070AC	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080AC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080C	JG, P	139
15,000	10	5,000	1	0.5	1.7	7		-7, +14	General Purpose	TL702C	J, JG, N	163
1,500	7.5	500	12	1	0.3	5.5		±18	General Purpose	uA709C	J, JG, N, P	167
500	6	200	20	1	0.5	2.8	±2	±18	General Purpose	uA748C	J, JG, N, P	181
100	5	20	25	1	0.5	3.3	±5	±22	High Performance	uA777C	J, JG, N, P	185

FUNCTIONAL INDEX

SINGLE INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	I _{IO}	AVD V/mV	B ₁ MHz	SR V/μs	I _{CC}		cc /	DESCRIPTION	DEVICE	PACKAGE	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
75	2	10	50	1	0.5	3	±2	±22	High Performance	LM107	J, JG, U, W	62
800	2	200	50	10	13	6.5	±3	±22	Low Noise			
									$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	SE5534	JG	105
800	2	200	50	10	13	6.5	±3	±22	Low Noise			
									$V_n = 4.5 \text{ nV}/\sqrt{\text{Hz Max}}$	SE5534A	JG	
0.2	6	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL061M	JG, U	105
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071M	JG	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081M	JG	139
0.2	2	0.1	50	3	13	2.8	±4	±18	BIFET, Low VIO	TL088M	JG, U	
150	5	30	50	1	0.5	1.0	+3	+32	General Purpose,	TL321M	JG	151
500	5	200	50	1	0.5	2.8	±2	±22	General Purpose	uA741M	J, JG, U, W	173

Industrial Temperature Range (-25°C to 85°C)

75	2	10	50	1	0.5	3	±2	±22	High Performance	LM207	N	62
250	4	50	50	15	70	8		±20	High Performance	LM2181	JG, P	73
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0611	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0661	JG, P	123
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0711	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0811	JG, P	139
0.4	0.5	0.1	50	3	13	2.8	±4	±18	BIFET, Low Offset	TL0871	JG, P	147
0.4	3	0.1	50	3	13	2.8	±4	±18	BIFET, Low Offset	TL0881	JG, P	147
150	5	30	50	1	0.5	1	+3	+32	General Purpose	TL3211	JG, P	151

SINGLE INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

IB	VIO	110	AVD	B ₁	SR	Icc	V	CC				
nA	mV	nA	V/mV	MHz	V/µs	mA	,	/	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
250	7.5	50	25	1	0.5	3	±2	±18	High Performance	LM307	J, JG, N, P	62
500	10	200	25	15	70	10		±20	High Performance	LM318	JG, N, P	73
1,500	4	300	25	10	13	8	±3	±22	Low Noise			
									$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	NE5534	JG, P	105
1,500	4	300	25	10	13	8	±3	±22	Low Noise			
									$V_n = 4.5 \text{ nV}/\sqrt{\text{Hz} \text{ Max}}$	NE5534A	JG, P	105
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061AC	JG, P	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061BC	JG, P	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061C	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power			
									with Power Control	TL066AC	JG, P	123
0.2	3	1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power			
									with Power Control	TL066BC	JG, P	123
0.4	15	2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power			
									with Power Control	TL066C	JG, P	123
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071AC	JG, P	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071BC	JG, P	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071C	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081AC	JG, P	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081BC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081C	JG, P	139
0.4	0.5	0.2	25	3	13	2.8	±4	±18	BIFET, Low VIO	TL087C	JG, P	147
0.4	2	0.2	25	3	13	2.8	±4	±18	BIFET, Low VIO	TL088C	JG, P	147
250 500	7	50 200	25 20	1	0.5 0.5	1.0 2.8	+3 ±2	+32 ±18	General Purpose, General Purpose	TL321C uA741C	JG, P J, JG, N, P	151 173

DUAL OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	IIO nA	AVD V/mV	B ₁ MHz	SR V/μs	ICC mA	V	cc v	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX		1 1000	A NAME	S. L. M.
150	5	30	50	1	0.3	0.6	+3	+32	General Purpose	LM158	JG	71
500	5	200	50	1	0.6	2.8	±2	±22	General Purpose	MC1558	JG, U	85
500	5	200	50	3	1.5	2.8		±22	High Performance	RM4558	JG	103
100	5	40	4	0.5	0.5	0.1	±2	±22	Low Power	TL022M	JG, U	109
0.2	6	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL062M	JG, U	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
			0.796						$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	TL072M	JG	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082M	JG	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083M	J	139
500	5	50	50	1	0.6	4	+3	+36	General Purpose	TL322M	JG	153
500	5	200	50	1	0.5	2.8	±2	±22	General Purpose	uA747M	J, W	177

Automotive Temperature Range (-40°C to 85°C)

500	10	50	100	1	0.3	0.6	±3	±26	General Purpose	LM2904	JG, P, U	83

Industrial Temperature Range (-25°C to 85°C)

150	5	30	50	1	0.3	0.6	+3	+32	General Purpose,	LM258	JG, P, U	71
500	8	75	20	1	0.6	4	+3	+36	General Purpose	TL3221	JG, P	153
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0621	JG, P	115
0.2	6	0.05	50	3	13	2.5	± 3.5	±18	BIFET, Low Noise	TL0721	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0821	JG, P	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0831	J, N	139
0.4	0.5	0.1	50	3	13	2.8	±3.5	±18	BIFET, Low Offset	TL2871	JG, P	147
0.4	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL2881	JG, P	147

DUAL OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

I _{IB}	V _{IO}	IIO nA	AVD V/mV	B ₁ MHz	SR V/us	ICC mA		cc	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX		221102	17101171020	17102
250	7	50	25	1	0.3	0.6	+3	+32	General Purpose	LM358	JG, P	71
500	6	200	20	1	0.6	2.8	±2	±18	General Purpose	MC1458	JG, P	85
800	4	150	25	10	9	8		±22	Low Noise			
									$V_n = 5 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5532	JG, P	93
800	4	150	25	10	9	8		±22	Low Noise			
									$V_n = 5 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5532A	JG, P	93
1500	4	300	25	10	13	8		±22	Low Noise			
					S. 120.				$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5533	J, N	97
1500	4	300	25	10	13	8		±22	Low Noise			
									$V_n = 3.5 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	NE5533A	J, N	97
500	6	200	20	3	1	2.8		±18	High Performance	RC4558	JG, P	103
250	5	80	1	0.5	0.5	0.125	±2	±18	Low Power	TL022C	JG, P	109
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062AC	JG, P	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062BC	JG, P	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062C	JG, P	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	TL072AC	JG, P	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072BC	JG, P	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072C	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082AC	JG, P	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082BC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082C	JG, P	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083AC	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083C	J, N	139
0.4	0.5	0.1	25	3	13	2.8	±4	±18	BIFET, Low Offset	TL287C	JG, P	147
0.4	3	0.1	25	3	13	2.8	±4	±18	BIFET, General Purpose	TL288C	JG, P	147
500	10	50	20	1	0.6	4	+3	+36	General Purpose	TL322C	JG, P	153
500	6	200	25	1	0.5	2.8	±2	±18	General Purpose	uA747C	J, N	177

FUNCTIONAL INDEX

QUADRUPLE OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	I _{IO}	A _{VD} V/mV	B ₁ MHz	SR V/μs	I _{CC}		VCC V DESCRIPTION		DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
150	5	30	50	1	0.5	0.5	+3	+32	General Purpose	LM124	J, U	65
500	5	200	50	3.5	1.5	2.8	±4	±22	High Performance	RM4136	J, U	101
100	5	40	4	0.5	0.5	0.1	±2	±22	Low Power	TL044M	J, U	112
0.2	9	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL064M	J, W	115
0.2	9	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	TL074M	J, W	131
0.2	9	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084M	J, W	139
100	5	25	50	1	0.5	3.6		±22	General Purpose	LM148	J	67
100			2	2.5	0.5	12	+4.5	+36	General Purpose	LM1900	J	77
500	5	50	50	1	0.6	4	+3	+36	General Purpose	MC3503	J	89

Automotive Temperature Range (-40°C to 85°C)

200			1.2	2.5	0.5	10	+4.5	+32	General Purpose	LM2900	J, N	77
500	10	50	100	5	1	5	+3	+26	General Purpose	LM2902	J, N	81
500	8	75	20	1	0.6	7	+3	+36	General Purpose	MC3303	J, N	89

Industrial Temperature Range (-25°C to 85°C)

250	7	50	25	1	0.5	3	+3	+32	General Purpose,	LM224	J, N	65
200	6	50	25	1	0.5	4.5		±18	General Purpose	LM248	J, N	67
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0641	J, N	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0741	J, N	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0841	J, N	139

QUADRUPLE OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

I _{IB}	V _{IO} mV	IIO nA	AVD V/mV	B ₁	SR V/μs	ICC mA		cc /	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
250	7	50	25	1	0.5	0.5	+3	+32	General Purpose	LM324	J, N	65
200	6	50	25	1	0.5	4.5		±18	General Purpose	LM348	J, N	67
200			1.2	2.5	0.5	10	+4.5	+32	General Purpose	LM3900	J, N	77
500	10	50	20	1	0.6	7	+3	+36	General Purpose	MC3403	J, N	89
500	6	200	20	3	1	2.8	±4	±18	High Performance	RC4136	J, N	101
250	5	80	1	0.5	0.5	0.125	±2	±18	Low Power	TL044C	J, N	112
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064AC	J, N	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064BC	J, N	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064C	J, N	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL074AC	J, N	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL074BC	J, N	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	TL074C	J, N	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL075C	N	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084AC	J, N	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084BC	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084C	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL085C	N	139

FUNCTIONAL INDEX

VOLTAGE COMPARATORS

Military Temperature Range (-55°C to 125°C)

- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	^I IB μΑ MAX	V _{IO} mV MAX	l _{IO} μΑ MAX	AVD	I _{OL} mA MIN	RESPONSE TIME	POWER SUPPLIES	DEVICE	PACKAGE	PAGE
	45	3	7	40,000 TYP	16	40 MAX	12 V, -3 V to -12 V	LM106	J, JG, W	195
	0.15	4	0.02	200,000 TYP	8	140 TYP	15 V, -15 V	LM111	J, JG	201
	0.05	4	0.02	200,000 TYP	8	210 TYP	15 V, -15 V	TL111	J, JG, N, P	219
Single	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL331M	JG	223
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL510M	J, JG, U	233
-	150	6	20	500 MIN	1.6	40 TYP	12 V, -6 V	TL710M	J, JG, U	239
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL810M	J, JG, U	245
	20	2	3	1250 MIN	2	40 TYP	12 V, -6 V	uA710M	J, JG, U	259
	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	LM193 [†]	JG, U	211
	45	3	7	40,000 TYP	16	40 MAX	12 V, -3 V to -12 V	TL506M	J, W	227
Dual	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL514M	J, W	237
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL820M	J	255
Dual-	30	6	5	8,000 MIN	0.5	80 MAX	12 V, -6 V	TL811M	J, U	249
Channel	150	6	20	500 MIN	0.5	80 MAX	12 V, -6 V	uA711M	J, U	263
Quad	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	LM139 [†]	J, W	209
Hex	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL336M [†]	J	225

Automotive Temperature Range (-40°C to 85°C)

Dual	0.25	7	0.05	100,000 TYP	6	1300 TYP	2 V to 36 V	LM2903 [†]	JG, P	215
	0.25	7	0.05	100,000 TYP	6	1300 TYP	2 V to 36 V	LM2901 [†]	J, N	213
Quad	0.5	20	0.1	30,000 TYP	6	1300 TYP	2 V to 28 V	LM3302 [†]	J, N	217

[†]Capable of operating with a single 5-volt supply.

VOLTAGE COMPARATORS

Industrial Temperature Range (-25°C to 85°C)

	^I IΒ μΑ MAX	V _{IO} mV MAX	I _{IO} μΑ ΜΑΧ	A _{VD}	I _{OL} mA MIN	RESPONSE TIME	POWER SUPPLIES	DEVICE	PACKAGE	PAGE
	45	3	7	40,000 TYP	16	40 MAX	12 V, -3 V to -12 V	LM206	J, JG, N, P	195
C:l-	0.15	4	0.2	200,000 TYP	8	140 TYP	15 V, -15 V	LM211 [†]	J, JG, P	201
Single	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3111 [†]	JG, P	223
	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3311 [†]	JG, P	223
Dual	0.25	5	0.005	200,000 TYP	6	1300 TYP	2 V to 36 V	LM293 [†]	JG, P	211
Quad	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM239 [†]	J, N	209
Hex	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3361 [†]	J, N	225

Commercial Temperature Range (0°C to 70°C)

	40	6.5	7.5	40,000 TYP	16	28 TYP	12 V, -3 V to -12 V	LM306	J, JG, N, P	195
	0.3	10	0.07	200,000 TYP	8	165 TYP	15 V, -15 V	LM311 [†]	J, JG, N, P	201
	0.01	13	0.004	200,000 TYP	8	210 TYP	15 V, -15 V	TL311 [†]	N, P	219
	0.01	10	0.004	200,000 TYP	8	210 TYP	15 V, -15 V	TL311A [†]	N, P	219
Single	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	TL331C [†]	JG, P	223
	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL510C	J, JG, N, P	233
	150	10	25	500 MIN		40 MAX	12 V, -6 V	TL710C	J, JG, N, P	239
	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL810C	J, JG, N, P	245
	25	5	5	1000 MIN	1.6	40 TYP	12 V, -6 V	uA710C	J, JG, N, P	259
	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM393 [†]	JG, P	211
Dual	40	6.5	7.5	40,000 TYP	16	28 TYP	12 V, −3 V to −12 V	TL506C	J, N	227
Duai	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL514C	J, N	237
	30	4.5	7.5	8000 MIN	0.5	XAM 08	12 V, -6 V	TL820C	J, N	255
Dual	50	10	10	5000 MIN	0.5	33 TYP	12 V, -6 V	TL810C	J, JG, N, P	245
Channel	150	10	25	500 MIN	0.5	40 TYP	12 V, -6 V	uA711C	J, N	263
Quad	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM339 [†]	J, N	209
Hex	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	TL336C [†]	N	225

[†]Capable of operating with a single 5-volt supply.

FUNCTIONAL INDEX

SPECIAL FUNCTIONS

		PAG	E
T:			
Timers		2	81
SE555	:	deficial purpose timers adjustable from 1 microsconia to 1 second	81
NE555	:	Commercial temperature to some states and the some states are some states are some states and the some states are	91
SE556	:	200 1010010102000	
NE556	:		91
uA2240) :	Programmable timer and 8-bit counter specially designed for delays greater than 1 second	01
Amplifiers			
MC144	5 :	2-channel-multiplexed video amplifier	77
TL441			25
uA733	:	**************************************	93
Voltage-Le	vel		
TL480	:	10-level logarithmic converter in the J or N package	39
TL481	:	10-level logarithmic converter in the J or N package	41
TL487	:	5-level linear converter in the P or JG package	43
TL489	:	5-level logarithmic converter in the P or JG package	45
TL490	:	10-level linear converter in the J or N package	49
TL491	:	10-level linear converter in the J or N package 3	53
Analog-to-	Dig	ital Converter Components	
ADC08	:80	Successive-approximation converter	70
ADC08	09:	Successive-approximation converter	70
ADC08	16:	Successive-approximation converter	72
ADC08	17:	Successive-approximation converter with 8-bit resolution	72
TL500	:	Dual-slope-converter analog processor with 14-bit resolution	57
TL501	:	Dual-slope-converter analog processor with 13-bit resolution	57
TL502	:	Dual-slope-converter digital processor with 4½-digit capability, seven-segment-display outputs	57
TL503	:	Dual-slope-converter digital processor with 4½-digit capability, BCD outputs	57
TL505	:	Dual-slope-converter analog processor with 10-bit resolution	69
TL507	:	Pulse-width modulator with 7-bit resolution	77
Zero-Cross	ing		
TL440			19
Doubly-Ba	lan	ced Mixer	
TL442			33
Precision L	eve	el Detector	
TL560			81
Overvoltan	e S	ensing Circuits	
MC342		•	79
MC352			79
WIC352		······································	, 3
3-Channel	Ste	pper-Motor Controller	
TL376			15

SPECIAL FUNCTIONS

Analog Switches With 30-mA Capability (Bi-MOS)

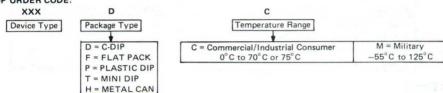
DEVICE	FUNCTION	Z _{sw} (TYP)	ANALOG RANGE	SUPPLIES	PAGE
TL182	Twin SPST	100 Ω	±10 V	±15, +5	303
TL185	Twin DPST	150 Ω	±10 V	±15, +5	306
TL188	Dual Complementary SPST	100 Ω	±10 V	±15, +5	309
TL191	Twin Dual Complementary SPST	150 Ω	±10 V	±15, +5	312

Analog Switches With 10-mA Capability (P-MOS)

DEVICE	FUNCTION	Z _{sw} (TYP)	ANALOG RANGE	SUPPLIES	PAGE
TL601	SPDT	200 Ω	±10 V	+10, -20	387
TL604	Complementary SPST	200 Ω	±10 V	+10, -20	387
TL607	SPDT	200 Ω	±10 V	+10, -20	387
TL610	SPST	100 Ω	±10 V	+10, -20	387

Hall-Effect Devices

DEVICE	DESCRIPTION	ON	OFF	HYSTERESIS	PAGE
TL170	General purpose switch	>+350 G	<-350 G	200 G	293
TL172	Normally-off switch	>+600 G	<+100 G	230 G	295
TL175	Latch	>+350 G	<-350 G	400 G	299
TL176	Normally-off switch (Automotive Temp. Range)	>+500 G	<+100 G	75 G	301
TL173	173 Linear sensor 1.5 mV/G Sensitivity			297	


INTERCHANGEABILITY GUIDE

(ALPHABETICALLY BY MANUFACTURERS)

Direct replacements were based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should compare the specifications of the substitute device with the specifications of the original.

Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

FAIRCHILD ORDER INFORMATION

FAIRCHILD	TI DIRECT	TI CLOSEST REPLACEMENT	FAIRCHILD	TI DIRECT REPLACEMENT	TI CLOSEST REPLACEMENT
		REPLACEMENT			REPLACEMENT
μA101A	LM101A		μA710	uA710	
μA107	LM107		μA711	uA711	
μΑ111	LM111		μA733	uA733	
μΑ139	LM139		μA734		LM111
μA201A	LM201A		μA741	uA741	
μΑ207	LM207		μA742		TL440
μA301A	LM301A		μΑ747	uA747	
μΑ304	LM304		μΑ748	uA748	
μA307	LM307		μΑ776		uA777
μΑ311	LM311		μΑ777	uA777	
μΑ555	SE555		μA2240C	uA2240C	
μA556C	NE556		μA3302C	LM3302	
μA556M	SE556		μA3403	MC3403	
μΑ702	uA702		μA4136C	RC4136	
μΑ709	uA709		μ A4136 M	RM4136	
μA709A	uA709A				

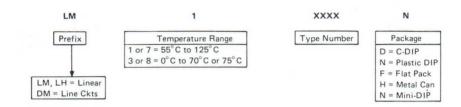
MOTOROLA ORDER INFORMATION

EXAMPLE OF ORDER CODE:

MC XXX

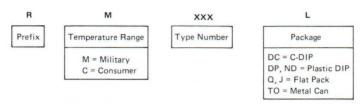
Prefix Type Number

Different Numbers
Are Used For Variations
In Operating Temperatures


Package

F = Flat Package
G = Metal Can
L = C-DIP
P = Plastic

P


MOTOROLA	TI DIRECT	TICLOSEST	MOTOROLA	TI DIRECT	TI CLOSEST
10000 100000000000000000000000000000000	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
MLM101A	LM101A		MC1545	MC1545	
MLM107	LM107		MC1539		LM101A
MLM111	LM111		MC1555	SE555	
MLM201A	LM201A		MC1558	MC1558	
MLM207	LM207		MC1709	uA709	
MLM211	LM211		MC1710	uA710	
MLM301A	LM301A		MC1711	uA711	
MLM307	LM307		MC1712	uA702	
MLM311	LM311		MC1733	uA733	
MC1414	TL514		MC1741	uA741	
MC1420		uA733	MC1747	uA747	
MC1430		uA702	MC1748	uA748	
MC1431		uA702	MC3302	LM3302	
MC1433		LM301A	MC3302P	LM339	
MC1439		LM301A	MC3303	MC3303	
MC1445	MC1445		MC3403	MC3403	
MC1455	NE555		MC3423	MC3423	
MC1458	MC1458		MC3503	MC3503	
MC1514	TL442		MC3523	MC3523	
MC1530		uA702	MC4558	RM4558	
MC1531		uA702	MC4558C	RC4558	
MC1533		LM101A			

NATIONAL ORDER INFORMATION

NATIONAL	TI DIRECT REPLACEMENT	TI CLOSEST REPLACEMENT	NATIONAL	TI DIRECT REPLACEMENT	TI CLOSEST REPLACEMENT
ADC0808	ADC0808		LM348	LM348	
ADC0809	ADC0809		LM358	LM358	
ADC0816	ADC0816	4	LM393	LM393	
ADC0817	ADC0817		LM555C	NE555	
DS5534	NE5534		LM555M	SE555	
LM101A	LM101A		LM556	SE556	
LM102	LM102		LM556C	NE556	
LM106	LM106		LM709	uA709	
LM107	LM107		LM709A	uA709A	
LM110	LM110		LM709C	uA709C	
LM111	LM111		LM710	uA710	
LM112	LM112		LM710C	uA710C	
LM118		LM218	LM711	uA711	
LM124	LM124		LM711C	uA711C	
LM139	LM139		LM733	uA733	
LM148	LM148	TW THE	LM733C	uA733C	
LM158	LM158		LM741	uA741	
LM193	LM193		LM741C	uA741C	
LM201A	LM201A		LM747	uA747	
LM206	LM206		LM747C	uA747C	
LM207	LM207	Ø	LM748	uA748	
LM211	LM211		LM748C	uA748C	
LM218	LM218		LM1414N	TL514C	
LM224	LM224		LM1458	MC1558	
LM239	LM239		LM1514	TL514M	
LM248	LM248		LM1558	MC1558	
LM258	LM258		LM1900	LM1900	
LM293	LM293		LM2900	LM2900	
LM301A	LM301A		LM2901	LM2901	
LM306	LM306		LM2902	LM2902	
LM307	LM307		LM2903	LM2903	
LM311	LM311		LM2904	LM2904	
LM318	LM318		LM3302	LM3302	
LM324	LM324		LM3900	LM3900	
LM339	LM339	1	LM3905		NE555

RAYTHEON ORDER INFORMATION

RAYTHEON	TI DIRECT	TI CLOSEST	RAYTHEON	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT	1	REPLACEMENT	REPLACEMENT
LM101A	LM101A		RC556	NE556	
LM106	LM106		RC702	uA702C	
LM107	LM107		RC709	uA709C	
LM111	LM111		RC710	uA710C	
LM118		LM218	RC711	uA711C	
LM124	LM124		RC733	uA733C	
LM139	LM139		RC741	uA741C	
LM158	LM158		RC747	uA747C	
LM201A	LM201A		RC748	uA748C	
LM206	LM206		RC1458	MC1458	
LM207	LM207		RC3302	LM3302	
LM211	LM211		RC3403	MC3403	
LM218	LM218		RC4136	RC4136	
LM224	LM224		RC4558	RC4558	
LM239	LM239		RM555	SE555	
LM258	LM258		RM556	SE556	
LM301A	LM301A		RM702	uA702M	
LM306	LM306		RM709	uA709M	
LM307	LM307		RM710	uA710M	
LM311	LM311		RM711	uA711M	
LM318	LM318		RM733	uA733M	
LM324	LM324		RM741	uA741M	
LM339	LM339		RM747	uA747M	
LM358	LM358		RM748	uA748M	
LM1900	LM1900		RM1514	TL514M	
LM2900	LM2900		RM1558	MC1558	
LM3900	LM3900		RM4136	RM4136	
RC555	NE555		RM4558	RM4558	

SIGNETICS ORDER INFORMATION

SIGNETICS	TI DIRECT	TI CLOSEST	SIGNETICS	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
LM101A	LM101A	7 %	NE5533	NE5533	
LM107	LM107		NE5533A	NE5533A	
LM111	LM111		NE5534	NE5534	
LM124	LM124		NE5534A	NE5534A	
LM139	LM139		SE532	LM158	
LM201A	LM201A		SE555	SE555	
LM207	LM207		SE556	SE556	
LM211	LM211		SE5534	SE5534	
LM224	LM224		SE5534A	SE5534A	
LM239	LM239		SE5733	uA733M	
LM301A	LM301A		uA709	uA709	
LM307	LM307		uA709A	uA709A	
LM311	LM311		uA710	uA710M	
LM324	LM324		uA710C	uA710C	
LM339	LM339		uA711	uA711M	
MC3302	LM3302		uA711C	uA711C	
NE532	LM358		uA741	uA741M	
NE555	NE555		uA741C	uA741C	
NE556	NE556		uA747C	uA747C	
NE5532	NE5532		uA748	uA748M	
NE5532A	NE5532A		uA748C	uA748C	

Thermal Information

THERMAL INFORMATION

THERMAL CONSIDERATIONS

The power dissipation capability of semiconductor devices is limited by the maximum allowable virtual junction temperature, the ambient temperature, and the thermal resistance between the virtual junction and the ambient environment.

The temperature difference between the junction and the ambient environment is

$$T_{J} - T_{A} = P_{D} R_{\theta} J_{A} \tag{1}$$

where T_J = virtual junction temperature, °C

TA = ambient temperature, °C

PD = power dissipated in the device, W

 $R_{\theta JA}$ = thermal resistance, junction to ambient, °C/W

Solving for TJ,

28

$$T_{J} = T_{A} + P_{D} R_{\theta J A} \tag{2}$$

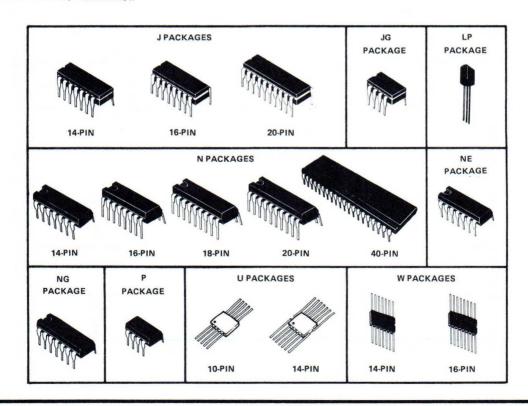
The rating curves that follow assume the ambient environment is still air, that no heat sink is used, and that the junction temperature should not exceed 150° C.

RAIA may be reduced by the use of a heat sink.

$$R_{\theta}JA = R_{\theta}JC + R_{\theta}CA \tag{3}$$

where $R_{\theta JC}$ = thermal resistance, junction to case, and $R_{\theta CA}$ = thermal resistance, case to ambient. $R_{\theta CA}$ is a function of the heat sink, mounting technique, and air velocity.

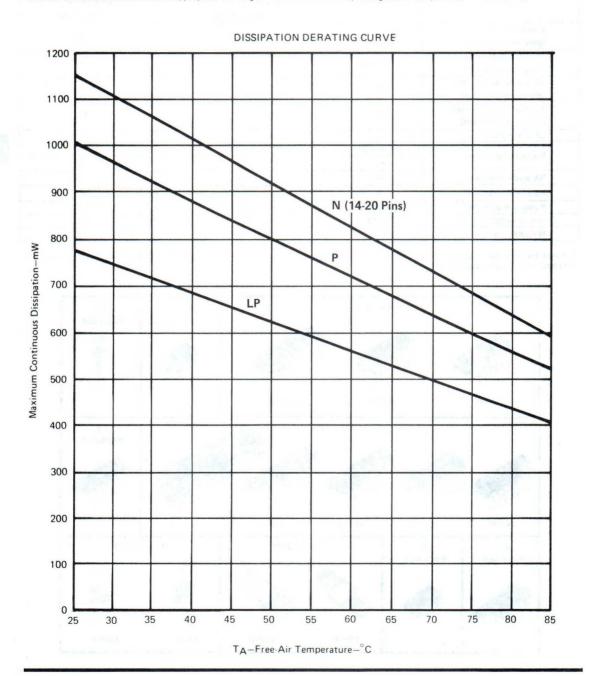
Substituting equation (3) into equation (1) and solving for PD,


$$P_{D} = \frac{T_{J} - T_{A}}{R_{\theta}J_{C} + R_{\theta}CA}$$

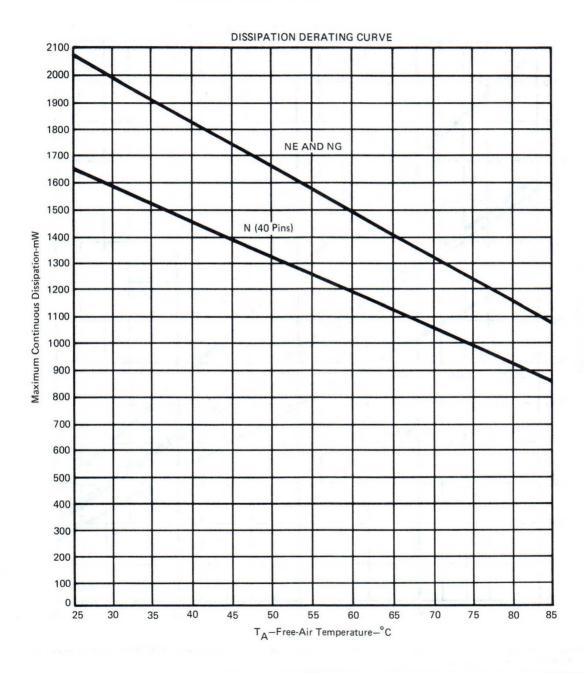
THERMAL INFORMATION

THERMAL RESISTANCE

PACKAGE	PINS	JUNCTION-TO-CASE THERMAL RESISTANCE R _{0 JC} (°C/W)	JUNCTION-TO-AMBIENT THERMAL RESISTANCE $R_{ heta JA}$ (°C/W)
J ceramic dual-in-line (glass-mounted chips)	14 thru 20	60	122
J ceramic dual-in-line [†] (alloy-mounted chips)	14 thru 20	29†	91†
JG ceramic dual-in-line (glass-mounted chips)	8	58	151
JG ceramic dual-in-line [†] (alloy-mounted chips)	8	26 [†]	119†
LP plastic plug-in	3	35	160
N plastic dual-in-line	14 thru 20	44	108
N plastic dual-in-line	40	36	76
NE plastic dual-in-line	14	10	60
NG plastic dual-in-line	14	12.5	60
P plastic dual-in-line	8	45	125
U ceramic flat	10, 14	55	185
W ceramic flat	14, 16	60	126


[†] In addition to those products so designated on their data sheets, all devices having a type number prefix of "SNC" or "SNM," or a suffix of "/883B" have alloy-mounted chips.

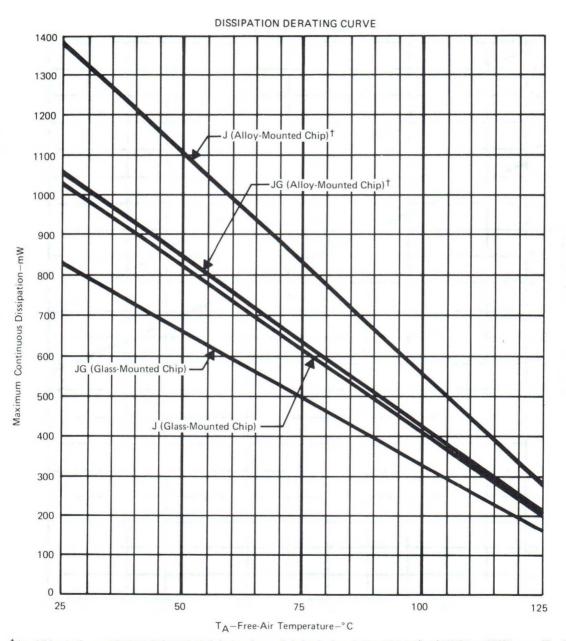
80


PLASTIC PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

PLASTIC PACKAGES (CONTINUED)

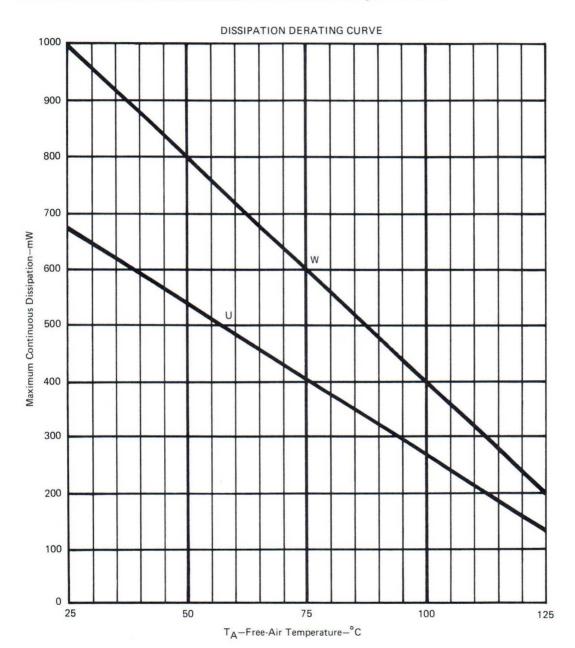
These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.



0

THERMAL INFORMATION

CERAMIC DUAL-IN-LINE PACKAGES


These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

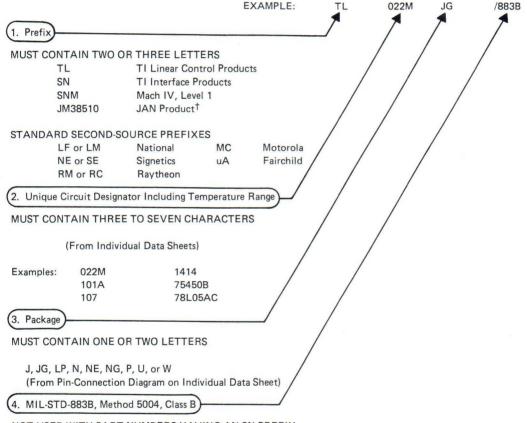
[†] In addition to those products so designated on their data sheets, all devices having a type number prefix of "SNC" or "SNM", or a suffix of "1883B" have alloy-mounted chips.

FLAT PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

0

The second second


THE SHURS OF THE STATE OF THE S

Ordering Instructions and Mechanical Data

ORDERING INSTRUCTIONS

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawing shown in this section.

Factory orders for circuits described should include a four-part type number as explained in the following example.

NOT USED WITH PART NUMBERS HAVING AN SN PREFIX

Circuits are shipped in one of the carriers shown below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped in the most practical carrier.

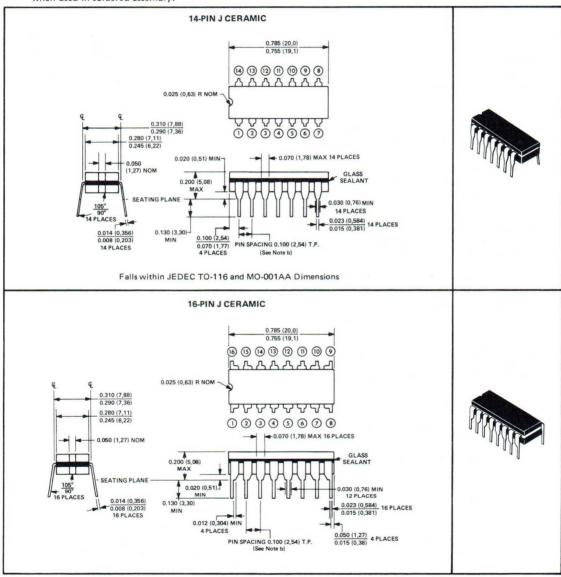
-Individual Cardboard Box

Dual-In-Line (J, JG, N, NE, NG, P) Plug-In (LP) Flat (U, W) -Slide Magazines -Barnes Carrier -Barnes Carrier -A-Channel Plastic Tubing -Sectioned Cardboard Box -Milton Ross Carrier

-Sectioned Cardboard Box

-Individual Plastic Box

-Barnes Carrier

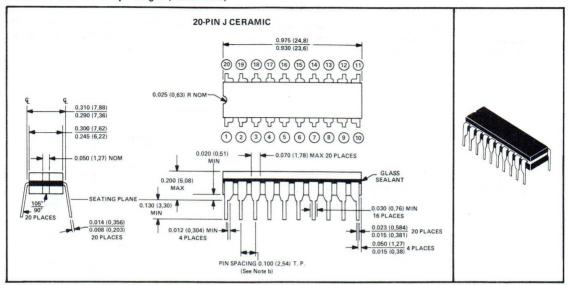

30

Texas Instruments

[†]For ordering instruction on JAN Products, see Section 8, page 409.

J ceramic dual-in-line package

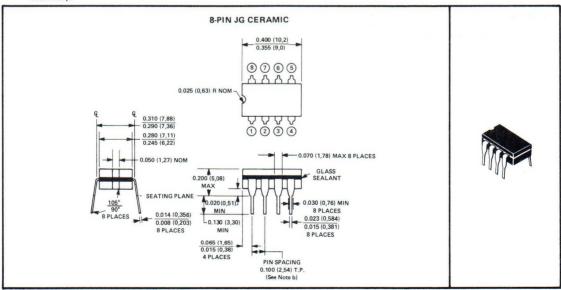
These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, or 20-lead frame. Hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on 0.300 (7,62) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.



NOTES: a. All dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

b. Each pin centerline is located within 0.010 (0,26) of its true longitudinal position.

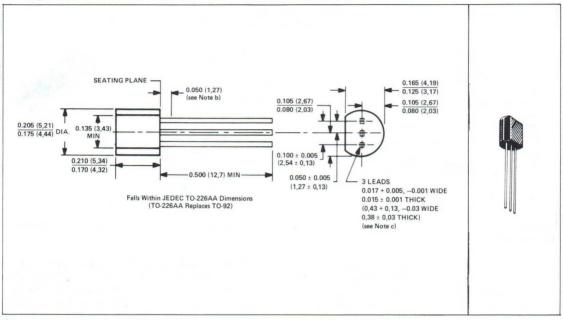
38


J ceramic dual-in-line packages (continued)

JG ceramic dual-in-line package

80

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and 8-lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 0.300 (7,62) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.

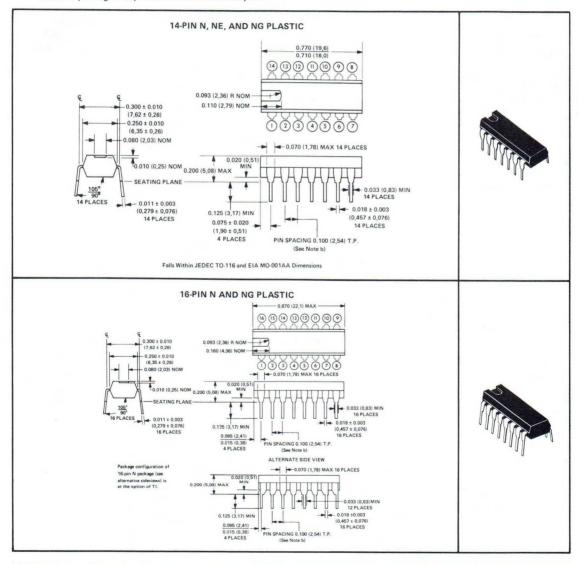


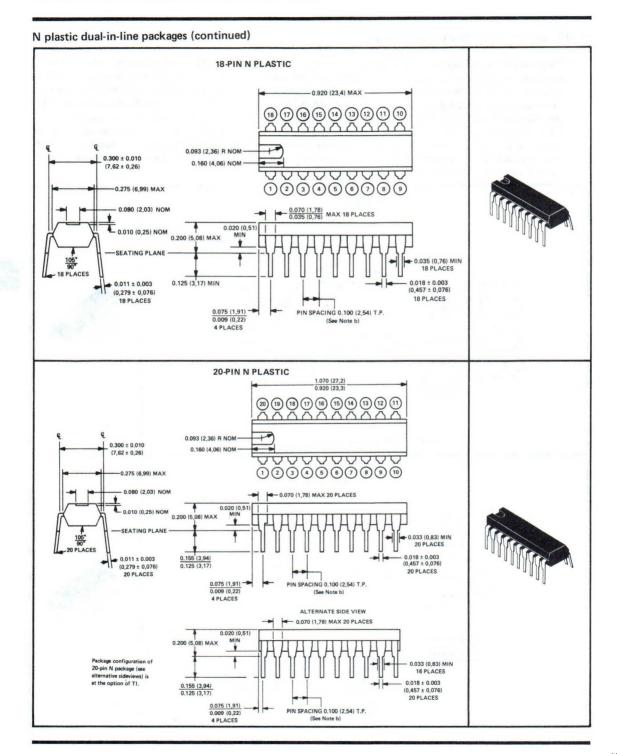
NOTES: a. All dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

b. Each pin centerline is located within 0.010 (0,26) of its true longitudinal position.

LP Silect‡ plastic package

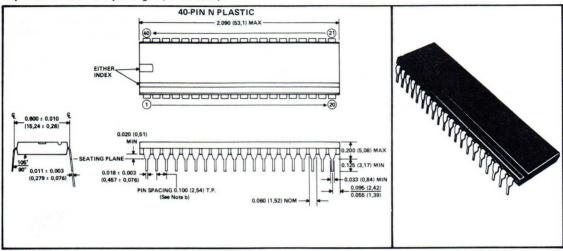
The Silect‡ package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperature without deformation. The package exhibits stable performance characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B requirements.


‡Trade Mark of Texas Instruments Incorporated.


NOTES: a. Dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

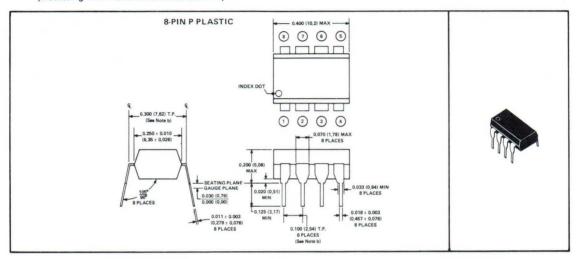
- b. Lead dimensions are not controlled in this area.
- c. Beyond 0.100 (2,54) below seating plane, tolerance on lead width reduces to ± 0.001 (0,03).

N, NE, and NG plastic dual-in-line packages


These dual-in-line packages consist of a circuit mounted on a 14-, 16-, 18-, 20-, or 40-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 0.300 (7,62) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly. The NE package is available only in a 14-pin version and has internal metal tabs connecting the center three leads on each side for better heat dissipation. The NG package is available in either 14- or 16-pin versions and is intrinsically similar to the N package but provides better heat dissipation.

N plastic dual-in-line packages (continued)

30

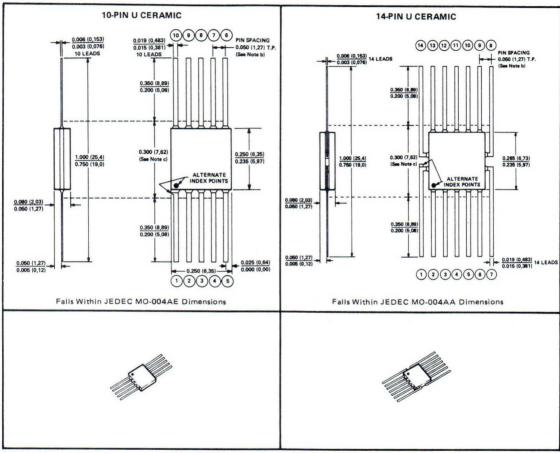


NOTES: a. All dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

b. Leads are within 0.005 (0,127) radius of true position (TP) at maximum material condition.

P plastic dual-in-line package

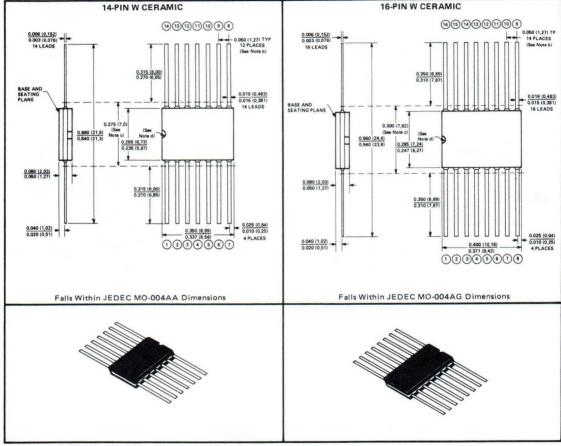
This dual-in-line package consists of a circuit mounted on an 8-lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 0.300-inch (7,62) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.



NOTES: a, All dimensions are in inches and parenthetically in millimeters, Inch dimensions govern.

b. Each pin is within 0.005 (0,127) radius of true position (TP) at the gauge plane with maximum material condition and unit installed.

U ceramic flat packages


These flat packages consist of a ceramic base, ceramic cap, and 10- or 14- lead frame. Circuit bars are alloy-mounted. Hermetic sealing is accomplished with glass. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.

- NOTES: a. All dimensions are in inches and parenthetically in millimeters. Inch dimensions goven.
 - b. Leads are within 0.005 (0,127) radius of true position (TP) at maximum material condition.
 - c. This dimension determines a zone within which all body and lead irregularities lie.

W ceramic flat packages

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap and a 14- or 16-lead frame. Hermetic sealing is accomplished with glass. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.

- NOTES: a. All dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.
 - b. Leads are within 0.005 (0,127) radius of true position (TP) at maximum material condition.
 - c. This dimension determines a zone within which all body and lead irregularities lie.
 - d. Index point is provided on cap for terminal identification only

Operational Amplifiers

SELECTION GUIDE

SINGLE UNCOMPENSATED OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	IIO nA	A _{VD} V/mV	B ₁ MHz	SR V/μs	I _{CC}		CC V	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
75	2	10	50	1	0.5	3	±5	±22	High Performance	LM101A	J, JG, U, W	59
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL060M	JG	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070M	JG	131
0.2	6	1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080M	JG	139
10,000	5	2,000	1.4	0.5	1.7	6.7		-7, +14	General Purpose	TL702M	J, U, W	157
5,000	2	500	2.5	0.5	1.7	6.7		-7, +14	General Purpose	uA702M	J, JG, U, W	163
200	2	50	25	1	0.3	3.6		±18	General Purpose	uA709AM	J, JG, U	167
500	5	200	25	1	0.3	5.5		±18	General Purpose	uA709M	J, JG	167
500	5	200	50	1	0.5	2.8	±2	±22	General Purpose	uA748M	J, JG, U, W	181

Industrial Temperature Range (-25°C to 85°C)

75	2	10	50	1	0.5	3	±5	±22	High Performance	LM201A	J, JG, N, P	59
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0601	JG, P	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0701	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0801	JG, P	115

Commercial Temperature Range (0°C to 70°C)

250	7.5	50	25	1	0.5	3	±5	±18	High Performance	LM301A	J, JG, N, P	59
0.4	15	0.2	.3	1	3.5	0.25	±1.5	± 18	BIFET, Low Power	TL060C	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL060AC	JG, P	115
0.4	15	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070C	JG, P	131
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL070AC	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080AC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL080C	JG, P	139
15,000	10	5,000	1	0.5	1.7	7		-7, +14	General Purpose	TL702C	J, JG, N	163
1,500	7.5	500	12	1	0.3	5.5		±18	General Purpose	uA709C	J, JG, N, P	167
500	6	200	20	1	0.5	2.8	±2	±18	General Purpose	uA748C	J, JG, N, P	181
100	5	20	25	1	0.5	3.3	±5	±22	High Performance	uA777C	J, JG, N, P	185

SINGLE INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	I _{IO} nA	AVD V/mV	B ₁ MHz	SR V/μs	ICC mA	VCC V MIN MAX	DESCRIPTION	DEVICE	PACKAGE	PAGE	
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
75	2	10	50	1	0.5	3	±2	±22	High Performance	LM107	J, JG, U, W	62
800	2	200	50	10	13	6.5	±3	±22	Low Noise			
									$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	SE5534	JG	105
800	2	200	50	10	13	6.5	±3	±22	Low Noise			
									$V_n = 4.5 \text{ nV}/\sqrt{\text{Hz Max}}$	SE5534A	JG	
0.2	6	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL061M	JG, U	105
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071M	JG	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081M	JG	139
0.2	2	0.1	50	3	13	2.8	±4	±18	BIFET, Low VIO	TL088M	JG; U	
150	5	30	50	1	0.5	1.0	+3	+32	General Purpose,	TL321M	JG	151
500	5	200	50	1	0.5	2.8	±2	±22	General Purpose	uA741M	J, JG, U, W	173

Industrial Temperature Range (-25°C to 85°C)

75	2	10	50	1	0.5	3	±2	±22	High Performance	LM207	N	62
250	4	50	50	15	70	8		±20	High Performance	LM2181	JG, P	73
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0611	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0661	JG, P	123
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0711	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0811	JG, P	139
0.4	0.5	0.1	50	3	13	2.8	±4	±18	BIFET, Low Offset	TL0871	JG, P	147
0.4	3	0.1	50	3	13	2.8	±4	±18	BIFET, Low Offset	TL0881	JG, P	147
150	5	30	50	1	0.5	1	+3	+32	General Purpose	TL3211	JG, P	151

SELECTION GUIDE

SINGLE INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

I _{IB}	V _{IO} mV	IIO nA	AVD V/mV	B ₁	SR V/μs	I _{CC}		CC V	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX			-W	1 500
250	7.5	50	25	1	0.5	3	±2	±18	High Performance	LM307	J, JG, N, P	62
500	10	200	25	15	70	10		±20	High Performance	LM318	JG, N, P	73
1,500	4	300	25	10	13	8	±3	±22	Low Noise		-45-	
		Same of							$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	NE5534	JG, P	105
1,500	4	300	25	10	13	8	±3	±22	Low Noise		100	
					100 449	11/00			$V_n = 4.5 \text{ nV}/\sqrt{\text{Hz} \text{ Max}}$	NE5534A	JG, P	105
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061AC	JG, P	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061BC	JG, P	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL061C	JG, P	115
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power		- 2	
			-						with Power Control	TL066AC	JG, P	123
0.2	3	1	4	1	3.5	. 0.25	±1.5	±18	BIFET, Low Power			64
	-								with Power Control	TL066BC	JG, P	123
0.4	15	2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power			
									with Power Control	TL066C	JG, P	123
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			-
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071AC	JG, P	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			10
		0.8	1.00						$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071BC	JG, P	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			1.0
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL071C	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081AC	JG, P	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081BC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL081C	JG, P	139
0.4	0.5	0.2	25	3	13	2.8	±4	±18	BIFET, Low VIO	TL087C	JG, P	147
0.4	2	0.2	25	3	13	2.8	±4	±18	BIFET, Low VIO	TL088C	JG, P	147
250 500	7	50 200	25 20	1	0.5	1.0	+3 ±2	+32 ±18	General Purpose, General Purpose	TL321C uA741C	JG, P J, JG, N, P	151 173

4

DUAL OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	IIO nA	AVD V/mV	B ₁ MHz	SR V/μs	I _{CC}		CC V	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
150	5	30	50	1	0.3	0.6	+3	+32	General Purpose	LM158	JG	71
500	5	200	50	1	0.6	2.8	±2	±22	General Purpose	MC1558	JG, U	85
500	5	200	50	3	1.5	2.8		±22	High Performance	RM4558	JG	103
100	5	40	4	0.5	0.5	0.1	±2	±22	Low Power	TL022M	JG, U	109
0.2	6	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL062M	JG, U	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072M	JG	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082M	JG	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083M	J	139
500	5	50	50	1	0.6	4	+3	+36	General Purpose	TL322M	JG	153
500	5	200	50	1	0.5	2.8	± 2	±22	General Purpose	uA747M	J, W	177

Automotive Temperature Range (-40°C to 85°C)

	and the second s											
500	10	50	100	1	0.3	0.6	±3	±26	General Purpose	LM2904	JG, P, U	83

Industrial Temperature Range (-25°C to 85°C)

150	5	30	50	1	0.3	0.6	+3	+32	General Purpose,	LM258	JG, P, U	71
500	8	75	20	1	0.6	4	+3	+36	General Purpose	TL3221	JG, P	153
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0621	JG, P	115
0.2	6	0.05	50	3	13	2.5	± 3.5	±18	BIFET, Low Noise	TL0721	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0821	JG, P	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0831	J, N	139
0.4	0.5	0.1	50	3	13	2.8	±3.5	±18	BIFET, Low Offset	TL2871	JG, P	147
0.4	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL2881	JG, P	147

SELECTION GUIDE

DUAL OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

I _{IB}	V _{IO}	IIO nA	AVD V/mV	B ₁ MHz	SR V/μs	ICC mA		CC /	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
250	7	50	25	1	0.3	0.6	+3	+32	General Purpose	LM358	JG, P	71
500	6	200	20	1	0.6	2.8	±2	±18	General Purpose	MC1458	JG, P	85
800	4	150	25	10	9	8		±22	Low Noise			
		7.50							$V_n = 5 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5532	JG, P	93
800	4	150	25	10	9	8		±22	Low Noise			
									$V_n = 5 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5532A	JG, P	93
1500	4	300	25	10	13	8		±22	Low Noise			
									$V_n = 4 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	NE5533	J, N	97
1500	4	300	25	10	13	8		±22	Low Noise			
									$V_n = 3.5 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	NE5533A	J, N	97
500	6	200	20	3	1	2.8		±18	High Performance	RC4558	JG, P	103
250	5	80	1	0.5	0.5	0.125	±2	±18	Low Power	TL022C	JG, P	109
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062AC	JG, P	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062BC	JG, P	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL062C	JG, P	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072AC	JG, P	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072BC	JG, P	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL072C	JG, P	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082AC	JG, P	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082BC	JG, P	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL082C	JG, P	139
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083AC	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL083C	J, N	139
0.4	0.5	0.1	25	3	13	2.8	±4	±18	BIFET, Low Offset	TL287C	JG, P	147
0.4	3	0.1	25	3	13	2.8	±4	±18	BIFET, General Purpose	TL288C	JG, P	147
500	10	50	20	1	0.6	4	+3	+36	General Purpose	TL322C	JG, P	153
500	6	200	25	1	0.5	2.8	±2	±18	General Purpose	uA747C	J, N	177

QUADRUPLE OPERATIONAL AMPLIFIERS

Military Temperature Range (-55°C to 125°C)

I _{IB}	V _{IO} mV	IIO nA	AVD V/mV	B ₁ MHz	SR V/μs	I _{CC}	100	cc v	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
150	5	30	50	1	0.5	0.5	+3	+32	General Purpose	LM124	J, U	65
500	5	200	50	3.5	1.5	2.8	±4	±22	High Performance	RM4136	J, U	101
100	5	40	4	0.5	0.5	0.1	±2	±22	Low Power	TL044M	J, U	112
0.2	9	0.1	4	1	3.5	0.2	±1.5	±18	BIFET, Low Power	TL064M	J, W	115
0.2	9	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{Typ}$	TL074M	J, W	131
0.2	9	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084M	J, W	139
100	5	25	50	1	0.5	3.6		±22	General Purpose	LM148	J	67
100			2	2.5	0.5	12	+4.5	+36	General Purpose	LM1900	J	77
500	5	50	50	1	0.6	4	+3	+36	General Purpose	MC3503	J	89

Automotive Temperature Range (-40°C to 85°C)

200			1.2	2.5	0.5	10	+4.5	+32	General Purpose	LM2900	J, N	77
500	10	50	100	5	1	5	+3	+26	General Purpose	LM2902	J, N	81
500	8	75	20	1	0.6	7	+3	+36	General Purpose	MC3303	J, N	89

Industrial Temperature Range (-25°C to 85°C)

250	7	50	25	1	0.5	. 3	+3	+32	General Purpose,	LM224	J, N	65
200	6	50	25	1	0.5	4.5		±18	General Purpose	LM248	J, N	67
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL0641	J, N	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise	TL0741	J, N	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL0841	J, N	139

SELECTION GUIDE

QUADRUPLE OPERATIONAL AMPLIFIERS

Commercial Temperature Range (0°C to 70°C)

IB nA	V _{IO} mV	IIO nA	AVD V/mV	B ₁ MHz	SR V/μs	ICC mA		CC /	DESCRIPTION	DEVICE	PACKAGES	PAGE
MAX	MAX	MAX	MIN	TYP	TYP	MAX	MIN	MAX				
250	7	50	25	1	0.5	0.5	+3	+32	General Purpose	LM324	J, N	65
200	6	50	25	1	0.5	4.5		±18	General Purpose	LM348	J, N	67
200			1.2	2.5	0.5	10	+4.5	+32	General Purpose	LM3900	J, N	77
500	10	50	20	1	0.6	7	+3	+36	General Purpose	MC3403	J, N	89
500	6	200	20	3	1	2.8	±4	±18	High Performance	RC4136	J, N	101
250	5	80	1	0.5	0.5	0.125	±2	±18	Low Power	TL044C	J, N	112
0.2	6	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064AC	J, N	115
0.2	3	0.1	4	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064BC	J, N	115
0.4	15	0.2	3	1	3.5	0.25	±1.5	±18	BIFET, Low Power	TL064C	J, N	115
0.2	6	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL074AC	J, N	131
0.2	3	0.05	50	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL074BC	J, N	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL074C	J, N	131
0.2	10	0.05	25	3	13	2.5	±3.5	±18	BIFET, Low Noise			
									$V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$	TL075C	N	131
0.2	6	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084AC	J, N	139
0.2	3	0.1	50	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084BC	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL084C	J, N	139
0.4	15	0.2	25	3	13	2.8	±3.5	±18	BIFET, General Purpose	TL085C	N	139

OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Input Offset Voltage (VIO)

The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to zero. NOTE: The input offset voltage may also be defined for the case where two equal resistances (RS) are inserted in series with the input leads.

Average Temperature Coefficient of Input Offset Voltage (avio)

The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{VIO} \ = \ \left| \frac{(V_{IO} @ T_{A(1)}) - (V_{IO} @ T_{A(2)})}{T_{A(1)} - T_{A(2)}} \right| \text{ where } T_{A(1)} \text{ and } T_{A(2)} \text{ are the specified temperature extremes.}$$

Input Offset Current (I₁₀)

The difference between the currents into the two input terminals with the output at zero volts.

Average Temperature Coefficient of Input Offset Current (allo)

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{IIO} = \left| \frac{(I_{IO} \circledast T_{A(1)}) - (I_{IO} \circledast T_{A(2)})}{T_{A(1)} - T_{A(2)}} \right| \quad \text{where } T_{A(1)} \text{ and } T_{A(2)} \text{ are the specified temperature extremes.}$$

Input Bias Current (IIB)

The average of the currents into the two input terminals with the output at zero volts.

Common-Mode Input Voltage (VIC)

The average of the two input voltages.

Common-Mode Input Voltage Range (VICR)

The range of common-mode input voltage that if exceeded will cause the amplifier to cease functioning properly.

Differential Input Voltage (VID)

The voltage at the noninverting input with respect to the inverting input.

Maximum Peak Output Voltage Swing (VOM)

The maximum positive or negative peak output voltage that can be obtained without waveform clipping when the quiescent d-c output voltage is zero.

Maximum Peak-to-Peak Output Voltage Swing (VOPP)

The maximum peak-to-peak output voltage that can be obtained without waveform clipping when the quiescent d-c output voltage is zero.

GLOSSARY OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Large-Signal Voltage Amplification (AV)

The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output.

Differential Voltage Amplification (AVD)

The ratio of the change in output voltage to the change in differential input voltage producing it.

Maximum-Output-Swing Bandwidth (BOM)

The range of frequencies within which the maximum output voltage swing is above a specified value.

Unity-Gain Bandwidth (B₁)

The range of frequencies within which the open-loop voltage amplification is greater than unity.

Phase Margin (ϕ_m)

The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which the modulus of the open-loop amplification is unity.

Gain Margin (Am)

The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is such that the output is in phase with the inverting input.

Input Resistance (ri)

The resistance between the input terminals with either input grounded.

Differential Input Resistance (rid)

The small-signal resistance between the two ungrounded input terminals.

Output Resistance (ro)

The resistance between the output terminal and ground.

Input Capacitance (Ci)

The capacitance between the input terminals with either input grounded.

Common-Mode Input Impedance (zic)

The parallel sum of the small-signal impedance between each input terminal and ground.

Output Impedance (zo)

The small-signal impedance between the output terminal and ground.

GLOSSARY OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Common-Mode Rejection Ratio (kCMR, CMRR)

The ratio of differential voltage amplification to common-mode voltage amplification.

NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

Supply Voltage Sensitivity (ksvs, $\Delta V_{1O}/\Delta V_{CC}$)

The absolute value of the ratio of the change in input offset voltage to the change in supply voltages producing it.

NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.

2. This is the reciprocal of supply voltage rejection ratio.

Supply Voltage Rejection Ratio (ksvR, \(\Delta Vcc / \Delta V_{IO} \)

The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.

NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.

2. This is the reciprocal of supply voltage sensitivity.

Equivalent Input Noise Voltage (Vn)

The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

Equivalent Input Noise Current (In)

The current of an ideal current source (having an internal impedance equal to infinity) in parallel with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a current source.

Average Noise Figure (F)

The ratio of (1) the total output noise power within a designated output frequency band when the noise temperature of the input termination(s) is at the reference noise temperature, T₀, at all frequencies to (2) that part of (1) caused by the noise temperature of the designated signal-input termination within a designated signal-input frequency band.

Short-Circuit Output Current (IOS)

The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to a specified point.

Supply Current (ICC)

The current into the VCC or VCC+ terminal of an integrated circuit.

Total Power Dissipation (PD)

The total d-c power supplied to the device less any power delivered from the device to a load. NOTE: At no load: $P_D = V_{CC+} \cdot I_{CC+} + V_{CC-} \cdot I_{CC-}$.

Channel Separation (Vo1/Vo2)

The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel.

GLOSSARY OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Rise Time (t_r)

The time required for an output voltage step to change from 10% to 90% of its final value.

Total Response Time (Settling Time) (ttot)

The time between a step-function change of the input signal level and the instant at which the magnitude of the output signal reaches for the last time a specified level range $(\pm \epsilon)$ containing the final output signal level.

Overshoot Factor

The ratio of (1) the largest deviation of the output signal value from its final steady-state value after a step-function change of the input signal, to (2) the absolute value of the difference between the steady-state output signal values before and after the step-function change of the input signal.

Slew Rate (SR)

The average time rate of change of the closed-loop amplifier output voltage for a step-signal input.

LINEAR INTEGRATED CIRCUITS

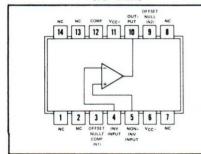
TYPES LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 11432, JANUARY 1971-REVISED OCTOBER 1979

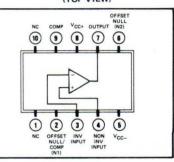
- Low Input Currents
- Low Input Offset Parameters
- Frequency and Transient Response Characteristics Adjustable
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Designed to be Interchangeable with National Semiconductor LM101A and LM301A
- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges
- Same Pin Assignments as uA709

description

The LM101A, LM201A, and LM301A are high-performance operational amplifiers featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices. The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are protected to withstand short-circuits at the output. The external compensation of these amplifiers allows the changing of the frequency response (when the closed-loop gain is greater than unity) for applications requiring wider bandwidth or higher slew rate. A potentiometer may be connected between the offset-null inputs (N1 and N2), as shown in Figure 7, to null out the offset voltage.


The LM101A is characterized for operation over the full military temperature range of -55°C to 125°C, the LM201A is characterized for operation from -25°C to 85°C, and the LM301A is characterized for operation from 0°C to 70°C.

terminal assignments


J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE

NC-No internal connection

79

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	LM101A	LM201A	LM301A	UNIT
Supply voltage V _{CC+} (see Note 1)	22	22	18	V
Supply voltage V _{CC} — (see Note 1)	-22	-22	-18	V
Differential input voltage (see Note 2)	±30	±30	±30	V
Input voltage (either input, see Notes 1 and 3)	±15	± 15	±15	V
Voltage between either offset null terminal (N1/N2) and V _{CC} -	-0.5 to 2	-0.5 to 2	-0.5 to 2	V
Duration of output short-circuit (see Note 4)	unlimited	unlimited	unlimited	
Continuous total power dissipation at (or below) 25° C free-air temperature (see Note 5)	500	500	500	mW
Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds J, JG, U, or W package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds N or P package		260	260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less,
 - 4. The output may be shorted to ground or either power supply. For the LM101A only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM201A only, the unlimited duration of the short-circuit applies at (or below) 85°C case temperature or 75°C free-air temperature.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, LM101A chips are alloy-mounted; LM201A and LM301A chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

DISSIPATION DERATING TABLE

B40V405	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	500 mW	11.0 mW/°C	105° C
J (Glass-Mounted Chip)	500 mW	8.2 mW/°C	89°C
JG (Alloy-Mounted Chip)	500 mW	8.4 mW/°C	90°C
JG (Glass-Mounted Chip)	500 mW	6.6 mW/°C	74° C
N	500 mW	9.2 mW/°C	96° C
P	500 mW	8.0 mW/°C	87°C
U	500 mW	5.4 mW/°C	57° C
W	500 mW	8.0 mW/°C	87° C

Also see Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature, C_C = 30 pF (see note 6)

	DADAMETED	TEST COMP	Tionet	LM1	101A, LN	1201A		LM301A		UNIT
	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	1	Rs = 50 kΩ	25°C		0.6	2		2.0	7.5	
VIO	Input offset voltage	HS = 50 K12	Full range			3			10	mV
αVIO	Average temperature coefficient of input offset voltage		Full range		3	15		6	30	μV/°C
I a see			25°C		1.5	10		3	50	- ^
10	Input offset current		Full range			20			70	nA
		$T_A = -55^{\circ}$	to 25°C		0.02	0.2				
	Average temperature coefficient	T _A = 25°C	to MAX		0.01	0.1				100
αΙΙΟ	of input offset current	$T_A = 0^{\circ}C$ to	25°C					0.02	0.6	nA/°C
		T _A = 25°C	to 70°C					0.01	0.3	
I _{IB}	Input bias current		25°C		30	75		70	250	nA
IB	input bias current		Full range			100			300	IIA
VICR	Common-mode input voltage range	See Note 7	Full range	±15			±12			V
		$V_{CC\pm} = \pm 15 V$,	25°C	24	28		24	28		
.,	Maximum peak-to-peak	$R_L = 10 k\Omega$	Full range	24			24			V
VOPP	output voltage swing	$V_{CC\pm} = \pm 15 V$,	25° C	20	26		20	26		V
		$R_L = 2 k\Omega$	Full range	20			20			
AVD	Large-signal differential	$V_{CC\pm} = \pm 15 \text{ V},$ $V_{CC\pm} = \pm 10 \text{ V},$	25° C	50	200		25	200		V/mV
~VD	voltage amplification	$R_L \ge 2 k\Omega$	Full range	25			15			V/III V
rį	Input resistance		25°C	1.5	4		0.5	2		MΩ
CMRR	Common mode releasing ratio	Ba = 50 k0	25°C	80	98		70	90		-10
CIVIRR	Common-mode rejection ratio	$R_S = 50 k\Omega$	Full range	80			70			dB
ksvr	Supply voltage rejection ratio	$R_S = 50 k\Omega$	25°C	80	98		70	96		40
-2AH	(AVCC/AVIO)	115 - 30 K32	Full range	80			70			dB
cc	Supply current	No load, No signal,	25° C		1.8	3		1.8	3	mA
	Supply surrent	See Note 7	MAX		1.2	2.5				

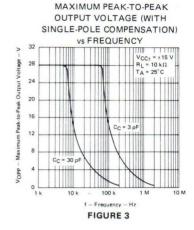
[†]All characteristics are specified under open-loop operation. Full range for LM101A is -55° C to 125° C, for LM201A is -25° C to 85° C, and for LM301A is 0° C to 70° C.

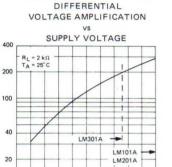
NOTES: 6. Unless otherwise noted, $V_{CC\pm}$ = ± 5 V to ± 20 V for LM101A and LM201A, and $V_{CC\pm}$ = ± 5 V to ± 15 V for LM301A. All typical values are at $V_{CC\pm}$ = ± 15 V.

^{7.} For LM101A and LM201A, VCC± = ±20 V. For LM301A, VCC± = ±15 V.

TYPES LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS


INPUT BIAS CURRENT


INPUT OFFSET CURRENT VS FREE-AIR TEMPERATURE VCC+ = ±15 V PA. LM301A nput Offset LM101A 0 LM201A -75 -50 -25 0 25 50 TA-Free-Air Temperature FIGURE 1

VS FREE-AIR TEMPERATURE 100 VCC± = ± 15 V 80 I M301 A Input Bias Current 60 40 LM101A 18 I M2014 0 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature-°C FIGURE 2

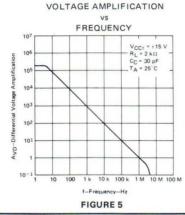
OPEN-LOOP LARGE-SIGNAL

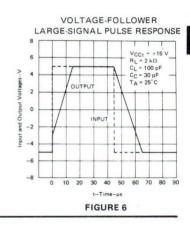
DIFFERENTIAL

10 12 14

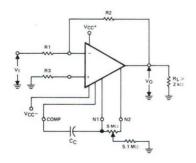
VCC± | -Supply Voltage-V

FIGURE 4


Amplification


Ayp-Differential Volatage

5


10 L

OPEN-LOOP LARGE-SIGNAL

TYPICAL APPLICATION DATA

$$\frac{V_O}{V_I} = -\frac{R2}{R1}$$

$$C_C \ge \frac{R1 \cdot 30 pF}{R1 + R2}$$

$$R3 = \frac{R1 \cdot R2}{R1 + R2}$$

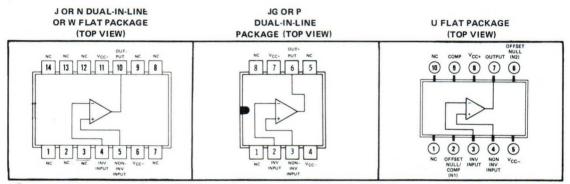
FIGURE 7-INVERTING CIRCUIT WITH ADJUSTABLE GAIN, SINGLE-POLE COMPENSATION, AND OFFSET ADJUSTMENT

Texas Instruments

TYPES LM107, LM207, LM307 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 11426, DECEMBER 1970-REVISED OCTOBER 1979

- Low Input Currents
- No Frequency Compensation Required
- Low Input Offset Parameters
- Short-Circuit Protection
- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges


description

The LM107, LM207, and LM307 are high-performance operational amplifiers featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The LM107 is characterized for operation over the full military temperature range of -55° C to 125° C, the LM207 is characterized for operation from -25° C to 85° C, and the LM307 is characterized for operation from 0° C to 70° C.

terminal assignments

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM107	LM207	LM307	UNIT
Supply voltage V _{CC+} (see Note 1)		22	22	18	V
Supply voltage V _{CC} — (see Note 1)		-22	-22	-18	V
Differential input voltage (see Note 2)		±30	±30	±30	V
Input voltage (either input, see Notes 1 and 3)		±15	±15	±15	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total dissipation at (or below) 25°C free-air temperat	ure (see Note 5)	500	500	500	mW
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the LM107 only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM207 only, the unlimited duration of the short-circuit applies at (or below) 85°C case temperature or 75°C free-air temperature.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, LM107 chips are allow-mounted: LM207 and LM307 chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

107

TYPES LM107, LM207, LM307 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
FACRAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	500 mW	11.0 mW/°C	105°C
J (Glass-Mounted Chip)	500 mW	8.2 mW/°C	89°C
JG (Alloy-Mounted Chip)	500 mW	8.4 mW/°C	90°C
JG (Glass-Mounted Chip)	500 mW	6.6 mW/°C	74° C
N	500 mW	9.2 mW/°C	96°C
P	500 mW	8.0 mW/°C	87°C
U	500 mW	5.4 mW/°C	57° C
W	500 mW	8.0 mW/°C	87°C

Also see Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature (see note 6)

	DADAMETED	TEST SCHOOL	TIONET	LI	M107, LN	1207		LM307		LINIT
	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,			25°C		0.6	2		2	7.5	
VIO	Input offset voltage	$R_S = 50 k\Omega$	Full range			3			10	mV
۵۷IO	Average temperature coefficient of input offset voltage		Full range		3	15		6	30	μV/°
1	Input offset current		25°C		1.5	10		3	50	nA
10	Input offset current		Full range	1		20			70	1 nA
		$T_{A} = -55^{\circ}$	C to 25°C		0.02	0.2				
	Average temperature coefficient	T _A = 25°C	to MAX		0.01	0.1				nA/°
α110	of input offset current	$T_A = 0^{\circ}C$ to	25°C					0.02	0.6	nA/ C
		$T_A = 25^{\circ}C$	to 70°C					0.01	0.3	1
Lon	I and bin and a		25°C		30	75		70	250	- ^
IB	Input bias current		Full range	1		100			300	nA
VICR	Common-mode input voltage range	See Note 7	Full range	±15			±12			٧
	2 7	V _{CC±} = ±15 V,	25°C	24	28		24	28		
.,	Maximum peak-to-peak	R _L = 10 kΩ	Full range	24			24			v
VOPP	output voltage swing	$V_{CC\pm} = \pm 15 V$	25°C	20	26	1	20	26		
		R _L = 2 kΩ	Full range	20			20			
Avp	Large-signal differential	$V_{CC\pm} = \pm 15 \text{ V},$ $V_{O} = \pm 10 \text{ V},$	25° C	50	200		25	200		V/m\
~ V D	voltage amplification	$R_L \ge 2 k\Omega$	Full range	25			15			
rį	Input resistance		25°C	1.5	4		0.5	2		MΩ
			25°C	80	98		70	90		dB
CMRR	Common-mode rejection ratio	$R_S = 50 \text{ k}\Omega$	Full range	80			70			UB
lea	Supply voltage rejection ratio		25°C	80	98		70	96		40
ksvr	(AVCC/AVIO)	$R_S = 50 k\Omega$	Full range	80			70			dB
		No load,	25°C		1.8	3		1.8	3	
ICC	Supply current	No signal, See Note 7	MAX		1.2	2.5				mA

[†]All characteristics are specified under open-loop operation. Full range for LM107 is -55°C to 125°C, for LM207 is -25°C to 85°C, and for LM307 is 0°C to 70°C.

79

NOTES: 6. Unless otherwise noted $V_{CC\pm}$ = ± 5 V to ± 20 V for LM107 and LM207, and $V_{CC\pm}$ = ± 5 V to ± 15 V for LM307. All typical values are at $V_{CC\pm}$ = ± 15 V.

^{7.} For LM107 and LM207, $V_{CC\pm}$ = ±20 V. For LM307, $V_{CC\pm}$ = ±15 V.

TYPES LM107, LM207, LM307 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS

INPUT OFFSET CURRENT FREE-AIR TEMPERATURE

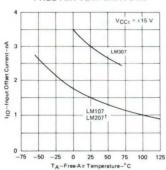
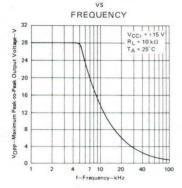
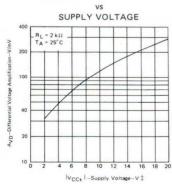




FIGURE 1 MAXIMUM PEAK-TO-PEAK **OUTPUT VOLTAGE**

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION**

FIGURE 3

INPUT BIAS CURRENT VS FREE-AIR TEMPERATURE

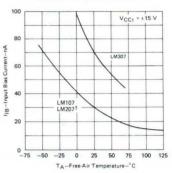


FIGURE 2

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 V_{CC1} = ±15 V R_L = 2 kΩ C_L = 100 pF TA = 25"C OUTPUT and Output 0 INPUT -2

> 40 FIGURE 4

50

30

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION**

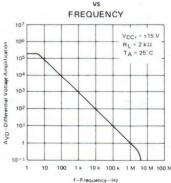
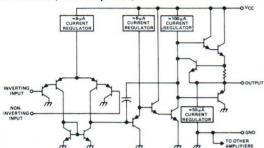


FIGURE 6

Data for free-air temperatures below-25°C and above 85°C is applicable for LM107 only. ‡Data for supply voltages greater than 15 V is applicable to LM107 and LM207 circuits only

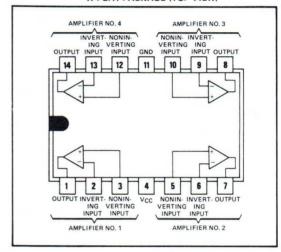

LINEAR INTEGRATED CIRCUITS

TYPES LM124, LM224, LM324 QUADRUPLE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12248. SEPTEMBER 1975 - REVISED OCTOBER 1979

- Wide Range of Supply Voltages Single Supply . . . 3 V to 30 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

schematic (each amplifier)


description

9

These devices consist of four independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 30 volts and Pin 4 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

- Low Input Bias and Offset Parameters
 Input Offset Voltage . . . 2 mV Typ
 Input Offset Current . . . 3 nA Typ (LM124)
 Input Bias Current . . . 45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±32 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Internal Frequency Compensation

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ± 15-volt supplies.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	32 V
Differential input voltage (see Note 2)	. ±32 V
Input voltage range (either input)	V to 32 V
Duration of output short-circuit (one amplifier) to ground at (or below) 25°C	
free-air temperature (V _{CC} ≤ 15 V) (see Note 3)	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4)	900 mW
Operating free-air temperature range: LM124	
LM22425°	
LM3240°	
Storage temperature range	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J or W package	
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package	. 260°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM124 chips are alloy-mounted; LM224 and LM324 chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES LM124, LM224, LM324 QUADRUPLE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

		TEST SOURIE	ougt	LM12	4, LM2	24	LI	//324		UNIT	
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		V _O = 1.4 V,	25°C		2	5	CAL B	2	7	mV	
VIO	Input offset voltage	V _{CC} = 5 V to 30 V	Full range		14	7	Samuel Control	xv = Up.	9	mv	
		V 44V	25°C		3	30		5	50	nA	
110	Input offset current	V _O = 1.4 V	Full range			100			150	nA	
Loren	T	V _O = 1.4 V,	25°C		-45	-150		-45	-250	nA	
IB	Input bias current	See Note 5	Full range			-300		0	-500	1 "	
and the second s	Common-mode input		25°C	0 to V _{CC} -1.5			0 to V _{CC} -1.5				
VICR	voltage range	V _{CC} = 30 V		0 to			0 to			V	
	vortage range		Full range	V _{CC} -2		-1	V _{CC} -2				
		$V_{CC} = 30 \text{ V},$ $R_L = 2 \text{ k}\Omega$	Full range	26			26			V	
VOH	High-level output voltage	$V_{CC} = 30 \text{ V},$ $R_L \ge 10 \text{ k}\Omega$	Full range	27	28		27	28			
VOL	Low-level output voltage	R _L ≤ 10 kΩ	Full range		5	20		5	20	mV	
	Large-signal differential	$V_{CC} = 15 \text{ V},$ $V_{O} = 1 \text{ V to } 11 \text{ V},$ $R_{L} \ge 2 \text{ k}\Omega$	25° C	50	100	P	25	100		V/mV	
AVD	voltage amplification		Full range	25			15			V/mv	
CMRR	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$	25°C	70	85		65	85	IV.	dB	
ksvR*	Supply voltage rejection ratio	$R_S \le 10 \text{ k}\Omega$	25°C	65	100		65	100		dB	
V ₀₁ / V ₀₂	Channel separation	f = 1 kHz to 20 kHz	25°C		120			120		dB	
		V _{CC} = 15 V,	25°C	-20	-40		-20	-40			
		$V_{ID} = 1 V$, $V_{O} = 0 V$	Full range	-10	-20		-10	-20		mA	
10	Output current	V _{CC} = 15 V, V _{ID} = -1 V,	25° C	10	20		10	20]	
		$V_0 = 5 V$	Full range	5	8		5	8			
		$V_{1D} = -1 \text{ V},$ $V_{0} = 200 \text{ mV}$	25° C	12	50		12	50		μА	
laa	Supply current	No load,	25°C		0.8			0.8		mA	
ICC	(four amplifiers)	No signal	Full range			1.2			1.2	1 mA	

^{*}ksvR = AVCC/AVIO

AUDIO DISTRIBUTION AMPLIFIER

THERMAL INFORMATION

DISSIPATION DERATING TABLE

POWER	DERATING	ABOVE
RATING	FACTOR	TA
900 mW	11.0 mW/° C	68° C
900 mW	8.2 mW/° C	40° C
900 mW	9.2 mW/° C	52° C
900 mW	8.0 mW/°C	37° C
	900 mW 900 mW 900 mW	RATING FACTOR 900 mW 11.0 mW/° C 900 mW 8.2 mW/° C 900 mW 9.2 mW/° C

Also see Dissipation Derating Curves, Section 2.

[†]All characteristics are specified under open-loop conditions. Full range is -55°C to 125°C for LM124, -25°C to 85°C for LM224, and 0°C to 70°C for LM324.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

LINEAR INTEGRATED CIRCUITS

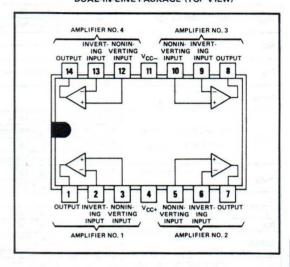
TYPES LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12723, OCTOBER 1979

- uA741 Operating Characteristics
- Low Supply Current Drain. . . 0.6 mA Typ
- Low Input Offset Voltage
- Low Input Offset Current
- Class AB Output Stage
- Input/Output Overload Protection

description

79


The LM148, LM248, and LM348 are quadruple, independent, high-gain, internally compensated operational amplifiers designed to have operating characteristics similar to the uA741. These amplifiers exhibit low supply current drain, and input bias and offset currents that are much less than for the uA741.

The LM148 is characterized for operation over the full military temperature range of -55° C to 125° C, the LM248 is characterized for operation from -25° C to 85° C, and the LM348 is characterized for operation from 0° C to 70° C.

LM148 . . . J

LM248, LM348 . . . J OR N

DUAL-IN-LINE PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		Tropic es	LM148	LM248	LM348	UNIT
Supply voltage V _{CC+} (see Note 1)			22	18	18	V
Supply voltage V _{CC} — (see Note 1)	- h		-22	-18	-18	V
Differential input voltage (see Note 2)			44	36	36	V
Input voltage (either input; see Notes 1 and 3)			±22	±18	±18	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	unlimited	1 2	
Continuous total power dissipation at (or below)	J package		1375	1025	1025	mW
25°C free-air temperature (see Note 5)	N package		IT I WITE	1150	1150	7 ""
Operating free-air temperature range			-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range			-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for	r 60 seconds	J package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for	r 10 seconds	N package		260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM148 chips are alloy-mounted; LM248 and LM348 chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	FACTOR FACTOR	ABOVE T _A
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25°C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

Copyright © 1979 by Texas Instruments Incorporated

TYPES LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

electrical characteristics, VCC± = ±15 V

		TEST CONDITIONS [†]		LM148			LM248			LM348			UNIT
	PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	R _S ≤ 10 kΩ	T _A = 25°C		1	5	- 3	1	6		1	6	mV
			T _A = full range			6			7.5			7.5	
110	Input offset current	T _A = 25°C			4	25		4	50		4		nA
'10	input offset current	TA = full range				75			125			100	
IIB	Input bias current	T _A = 25°C			30	100		30	200		30	200	nA
,IR		TA = full range	la la			325			500			400	0 "
VICR	Common-mode input voltage range	T _A = full range		±12			±12		-1	±12	5614	1 - 6	V
V _{OPP}	Maximum peak-to-peak Output voltage swing	$R_L = 10 k\Omega$,	T _A = 25°C	24	26	100	24	26	11	24	26		- v
		$R_L \ge 10 \text{ k}\Omega$,	T _A = full range	24			24		17	24			
		$R_L = 2 k\Omega$,	T _A = 25°C	20	24		20	24		20	24	4	
			T _A = full range	20			20		9 .	20			
AVD	Large-signal differential voltage amplification	_	T _A = 25°C	50	160		25	160		25	160		1//
			T _A = full range	25			15			15			V/mV
ri	Input resistance	T _A = 25°C		0.8	2.5		0.8	2,5		0.8	2.5		МΩ
B ₁	Unity-gain bandwidth	A _{VD} = 1,	T _A = 25°C		1			1			1		MHz
φм	Phase margin	A _{VD} = 1,	T _A = 25°C		60°			60°			60°		
CMDD	Common-mode rejection ratio	R _S ≤ 10 kΩ	T _A = 25°C	70	90		70	90		70	90	7 100	dB
CMRR			T _A = full range	70			70			70		- 15	
ksvr	Supply voltage rejection ratio (Δ V _{CC±} / Δ V _{IO})	R _S ≤ 10 kΩ	T _A = 25°C	77	96		77	96		77	96		dB
			T _A = full range	77			77			77			ав
los	Short-circuit output current	T _A = 25°C			±25			±25			±25		mA
Icc	Supply current (four amplifiers)	No load, T _A 25° C	No signal,		2.4	3.6	141	2.4	4.5		2.4	4.5	mA
V ₀₁ /V ₀₂	Channel separation	f = 1 Hz to 20 T _A = 25°C	kHz,		120			120			120		dB

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for TA is -55°C to 125°C for LM148, -25°C to 85° C for LM248; and 0° C to 70° C for LM348.

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER TEST CONDITIONS				MIN TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 2 k\Omega$,	C _L = 100 pF,	See Figure 1	0,5		V/µs

PARAMETER MEASUREMENT INFORMATION

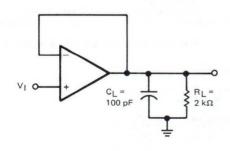


FIGURE 1-UNITY-GAIN AMPLIFIER

68

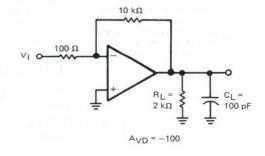
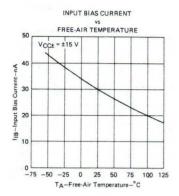
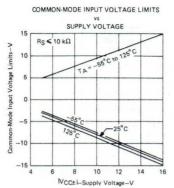




FIGURE 2-INVERTING AMPLIFIER

TYPES LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

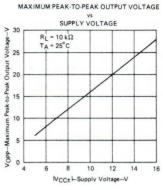
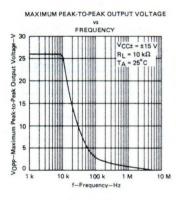
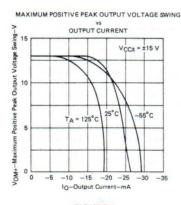
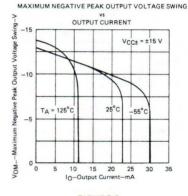
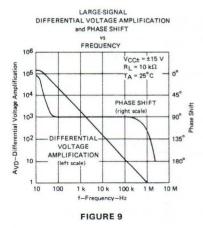
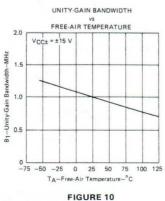




FIGURE 3

FIGURE 4

FIGURE 5

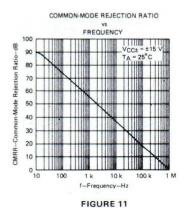
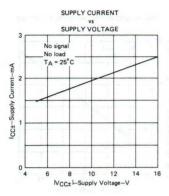

FIGURE 6

FIGURE 7

FIGURE 8



†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPES LM148, LM248, LM348 OUADRUPLE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

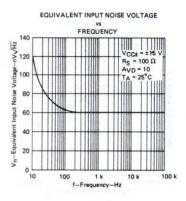
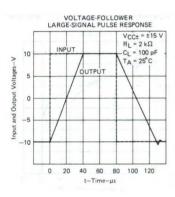
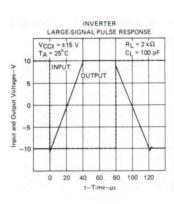




FIGURE 12

FIGURE 13

FIGURE 14

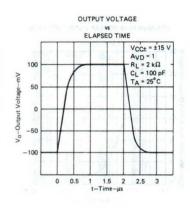
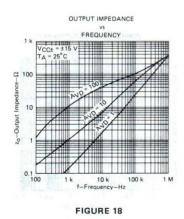
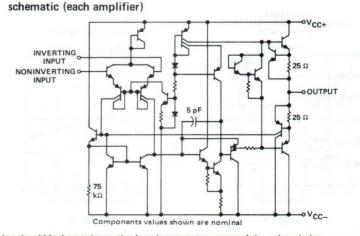
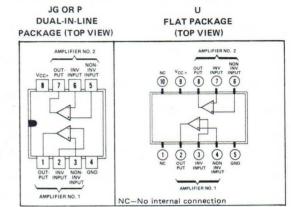




FIGURE 15

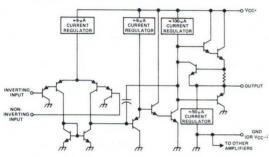
FIGURE 16

FIGURE 17

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TYPES LM158, LM258, LM358 DUAL OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12413, JUNE 1976 - REVISED OCTOBER 1979


- Wide Range of Supply Voltages Single Supply . . . 3 V to 30 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 3 nA Typ (LM158) Input Bias Current . . . 45 nA Typ

- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±32 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Internal Frequency Compensation

schematic (each amplifier)

description

79

These devices consist of two independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 30 volts and Pin 4 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Differential input voltage (see Note 2)
Input voltage range (either input) — 0.3 V to 32 V
Duration of output short-circuit (one amplifier) to ground at (or below) 25°C
free-air temperature (VCC \leq 15 V) (see Note 3)
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4): LM258JG, LM358JG 825 mW
LM158JG, LM258P, LM358P 900 mW
LM158U, LM258U, LM358U 675 mW
Operating free-air temperature range: LM158
LM258 –25°C to 85°C
LM3580°C to 70°C
Storage temperature range —65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG or U package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, LM158 chips are alloy-mounted; LM258 and LM358 chips are glass-mounted.

TYPES LM158, LM258, LM358 DUAL OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

	DADAMETER	TEST CONDIT	CONCT	LM15	8, LM2	58	LN	//358		UNIT
- N	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V _O = 1.4 V,	25°C		2	5.		2	7	mV
VIO	Input offset voltage	V _{CC} = 5 V to 30 V	Full range			7			9	mv
ανιο	Average temperature coefficient of input offset voltage		Full range		7			7		μV/°C
			25°C		3	30		5	50	
110	Input offset current	V _O = 1.4 V	Full range			100			150	nA
αΙΙΟ	Average temperature coefficient of input offset current	v	Full range		10			10		pA/°0
	Innut bing number	V _O = 1.4 V,	25°C		-45	-150		-45	-250	nA
IB	Input bias current	See Note 5	Full range			-300			-500	nA
VICR	Common-mode input	V _{CC} = 30 V	25°C	0 to V _{CC} -1.5			0 to V _{CC} -1.5			V
VICH	voltage range	VCC 35 V	Full range	0 to V _{CC} -2			0 to V _{CC} -2			
		$V_{CC} = 30 \text{ V},$ $R_L = 2 \text{ k}\Omega$	Full range	26			26			V
Voн	High-level output voltage	$V_{CC} = 30 \text{ V},$ $R_L \ge 10 \text{ k}\Omega$	Full range	27	28		27	28		
VOL	Low-level output voltage	R _L ≤ 10 kΩ	Full range	-	5	20		5	20	mV
V _{OPP}	Maximum peak-to peak output voltage swing	R _L = 2 kΩ	25°C	V _{CC} -1.5			V _{CC} -1.5			V
AVD	Large-signal differential	V _{CC} = 15 V, V _O = 1 V to 11 V,	25°C	50	100		25	100		V/mV
	voltage amplification	R _L ≥ 2 kΩ	Full range	25			15			
CMRR	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$	25°C	70	85		70	85		dB
ksvr*	Supply voltage rejection ratio	$R_S \leq 10 \text{ k}\Omega$	25°C	65	100		65	100		dB
V_{o1}/V_{o2}	Channel separation	f = 1 kHz to 20 kHz	25°C		120	177		120		dB
		V _{CC} = 15 V, V _{ID} = 1 V,	25°C	-20	-40		-20	-40		
		V _O = 0 V	Full range	-10	-20		-10	-20	100	mA
Io	Output current	$V_{CC} = 15 \text{ V},$ $V_{ID} = -1 \text{ V},$	25° C	10	20		10	20		111/4
		V _O = 5 V	Full range	5	8		5	8		
		$V_{1D} = -1 \text{ V},$ $V_{0} = 200 \text{ mV}$	25° C.	12	50		12	50		μА
Les	Supply current	No load,	25°C		0.7			0.7		
ICC	(two amplifiers)	No signal	Full range			1.2			1.2	mA

^{*}ksvR = AVCC/AVIO

DISSIPATION DERATING TABLE

DACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	900 mW	8.4 mW/°C	43° C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
Р	900 mW	8.0 mW/°C	37°C
U	675 mW	5.4 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

[†]All characteristics are specified under open-loop conditions. Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, and 0°C to 70°C for LM358.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

TYPES LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12410 JUNE 1976 - REVISED OCTOBER 1979

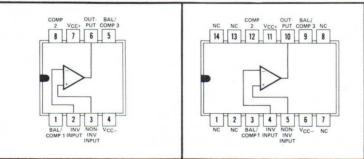
- Small-Signal Bandwidth . . . 15 MHz Typ
- Slew Rate . . . 50 V/μs Min
- Bias Current . . . 250 nA Max (LM218)
- Supply Voltage Range . . . ±5 V to ±20 V
- Internal Frequency Compensation
- Input and Output Overload Protection
- Same Pin Assignments as General Purpose Operational Amplifiers

description

The LM218 and LM318 are precision, high-speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor-of-ten increase in speed over general purpose devices without sacrificing dc performance.

These operational amplifiers have internal unity-gain frequency compensation. This considerably simplifies their application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed-forward compensation will boost the slew rate to over $150 \, \text{V}/\mu\text{s}$ and almost double the bandwidth. Overcompensation may be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor may be added to reduce the settling time for $\epsilon < 0.1\%$ to under $1\,\mu\text{s}$.

The high speed and fast settling time of these operational amplifiers make them useful in A/D converters, oscillators, active filters, sample and hold circuits, and general purpose amplifiers.


The LM218 is characterized for operation from -25°C to 85°C , and the LM318 is characterized for operation from 0°C to 70°C .

terminal assignments

79

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	T_A
JG (Glass-Mounted Chip)	500 mW	6.6 mW/°C	74° C
N	500 mW	9.2 mW/°C	96°C
P	500 mW	8.0 mW/°C	87°C

Also see Dissipation Derating Curves, Section 2.

TYPES LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	LM218	LM318	UNIT
Supply voltage, V _{CC+} (see Note 1)	20	20	V
Supply voltage, V _{CC} — (see Note 1)	-20	-20	V
Input voltage (either input, see Notes 1 and 2)	±15	±15	V
Differential input current (see Note 3)	±10	±10	mA
Duration of output short-circuit (see Note 4)	unlimited	unlimited	
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 5)	500	500	mW
Operating free-air temperature range	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1, 6 mm) from case for 60 seconds J or JG package	300	300	°C
Lead temperature 1/16 inch (1, 6 mm) from case for 10 seconds N or P package	260	260	°C

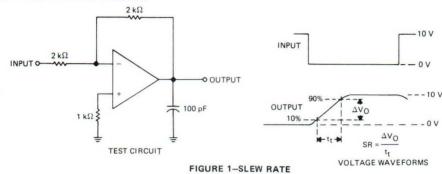
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- The inputs are shunted with two opposite-facing base-emitter diodes for over voltage protection. Therefore, excessive current will
 flow if a differential input voltage in excess of approximately 1 V is applied between the inputs unless some limiting resistance is
 used.
- 4. The output may be shorted to ground or either power supply. For the LM218 only, the unlimited duration of the short-circuit applies at (or below) 85°C case temperature or 75°C free-air temperature.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, LM218 and LM318 chips are glass-mounted.

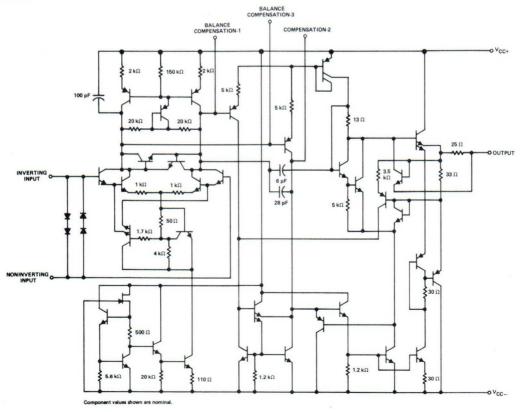
electrical characteristics at specified free-air temperature (see note 6)

	PARAMETER	TEST CONDI	TIONST		LM218		LM318			UNIT
				MIN TYP MA		MAX	MIN	TYP	MAX	
1/			25°C		2	4	30	. 4	10	mV
VIO	Input offset voltage		Full range			6			15	1
L.	I		25°C		6	50		30	200	nA
110	Input offset current		Full range			100			300	l na
			25°C		120	250		150	500	nA
IB	Input bias current	41	Full range			500		· C	750	nA
VICR	Common-mode input voltage range	V _{CC±} = ±15 V	Full range	±11.5			±11.5			V
VOPP	Maximum peak-to-peak output voltage swing	$V_{CC\pm} = \pm 15 \text{ V},$ $R_L = 2 \text{ k}\Omega$	Full range	24	26		24	26		V
AVD	Large-signal differential	$V_{CC\pm} = \pm 15 \text{ V},$ $V_{CC\pm} = \pm 10 \text{ V},$	25° C	50	200		25	200		V/mV
AVD	voltage amplification	$R_{\perp} \ge 2 k\Omega$	Full range	25			20			0,,,,,
B ₁	Unity-gain bandwidth	$V_{CC\pm} = \pm 15 \text{ V}$	25°C		15			15		MHz
ri	Input resistance		25° C	1	3		0.5	3		МΩ
CMRR	Common-mode rejection ratio		Full range	80	100		70	100		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	1	Full range	70	80		65	80		dB
laa	•	NI- II	25° C		5	8		5	10	
ICC	Supply current	No load	MAX		4.5	7				mA

[†]All characteristics are specified under open-loop operation. Full range for LM218 is -25° to 85°C and for LM318 is 0°C to 70°C.


NOTE 6: Unless otherwise noted, $V_{CC\pm} = \pm 5 \text{ V}$ to $\pm 20 \text{ V}$. All typical values are at $V_{CC\pm} = \pm 15 \text{ V}$. Throughout this data sheet, supply voltages are specified either as a range or as a specific value. A positive voltage within the specified range (or of the specified value) is applied to V_{CC+} , and an equal negative voltage is applied to V_{CC-} .

TYPES LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS


operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

	PARAMETER	Т	EST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$\Delta V_{\parallel} = 10 \text{ V},$	C _L = 100 pF,	See Figure 1	50	70		V/µs

parameter measurement information

schematic

photocol (Procedure 1997) photocol (Procedure 1997)

CONTROL OF THE PROPERTY OF THE PROPERTY OF

7 TK = 7 V.C.

Wy . .

Master

TYPES LM1900, LM2900, LM3900 QUADRUPLE OPERATIONAL AMPLIFIERS

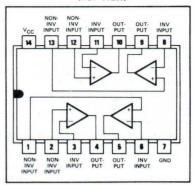
BULLETIN NO. DL-S 12682, JULY 1979-REVISED DECEMBER 1979

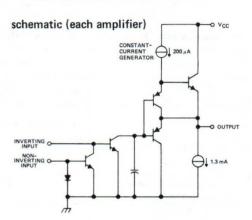
- Wide Range of Supply Voltages, Single or Dual Supplies
- Wide Bandwidth
- Large Output Voltage Swing
- Output Short-Circuit Protection
- Internal Frequency Compensation
- Low Input Bias Current
- Designed to be Interchangeable with National Semiconductor LM1900, LM2900, and LM3900, Respectively

description

These devices consist of four independent, high-gain, frequency-compensated Norton operational amplifiers that were designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible. The low supply current drain is essentially independent of the magnitude of the supply voltage. These devices provide wide bandwidth and large output voltage swing.

The LM1900 is characterized for operation over the full military temperature range of -55°C to 125°C , the LM2900 is characterized for operation from -40°C to 85°C , and the LM3900 is characterized for operation from 0°C to 70°C .


operating characteristics


Norton (or current-differencing) amplifiers can be used in most standard general purpose op-amp applications. Performance as a dc amplifier in a single-power-supply mode is not as precise as a standard integrated-circuit operational amplifier operating from dual supplies. Operation of the amplifier can best be understood by noting that input currents are differenced at the inverting input terminal and this current then flows through the external feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near (or even below) ground.

Internal transistors (see Note 5) clamp negative input voltages at approximately -0.3 volt but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately -100 microamperes.

Noise immunity of a Norton amplifier is less than that of standard bipolar amplifiers. Circuit layout is more critical since coupling from the output to the noninverting input can cause oscillations. Care must also be exercised when driving either input from a low-impedance source. A limiting resistor should be placed in series with the input lead to limit the peak input current. Current up to 20 milliamperes will not damage the device but the current mirror on the noninverting input will saturate and cause a loss of mirror gain at higher current levels, especially at high operating temperatures.

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TYPES LM1900, LM2900, LM3900 QUADRUPLE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM1900	LM2900	LM3900	UNIT
Supply voltage, V _{CC} (see Note 1)		36	32	32	V
Input current		20	20	20	mA
Duration of output short circuit (one amplifier) to ground at (or below) 25° C free-air temperature (see Note 2)		Unlimited	Unlimited	Unlimited	us. U
Continuous total dissipation at (or below) 25°C	J Package	1375	1025	1025	
free-air temperature (see Note 3)	N Package		1150	1150	mW
Operating free-air temperature range		-55 to 125	-40 to 85	0 to 70	°C
Storage temperature range	20.00	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J Package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N Package		260	260	°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - 3. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM1900 chips are alloy-mounted; LM2900 and LM3900 chips are glass-mounted.

electrical characteristics, VCC = 15 V, TA = 25°C (unless otherwise noted)

		7507.00	t	L	M1900 LM2900 LM390		M390	0	UNIT				
	PARAMETER	TEST CO	ONDITIONS†	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
I _{IB}	Input bias current	11+=0	T _A = 25°C		25	100		30	200	4	30	200	nA
	(inverting input)		T _A = full range	-		150							
- ₊	Mirror gain	I _{I+} = 20 μA t		0.95	j	1.05	0.9		1.1	0.9		1.1	μΑ/μΑ
	Change in mirror gain	TA = full rang	ge, See Note 4		1	2	10 60	2	5	- I	2	5	%
	Mirror current	V _{I+} = V _{I-} , See Note 4	T_A = full range,		10	500	not te Litera	10	500	- T	10	500	μΑ
AVD	Large-signal differential voltage amplification	V _O = 10 V, f = 100 Hz	R _L = 10 kΩ,	2	3		1.2	2.8		1.2	2.8	J & 140	V/m\
rį	Input resistance (inverting input)	100			1			1		107	1	op gra	МΩ
ro	Output resistance	S CERTIFIE	Electric Control		8	hand	(3)	8	L 1.8	98.7	8	" JUST S	kΩ
В1	Unity-gain bandwidth (inverting input)			2 1 ₀	2.5	r las	2 J	2.5		y de la constante de la consta	2.5	eries e Latela	MHz
ksvr	Supply voltage rejection ratio ($\Delta V_{CC}/\Delta V_{IO}$)	grafi de la colo	a transfer of	50	70	J 192	SI 25	70	and for ju	a hr. Muo	70	ouhor	dB
		10	$R_L = 2 k\Omega$	13.5	14.2		13.5			13.5		A C	
VOH	High-level output voltage	I _{I+} = 0, I _{I-} = 0	V _{CC} = 30 V, No load	28	29.5	/±		29.5	Sec. of 1	ersa	29.5	Series (٧
VOL	Low-level output voltage	$I_{\parallel +} = 0$, $R_{\perp} = 2 k\Omega$	$I_{1-} = 10 \mu A$,	Y = 1.	0.09	0.2		0.09	0.2	T TT	0.09	0.2	٧
IOHS	Short-circuit output current (output internally high)	$I_{1+} = 0,$ $V_{0} = 0$	11_ = 0,	-10	-15	- 0	-6	-18	0 2 41	-6	-10		mA
Obt out	Pull-down current	10 TO 1 14	of the section of	1	1.3		0.5	1.3		0.5	1.3		mA
IOL	Low-level output current‡	$I_{1-} = 5 \mu A$,	V _{OL} = 1 V	4	5	1.64	ATT PAGE	5	35 34	EJ-4 T	5	± ⁴ ±.	mA
Icc	Supply current (four amplifiers)	No Load	and the same	I III	6.2	12	S. C. C.	6.2	10	171. 345	6.2	10	mA

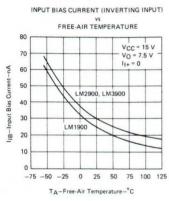
[†]All characteristics are specified under open-loop conditions. Full range for T_A is -55°C to 125°C for LM1900, -40°C to 85°C for LM2900, and 0°C to 70°C for LM3900.

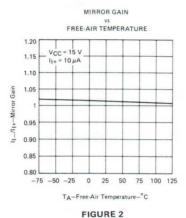
[‡]The output current-sink capability can be increased for large-signal conditions by overdriving the inverting input.

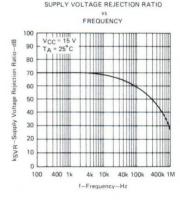
NOTE 4: These parameters are measured with the output balanced midway between V_{CC} and ground.

TYPES LM1900, LM2900, LM3900 QUADRUPLE OPERATIONAL AMPLIFIERS

recommended operating conditions


	LN	LM1900		2900	LM3900		LINUT
	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Input current (see Note 5)		-1		-1		-1	mA
Operating free-air temperature, TA	-55	125	-40	85	0	70	°C


NOTE 5: Clamp transistors are included that prevent the input voltages from swinging below ground more than approximately -0.3 volt. The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally to values of approximately -1 mA. Negative input currents in excess of -4 mA will cause the output voltage to drop to a low voltage. These values apply for any one of the input terminals. If more than one of the input terminals are simultaneously driven negative, maximum currents are reduced. Common-mode current biasing can be used to prevent negative input voltages.


operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{C}$

	PARAMET	ER	TEST CO	ONDITIONS	MIN TYP	MAX	UNIT
SR	Claus sate at units sain	Low-to-high output	V _O = 10 V,	C _L = 100 pF,	0.5		V/µs
Sh	Slew rate at unity gain	High-to-low output	$R_L = 2 k\Omega$		20		V/μs

TYPICAL CHARACTERISTICS[†]

FIGURE 1

104

103

100

Differential Voltage Amplification

9

= 2 kΩ

1 k

R_L ≥ 10 kΩ

LM2900, LM3900 LARGE-SIGNAL LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION DIFFERENTIAL VOLTAGE AMPLIFICATION SUPPLY VOLTAGE FREQUENCY

VCC = 15 V

TA = 25°C

1 M 10 M

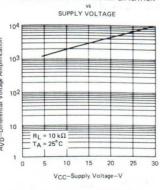
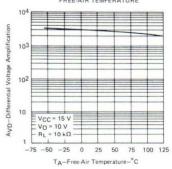



FIGURE 3

10 k 100 k

FIGURE 5

FIGURE 6

f-Frequency-Hz FIGURE 4

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,

TYPES LM1900, LM2900, LM3900 OUADRUPLE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

I M2900

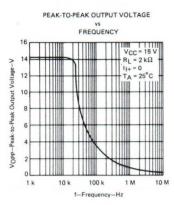


FIGURE 7

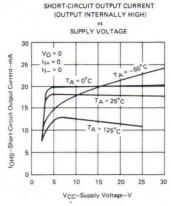


FIGURE 8



FIGURE 9

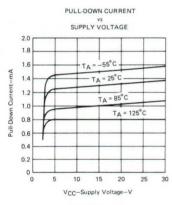


FIGURE 10

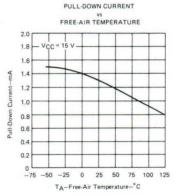


FIGURE 11

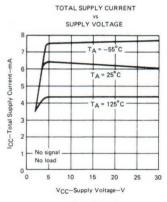


FIGURE 12

10

TYPICAL APPLICATION DATA

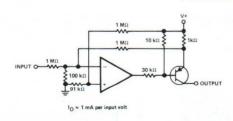


FIGURE 13-VOLTAGE-CONTROLLED CURRENT SOURCE

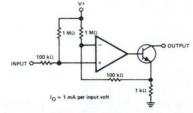
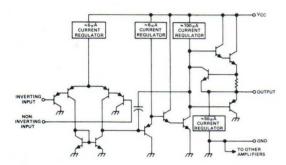


FIGURE 14-VOLTAGE-CONTROLLED CURRENT SINK

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25°C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C


[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

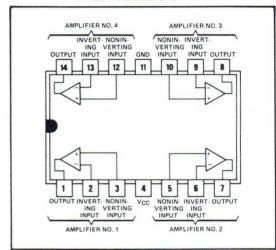
TYPE LM2902 QUADRUPLE OPERATIONAL AMPLIFIER

BUILDETIN NO. DL-S 12291, MARCH 1976-REVISED OCTOBER 1979

- Wide Range of Supply Voltages Single Supply . . . 3 V to 26 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing **Direct Sensing near Ground**

schematic (each amplifier)

description


glass-mounted.

179

This device consists of four independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply as in automotive systems. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 26 volts and Pin 4 is at least 1,5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Tvp Input Offset Current . . . 5 nA Typ Input Bias Current . . . 45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±26 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Tvp
- Maximum Peak-to-Peak Output Voltage Swing . . . Vcc-1.5 V Typ
- Internal Frequency Compensation

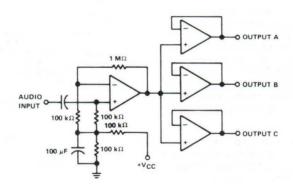
J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM2902 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ± 15-volt supplies.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC (see Note 1) Differential input voltage (see Note 2) Duration of output short-circuit (one amplifier) to ground at (or below) 25°C free-air temperature (Voc. 45 V) Storage temperature range -65°C to 150°C Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package NOTES: 1, All voltage values, except differential voltages, are with respect to the network ground terminal, 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
4. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, the LM2902 chips are

TYPE LM2902 QUADRUPLE OPERATIONAL AMPLIFIER


electrical characteristics at 25°C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITION	IS [†]	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V				2	10	mV
110	Input offset current	V _O = 1.4 V				5	50	nA
I _{IB}	Input bias current	V _O = 1.4 V	See Note 5		1 13	-45	-500	nA
VICR	Common-mode input voltage range	V _{CC} = 24 V			0 to V _{CC} -1.5			V
V	High level autout valtage	V _{CC} = 24 V,	$R_L = 2 k\Omega$	701 - 71	20			V
Vон	High-level output voltage	V _{CC} = 24 V,	R _L ≥ 10 kΩ		21			\ \ \
VOL	Low-level output voltage	R _L ≤ 10 kΩ				5	20	mV
AVD	Large-signal differential voltage amplification	V _{CC} = 15 V,	$R_L \ge 2 k\Omega$,	V _O = 1 V to 11 V		100		V/mV
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ				85		dB
ksvr*	Supply voltage rejection ratio	R _S ≤ 10 kΩ				100		dB
V ₀₁ / V ₀₂	Channel separation	f = 1 kHz to 20 kHz				120		dB
		V _{CC} = 15 V,	V _{ID} = 1 V,	V _O = 0 V	-20	-40		
10	Output current	V _{CC} = 15 V,	$V_{ID} = -1 V$	V _O = 2.5 V	12	30		mA
		$V_{ID} = -1 V$	V _O = 5 V		8	20		
Icc	Supply current (four amplifiers)	No load,	No signal			8.0	2	mA

^{*}ksvR = \DVCC/\DVIO

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

TYPICAL APPLICATION DATA

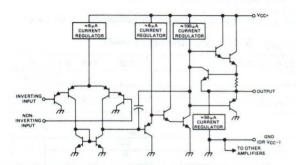
AUDIO DISTRIBUTION AMPLIFIER

THERMAL INFORMATION

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Glass-Mounted Chip)	900 mW	11.0 mW/°C	68°C
N	900 mW	9.2 mW/°C	52°C
W	900 mW	8.0 mW/°C	37°C

Also see Dissipation Derating Curves, Section 2.


[†] All characteristics are specified under open-loop conditions.

TYPE LM2904 DUAL OPERATIONAL AMPLIFIER

BULLETIN NO. DL-S 12402, JUNE 1976-REVISED OCTOBER 1979

- Wide Range of Supply Voltages Single Supply . . . 3 V to 26 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Tvp
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

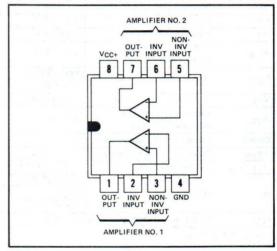
schematic (each amplifier)

description

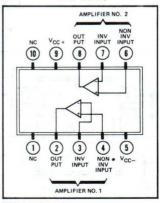
This device consists of two independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply as in automotive systems. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 26 volts and Pin 8 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM2904 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ±15-volt supplies.

DISSIPATION DERATING TABLE


212422	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	41°C
P	680 mW	8.0 mW/° C	65° C
U	675 mW	5.4 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.


9

- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 5 nA Typ Input Bias Current . . . 45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±26 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Maximum Peak-to-Peak Output Voltage Swing . . . VCC-1.5 V Typ
- Internal Frequency Compensation

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

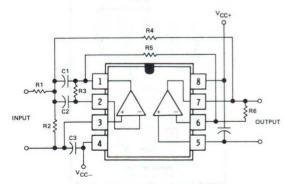
U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	26 V
Differential input voltage (see Note 2)	±26 V
Input voltage range (either input)	-0.3 V to 26 V
Duration of output short-circuit (one amplifier) to ground at (or below) 25°C	
free-air temperature ($V_{CC} \le 15 \text{ V}$) (see Note 3)	. unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4): JG or P package	680 mW
	675 mW
Operating free-air temperature range	-40°C to 85°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG or U package	300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package	

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from outputs to $V_{\mbox{CC}}$ can cause excessive heating and eventual destruction.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, the LM2904 chips are glass-mounted.


electrical characteristics at 25°C free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITION	NS [†]	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V				2	10	mV
10	Input offset current	V _O = 1.4 V	-		1 1	5	50	nA
IB	Input bias current	V _O = 1.4 V	See Note 5			-45	-500	nA
VICR	Common-mode input voltage range	V _{CC} = 24 V		1	0 to V _{CC} -1.5			V
V/	High lavel autout values	V _{CC} = 24 V,	$R_L = 2 k\Omega$		20			V
Vон	High-level output voltage	V _{CC} = 24 V,	R _L ≥ 10 kΩ		21			V
VOL	Low-level output voltage	R _L ≤ 10 kΩ				5	20	mV
AVD	Large-signal differential voltage amplification	V _{CC} = 15 V,	$R_L \ge 2 k\Omega$,	V _O = 1 V to 11 V		100	i is	V/mV
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ			FG 10	85		dB
ksvr*	Supply voltage rejection ratio	R _S ≤ 10 kΩ			THE PER	100	15 52	dB
V ₀₁ / V ₀₂	Channel separation	f = 1 kHz to 20 kHz			Chile de	120	1	dB
	4 2 1 5 4 4 6 5 5	V _{CC} = 15 V,	V _{ID} = 1 V,	V _O = 0 V	-20	-40		
10	Output current	V _{CC} = 15 V,	$V_{ID} = -1 V$	V _O = 2.5 V	12	30	11111	mA
		$V_{ID} = -1 V$,	V ₀ = 5 V		8	20		
Icc	Supply current (both amplifiers)	No load,	No signal			0.5	1.2	mA

^{*}ksvB = AVCC/AVIO

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

TYPICAL APPLICATION DATA

SELECT VALUES FOR:

and is typically

between 1 and 10.

Q R1 = R3 = R5 =
$$\frac{Q}{\omega_0 C}$$

where C1 = C2 $\omega_0 = 2\pi f_0$ R2 = $\frac{R1}{Q - 1 - \frac{2}{K} + \frac{1}{K \cdot K}}$

CALCULATE:

K

K is selected to optimize sensitivity

$$R4 = \frac{R1 \cdot K \cdot Q}{2Q - 1}$$

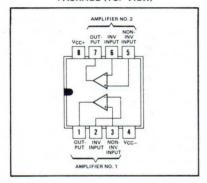
MULTIPLE-FEEDBACK ACTIVE BANDPASS FILTER

[†] All characteristics are specified under open-loop conditions.

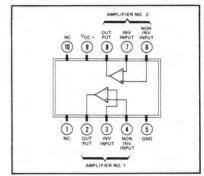
TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 11457, FEBRUARY 1971-REVISED OCTOBER 1979

- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Designed to be Interchangeable with Motorola MC1558/MC1458 and Signetics S5558/N5558


description

The MC1558 and MC1458 are dual general-purpose operational amplifiers with each half electrically similar to uA741 except that offset null capability is not provided.


The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The MC1558 is characterized for operation over the full military temperature range of -55° C to 125° C; the MC1458 is characterized for operation from 0° C to 75° C.

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Garage St.			MC1558	MC1458	UNIT	
Supply voltage V _{CC+} (see Note 1)			22	18	V	
Supply voltage V _{CC} — (see Note 1)			-22	-18	V	
Differential input voltage (see Note 2)			±30	±30	V	
Input voltage (any input, see Notes 1 and 3)			±15	±15	V	
Duration of output short-circuit (see Note 4)	unlimited	unlimited				
0	Each amplifier		500	500		
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)	Total package	JG or P package	680	2 18 22 -18 30 ±30 5 ±15 nited unlimited 30 500 60 680 75 675 0 125 0 to 75 0 150 -65 to 150	mW	
tree-air temperature (see Note 5)	Total package	U Package	675	675		
Operating free-air temperature range			-55 to 125	0 to 75	°C	
Storage temperature range	-65 to 150	-65 to 150	°C			
Lead temperature 1/16 inch (1, 6 mm) from case for	60 seconds	JG or U package	300	300	°C	
Lead temperature 1/16 inch (1, 6 mm) from case for	10 seconds	P package		260	°C	

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less,
 - The output may be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short-circuit
 applies at (or below) 125°C case temperature or 75°C free-air temperature.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, MC1558 chips are alloy-mounted; MC1458 chips are glass-mounted.

TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

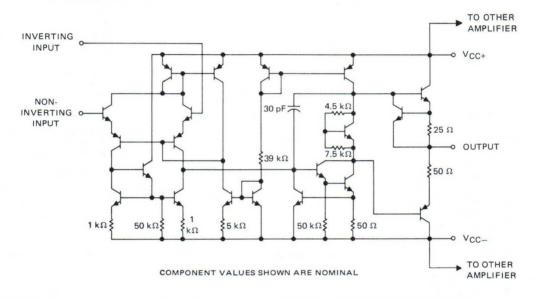
	gu daga.	2 24 Zt 8			MC1558	3	13276	MC145	8	UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V 2		D < 1010	25°C		1	5		1	6	mV
VIO	Input offset voltage	R _S ≤ 10 kΩ	Full range	E PHI LO	2001	6	g all the same	7,17	7.5	lii v
	1		25°C		20	200		20	200	nA
110	Input offset current		Full range			500			300	li A
			25°C		80	500		80	500	nA
IB	Input bias current		Full range	in in the ball	et mich	1500	COUNTY	THE R 15	800	110
V	Common-mode		25° C	±12	±13	Last unt	±12	±13	Mar Old	V
VICR	input voltage range		Full range	±12			±12			•
101119	The state of the state of the	R _L = 10 kΩ	25° C	24	28	THUI I	24	28	1000	
to set terms	Maximum peak-to-peak	R _L ≥ 10 kΩ	Full range	24	m-hor	10 13 11 72	24	AT NO	olesok s	V
VOPP	output voltage swing	R _L = 2 kΩ	25°C	20	26		20	26	lanist	7 "
		R _L ≥ 2 kΩ	Full range	20			20			1
123.	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	50	200	0 1/8	20	200	The gr	
AVD	voltage amplification	V _O = ±10 V	Full range	25	. 11 mc	The same	15	trase	ter pto	V/mV
		$R_L = 2 k\Omega$,			A LOCAL		100 00 00	- 1		
D	Maximum-output-swing	V _O ≥±10 V,	25°C		14			14		kHz
ВОМ	bandwidth (closed-loop)	AVD = 1,	25 0		100		E (CALL)	14		KIIZ
191	a policy and	THD ≤ 5%								
B ₁	Unity-gain bandwidth		25°C		1		Marin de la Contraction de la	1		MHz
φm	Phase margin	AVD = 1	25°C		65°			65°		
Am	Gain margin		25°C		11			11		dB
ri	Input resistance		25°C	0.3	2		0.3	2		MΩ
	Output resistance	$V_0 = 0$,	25°C		75			75		Ω
ro	Output resistance	See Note 6	25 C		/5			,,,		1.
Ci	Input capacitance		25°C		1.4			1.4		pF
^z ic	Common-mode input impedance	f = 20 Hz	25°C		200			200		МΩ
CMRR	0	D < 1010	25°C	70	90		70	90		dB
CIVINN	Common-mode rejection ratio	R _S ≤ 10 kΩ	Full range	70		2 1 10	70			UB
k _{svs}	Supply voltage sensitivity	R _S ≤ 10 kΩ	25°C		30	150		30	150	μν/ν
SVS	(AVIO/AVCC)	HS = 10 K32	Full range			150	Mar Maria		150	μνίν
	Equivalent input	AVD=100,								
√ _n	Equivalent input	$R_S = 0$,	25°C		45			45		nV/√H
n	noise voltage	f = 1 kHz,	25 0	वो कृताः ह	45		pricky	43		1107
	(closed-loop)	BW = 1 Hz								
los	Short-circuit output current		25°C		±25	±40		± 25	±40	mA
	Supply current	No load,	25°C		3.4	5	20 1 5	3.4	5.6	mA
cc	(Both amplifiers)	No signal	Full range			6.6	real of	- Vige	6.6	mA
0	Total power dissipation	No load,	25°C		100	150		100	170	mW
PD	(Both amplifiers)	No signal	Full range		5	200		and Lond	200	mvv
V ₀₁ /V ₀₂	Channel separation		25°C		120			120		dB

 $^{^\}dagger$ All characteristics are specified under open-loop operation, unless otherwise noted. Full range for MC1558 is -55° C to 125° C and for MC1458 is 0° C to 75° C.

NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ} \text{C}$

1.8		TEST COMPLETIONS	MC1558		MC1458			UNIT	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tr	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.3	A STATE OF THE STA	13. 6	0.3		μs
	Overshoot factor	C _L = 100 pF, See Figure 1		5%			5%		
SR	Slew rate at unity gain	$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF}, \text{ See Figure 1}$	ton na h	0.5	baneri	(a/D	0.5		V/μs


TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69° C	
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C	
P	680 mW	8.0 mW/°C	65°C	
U	675 mW	5.4 mW/°C	25°C	

Also see Dissipation Derating Curves, Section 2.

schematic (each amplifier)

PARAMETER MEASUREMENT INFORMATION

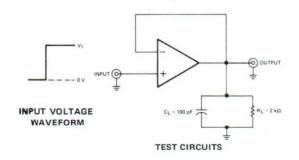
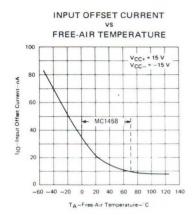



FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE

Texas Instruments

TYPES MC1558,MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS

FIGURE 2

MAXIMUM PEAK-TO-PEAK

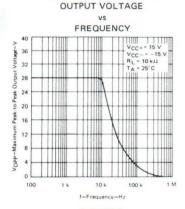
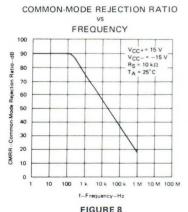
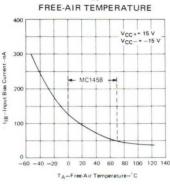



FIGURE 5

88

INPUT BIAS CURRENT VS



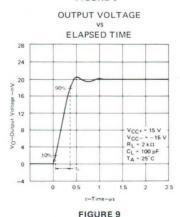


FIGURE 3

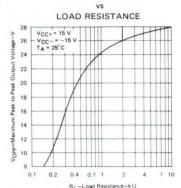
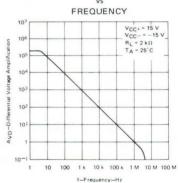


FIGURE 6



MAXIMUM PEAK-TO-PEAK **OUTPUT VOLTAGE**

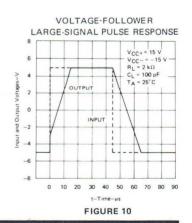


FIGURE 4

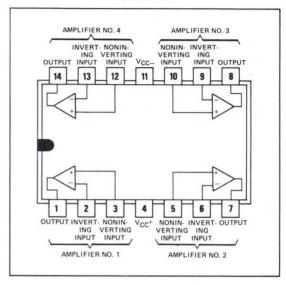
OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION** VS

FIGURE 7

TEXAS INSTRUMENTS

TYPES MC3503, MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12676, FEBRUARY 1979-REVISED OCTOBER 1979


- Wide Range of Supply Voltages Single Supply . . . 3 V to 36 V or Dual Supplies
- Class AB Output Stage
- True Differential Input Stage
- Low Input Bias Current
- Internal Frequency Compensation
- Short-Circuit Protection
- Designed to be Interchangeable with Motorola MC3503, MC3303, MC3403

description

79

The MC3503, MC3303, and the MC3403 are quadruple operational amplifiers similar in performance to the uA741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 volts to 36 volts. Operation from split supplies is also possible provided the difference between the two supplies is 3 volts to 36 volts. The common-mode input range includes the negative supply. Output range is from the negative supply to $V_{\rm CC}-1.5~{\rm V}$. Quiescent supply currents are less than one-half those of the uA741.

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

The MC3503 is characterized for operation over the full military temperature range of -55° C to 125° C. The MC3303 is characterized for operation from -40° C to 85° C. The MC3403 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MC3503	MC3303	MC3403	UNIT
Supply voltage V _{CC+} (see Note 1)		18	18	18	٧
Supply voltage V _{CC} — (see Note 1)		-18	-18	-18	V
Supply voltage V _{CC+} with respect to V _{CC-}		36	36	36	V
Differential input voltage (see Note 2)		±36	±36	±36	V
Input voltage (see Notes 1 and 3)		±18	±18	± 18	V
Continuous total dissipation at (or below) 25°C	J Package	1375	1025	1025	
free-air temperature (see Note 4)	N Package		1150	1150	mW
Operating free-air temperature range		-55 to 125	-40 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J Package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N Package		260	260	°C

NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-}.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, MC3503 chips are alloy-mounted; MC3303 and MC3403 chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
FACRAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25° C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/° C	25° C
N	1150 mW	9.2 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

TYPES MC3503, MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature: V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303; $V_{CC\pm}$ = ±15 V for MC3403 and MC3503

	DADAMETED	TEGT CO.	IDITIONET	N	IC3503	3	M	C3303		N	1C3403	3	UNIT
	PARAMETER	TEST COM	NDITIONS†	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNI
\/	lance office college	$T_A = 25^{\circ}C$,	See Note 5		2	5		2	8		2	10	mV
VIO	Input offset voltage	TA = full range	, See Note 5			6			10			12	1 ""
αVIO	Temperature coefficient of input offset voltage	T _A = 25°C			10			10			10		μV/°
110	Input offset current	$T_A = 25^{\circ}C$,	See Note 5		30	50		30	75		30	50	nA
10	input offset current	TA = full range	, See Note 5			200			250			200	
αΙΙΟ	Temperature coefficient of input offset current	T _A = 25°C			50		1	50			50		pA/°
IIB	Input bias current	$T_A = 25^{\circ}C$			-0.2	-0.5		-0.2	-0.5		-0.2	-0.5	μА
ııR	mpat bias current	TA = full range				-1.5			-1			-0.8	, m
	Common-mode input			VCC-	VCC-	-	VCC-	VCC.	_	VCC	_ Vcc	V _{CC} -	
VICR	voltage range‡	$T_A = 25^{\circ}C$		to	to		to	to		to	to		V
	vortage range +			13	13.5		12	12.5		13	13.5		
	Peak output	$R_L = 10 k\Omega$,	$T_A = 25^{\circ}C$	±12	±13.5		12	12.5		±12	±13.5		
VOM	voltage swing	$R_L = 2 k\Omega$,	$T_A = 25^{\circ}C$	±10	±13		10	12		±10	±13		V
	vortage swing	$R_L = 2 k\Omega$,	T _A = full range	±10			10			±10			
AVD	Large-signal differential	$R_L = 2 k\Omega$,	$T_A = 25^{\circ}C$	50	200		20	200		20	200		V/m
700	voltage amplification	$V_0 = \pm 10 \text{ V}$	T _A = full range	25			15			15			\ ,
ВОМ	Maximum-output- swing bandwidth	$V_{OPP} = 20 V$, $A_{VD} = 1$, $THD \le 5\%$	_		9			9			9		kH
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	V _O = 50 mV,		1			1			1		МН
ϕ_{m}	Phase margin	$C_L = 200 \text{ pF},$ $T_A = 25^{\circ} \text{ C}$	$R_L = 2 k\Omega$,		60°			60°		- 1 -	60°		
ri	Input resistance	f = 20 Hz,	$T_A = 25^{\circ}C$	0.3	1		0.3	1		0.3	1		MS
ro	Output resistance	f = 20 Hz,	$T_A = 25^{\circ}C$		75			75			75		Ω
CMRR	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$,	T _A = 25°C	70	90		70	90		70	90		dB
ksvs	Supply voltage sensitivity $(\Delta V_{1O}/\Delta V_{CC})$	T _A = 25°C			30	150		30	150		30	150	μV/
los	Short-circuit output current §	T _A = 25°C		±10	±30	±45	±10	±30	±45	±10	±30	±45	m.A
Icc	Total supply current	No load, T _A = 25°C	V _O = 0 V,		2.8	4		2.8	7		2.8	7	m.A

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is $-55^{\circ}C$ to $125^{\circ}C$ for MC3503; $-40^{\circ}C$ to $85^{\circ}C$ for MC3303; and $0^{\circ}C$ to $70^{\circ}C$ for MC3403.

[‡]The V_{ICR} limits are directly linked volt-for-volt to supply voltage, viz the positive limit is 2 volts less than V_{CC+}.

 $[\]S$ Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 5: V_{1O} and I_{1O} are defined at V_{O} = 0 V for MC3503 and MC3403, and V_{O} = 7 V for MC3303.

TYPES MC3503, MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics, VCC+ = 5 V, VCC- = 0 V, TA = 25°C (unless otherwise noted)

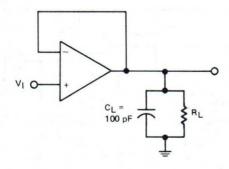
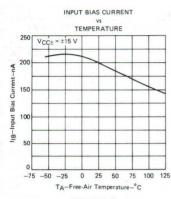
DAD	AMETER	TEST CONDITIONS†	мсз	503		MC	3303		мсз	403		UNIT
PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
VIO	Input offset voltage	V _O = 2.5 V		2	5			10		2	10	mV
10	Input offset current	V _O = 2.5 V		30	50			75		30	50	nA
IB	Input bias current			-0.2	-0.5			-0.5		-0.2	-0.5	uA
	Peak output	R _L = 10 kΩ	3.3	3.5		3.3	3.5		3.3	3.5		
VOM	voltage swing §	$R_L = 10 \text{ k}\Omega$, $V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} - 1.7			V _{CC+} - 1.7	,		V _{CC+} - 1.7			٧
AVD	Large-signal differential voltage amplification	R _L = 2 kΩ, ΔV _O = 2 V	20	200		20	200		20	200		V/mV
ksvs	Power supply sensitivity $(\Delta V_{1O}/\Delta V_{CC\pm})$				150		-	150			150	μV/V
Icc	Supply current	No Load, VO = 2.5 V		2.5	4		2.5	7		2.5	7	mA
V ₀₁ /V ₀₂	Channel separation	f = 1 kHz to 20 kHz	F (0.5	120			120			120	72-7-	dB

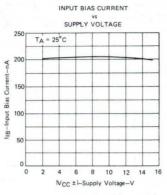
[†]All characteristics are specified under open-loop conditions.

operating characteristics: $V_{CC+} = 14 \text{ V}$, $V_{CC-} = 0 \text{ V}$ for MC3303; $V_{CC\pm} = \pm 15 \text{ V}$ for MC3403 and MC3503; $T_A = 25^{\circ}C$, $A_{VD} = 1$ (unless otherwise noted)

	PARAMETER	T	EST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_1 = \pm 10 V$,	C _L = 100 pF,	See Figure 1		0.6	Y Self	V/µs
tr	Rise time	1 1 50 W	0 100 - 5	D 4010		0.35		μѕ
tf	Fall time	$\Delta V_0 = 50 \text{ mV},$	$C_{L} = 100 pF,$	$R_L = 10 k\Omega$,		0.35	1 14,1	μs
	Overshoot factor	See Figure 1			+	20%		
	Crossover distortion	V _{IPP} = 30 mV,	V _{OPP} = 2 V,	f = 10 kHz		1%		

PARAMETER MEASUREMENT INFORMATION


FIGURE 1-UNITY-GAIN AMPLIFIER

[§] Output will swing essentially to ground.

TYPES MC3503, MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

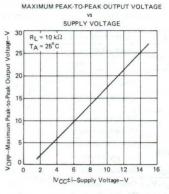
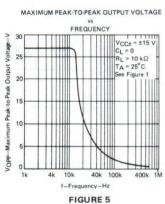
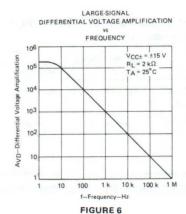
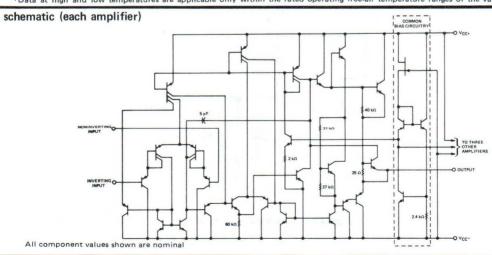
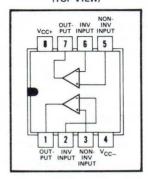




FIGURE 2

FIGURE 3

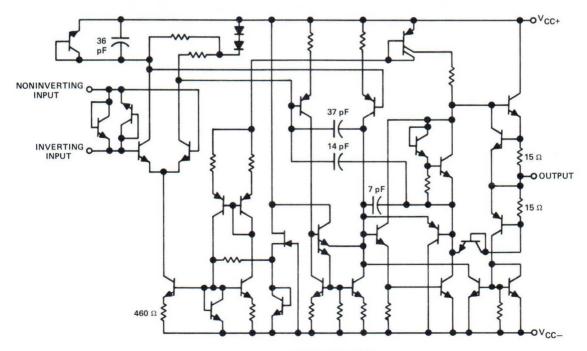

FIGURE 4


†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,

BULLETIN NO. DL-S 12733, NOVEMBER 1979

- Equivalent Input Noise Voltage . . .
 5 nV/√Hz Typ at 1 kHz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . .
 100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing . . .
 32 V Typ with V_{CC±} = ±18 V and R_L = 600 Ω
- High Slew Rate . . . 9 V/μs Typ
- Wide Supply Voltage Range . . . ±3 V to ±20 V
- Designed to be Interchangeable with Signetics NE5532 and NE5532A

NE5532, NE5532A . . . JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)



description

The NE5532 and NE5532A are monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. They feature very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output short-circuit protection. These operational amplifiers are internally compensated for unity gain operation. The NE5532A has guaranteed maximum limits for equivalent input noise voltage.

The NE5532 and NE5532A are characterized for operation from 0°C to 70°C.

schematic (each amplifier)

All component values shown are nominal.

Copyright © 1979 by Texas Instruments Incorporated

ADVANCE INFORMATION

TYPES NE5532, NE5532A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)			34	 	22 V
Supply voltage, VCC_ (see Note 1)				 	22 V
Input voltage, either input (see Notes 1 and 2)				 	. VCC±
Input current (see Note 3)					
Duration of output short-circuit (see Note 4)				 	unlimited
Continuous total power dissipation at (or below) 25°C free-air temperature (see	Not	e 5):			
JG package				 	825 mW
P package					
Operating free-air temperature range: NE5532, NE5532A				 0°	C to 70°C
Storage temperature range				 -65°C	to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG package				 	. 300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package .				 	. 260°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
 - 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.
 - 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
 - 5. For operation above 25°C free-air temperature, refer to the Dissipation Derating Table. In the JG package, chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Glass-Mounted chip)	825 mW	6.6 mW/° C	25°C
Р	1000 mW	8.0 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

TYPES NE5532, NE5532A **DUAL LOW-NOISE OPERATIONAL AMPLIFIERS**

electrical characteristics, $V_{CC^{\pm}}$ = ± 15 V, T_{A} = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	•	NE55	32, NE	5532A	UNIT
	FARAMETER		TEST CONDITIONS	•	MIN	TYP	MAX	UNII
VIO	Input offset voltage	T _A = 25°C				0.5	4	mV
V10	Input offset voltage	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					5	mv
lu-	Input offset current	$T_A = 25^{\circ}C$				10	150	- 0
10	input onset current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					200	nA
Le	Input bias current	$T_A = 25^{\circ}C$,		200	800	- ^
IB	input bias current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					1000	nA
VICR	Common-mode input voltage range				±12	±13		V
	Maximum peak-to-peak	D > 200 G	V _{CC±} = ±15 V		24	26		V
VOPP	output voltage swing	R _L ≥ 600 Ω	V _{CC±} = ±18 V		30	32		V
		R _L ≥ 600 Ω,	T _A = 25°C		15	50		
۸	Large-signal differential	V _O = ±10 V	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$		10			V/mV
AVD	voltage amplification	$R_L \ge 2 k\Omega$,	$T_A = 25^{\circ}C$		25	100		V/IIIV
		$V_0 = \pm 10 \text{ V}$	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$		15		-	
A _{vd}	Small-signal differential voltage amplification	f = 10 kHz				2.2		V/mV
D	Maximum-output-swing	$R_L = 600 \Omega$,	V _O = ±10 V			140		kHz
ВОМ	bandwidth	$R_L = 600 \Omega$,	$V_{CC\pm} = \pm 18 V$,	V _O = ±14 V		100		KHZ
B ₁	Unity-gain bandwidth	$R_L = 600 \Omega$,	C _L = 100 pF			10		MHz
rį	Input resistance				30	300		kΩ
z _o	Output impedance	$A_{VD} = 30 dB$,	$R_L = 600 \Omega$,	f = 10 kHz		0.3		23
CMRR	Comm-mode rejection ratio				70	100		dB
ksvr	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$				80	100		dB
los	Output short-circuit current					38		mA
Icc	Total supply current	No load				8	16	mA
V ₀₁ /V ₀₂	Channel separation	V ₀₁ = 10 V peak,	f = 1 kHz			110		dB

operating characteristics, $V_{CC\pm}$ = \pm 15 V, T_A = 25° C

	DADAMETED	TEST CONDITIONS	NE5532	NE553	2A	UNIT	
	PARAMETER	TEST CONDITIONS	MIN TYP MAX	MIN TYP	MAX	UNIT	
SR	Slew rate at unity gain		9	9		V/µs	
	Overshoot factor	$V_I = 100 \text{ mV}, A_{VD} = 1,$ $R_L = 600 \Omega, C_L = 100 \text{ pF}$	10%	10%			
.,	F	f = 30 Hz	8	8	10	nV/ ₂ /H	
V _n Equivalent input noise voltage		f = 1 kHz	5	5	6	nv/\/H	
	Earlindon in a training and a second	f = 30 Hz	2.7	2.7		201 /U	
In Equivalent input noise current		f = 1 kHz		0.7		pA/√Hz	

TYPES NE5533, NE5533A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12734, NOVEMBER 1979

- Equivalent Input Noise Voltage . . .
 3.5 nV/√Hz Typ (NE5533A at 1 kHz)
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . .
 100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing . . . 32 V Typ with V_{CC±} = \pm 18 V and R_L = 600 Ω
- High Slew Rate . . . 13 V/μs Typ
- Wide Supply Voltage Range . . . ±3 V to ±20 V
- Low Harmonic Distortion
- Designed to be Interchangeable with Signetics NE5533 and NE5533A

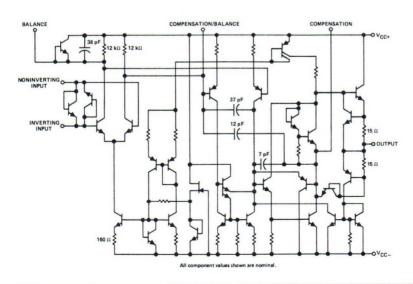
AMPLIFIER NO. 1 AMPLIFIER NO. 2 COMP/ BAL MONIN INVERT INVERT INVERT INPUT INPUT AMPLIFIER NO. 2

NE5533, NE5533A . . . J OR N DUAL-IN-LINE PACKAGE

(TOP VIEW)

description

9


The NE5533 and NE5533A are dual monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.

These operational amplifiers are internally compensated for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between the compensation terminals. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability.

The NE5533A has guaranteed maximums on equivalent input noise voltage.

The NE5533 and NE5533A are characterized for operation from 0°C to 70°C.

schematic (each amplifier)

TYPES NE5533, NE5533A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)
Supply voltage, V _{CC} — (see Note 1) — — — — — — — — — — — — — — — — — —
Input voltage either input (see Notes 1 and 2)VCC±
Input current (see Note 3) ±10 mA
Duration of output short-circuit (see Note 4) unlimited
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 5):
J package
N package
Operating free-air temperature range: NE5533, NE5533A
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC+}.

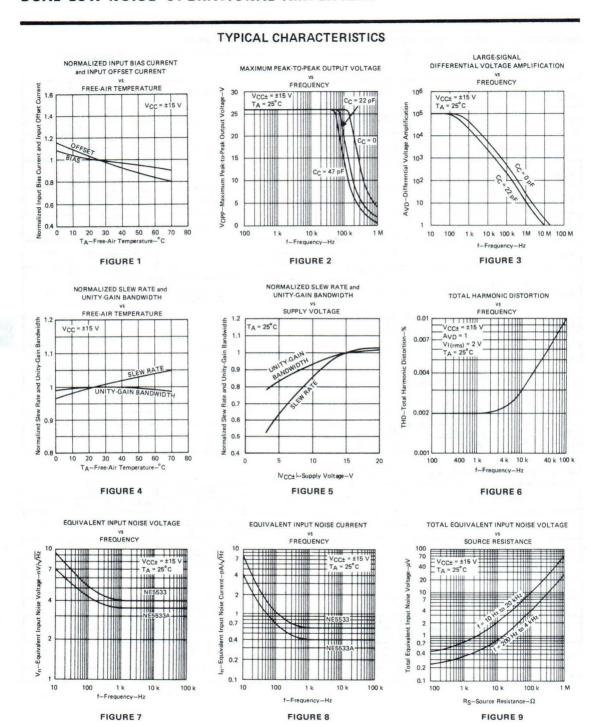
- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.
- 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- For operation above 25°C free-air temperature, refer to the Dissipation Derating Table. In the J package, these chips are glass-mounted.

DISSIPATION DERATING TABLE

DAGKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

TYPES NE5533, NE5533A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS


electrical characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER		TEST CONDITION	10	NE55	33, NE	5533A	UNIT
	TANAMETER		TEST CONDITION	15	MIN	TYP	MAX	UNI
V	Input offset voltage	$T_A = 25^{\circ}C$				0.5	4	mV
VIO	Input offset voltage	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					5	mv
Low	lanut affect consent	$T_A = 25^{\circ}C$				20	300	
110	Input offset current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					400	nA
Long	Industrian admini	$T_A = 25^{\circ}C$				500	1500	
IB	Input bias current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$					2000	nA
VICR	Common-mode input voltage range	in the	# 1 J		±12	±13		٧
\/	Maximum peak-to-peak	D. > 600 O	V _{CC±} = ±15 V		24	26		.,
VOPP	output voltage swing	R _L ≥ 600 Ω	V _{CC±} = ±18 V		30	32		V
۸	Large-signal differential	R _L ≥ 600 Ω	T _A = 25°C		25	100		V/mV
AVD	voltage amplification	$V_0 = \pm 10 V$	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$;	15	7.17	PE	V/mV
Λ.	Small-signal differential	f = 10 kHz	C _C = 0			6		V/1V
A _{vd}	voltage amplification	1 - 10 KHZ	C _C = 22 pF			2.2		V/mV
		$V_0 = \pm 10 V$,	C _C = 0			200		
Вом	Maximum-output-swing	$V_0 = \pm 10 V$,	C _C = 22 pF			95		kHz
DOM	bandwidth	$V_{CC\pm} = \pm 18 \text{ V},$ $C_C = 22 \text{ pF}$	$V_0 = \pm 14 V$,	$R_L = 600 \Omega$,		70		KHZ
B ₁	Unity-gain bandwidth	C _C = 22 pF	C _L = 100 pF			10		MHz
ri	Input resistance				30	100		kΩ
z _o	Output impedance	A _{VD} = 30 dB, f = 10 kHz	R _L = 600 Ω	$C_C = 22 pF$,		0.3		Ω
CMRR	Common-mode rejection ratio		4		70	100		dB
^k svr	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$		79-	- 1	80	100		dB
los	Output short-circuit current) ear	B	>		38		mA
Icc	Total supply current	No load		-		8	16	mA
V ₀₁ /V ₀₂	Channel Separation	$R_S = 5 k\Omega$, $f =$	1 kHz, AVD = 10	0		110		dB

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ} \text{C}$

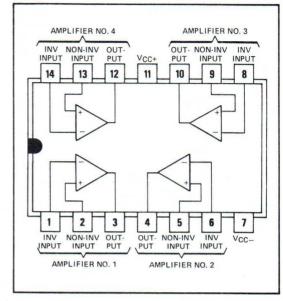
	DADAMETER	PARAMETER TEST CONDITIONS		NE5533A	
- Annual	PARAMETER	TEST CONDITIONS	MIN TYP MAX	MIN TYP MAX	UNIT
SR	Slew rate at unity gain	CC = 0	13	13	
on	Siew rate at unity gain	C _C = 22 pF	6	6	V/µs
tr	Rise time	$V_1 = 50 \text{ mV}, A_{VD} = 1,$ $R_L = 600 \Omega, C_C = 22 \text{ pF},$	20	20	ns
Ç.	Overshoot factor	C _L = 100 pF	20%	20%	
tr	Rise time	$V_1 = 50 \text{ mV}, A_{VD} = 1,$ $B_1 = 600 \Omega, C_C = 47 \text{ pF},$	50	50	ns
100	Overshoot factor	C _L = 500 pF	35%	35%	
Vn	Equivalent input noise voltage	f = 30 Hz	7	5.5 7	nV/√H
v n	Equivalent input noise voitage	f = 1 kHz	4	3.5 4.5	nv/\/H
	Equivalent input noise current	f = 30 Hz	2.5	1.5	- 0 / /11
In	Equivalent input noise current	f = 1 kHz	0.6	0.4	pA/√H
F	Average noise figure	$R_S = 5 k\Omega$, $f = 10 Hz to 20 kHz$	4.	0.9	dB

TYPES NE5533, NE5533A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

TYPES RM4136, RC4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12368, MARCH 1976 - REVISED OCTOBER 1979

- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Unity Gain Bandwidth 3 MHz Typical
- Gain and Phase Match Between Amplifiers
- Designed to be Interchangeable with Raytheon RM4136 and RC4136


description

79

The RM4136 and RC4136 are quad high-performance operational amplifiers with each amplifier electrically similar to uA741 except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

The RM4136 is characterized for operation over the full military temperature range of -55° C to 125° C; the RC4136 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	RM4136	RC4136	UNIT
	22	18	V
	-22	-18	V
	±30	±30	V
	±15	±15	V
See Note 4)	unlimited	unlimited	
(see Note 5)	800	800	mW
	-55 to 125	0 to 70	°C
	-65 to 150	-65 to 150	°C
J or W package	300	300	°C
N package		260	°C
	(see Note 5) J or W package	22	22 18 -22 -18 -23 ±30 ±30 ±15 ±15 See Note 4) unlimited unlimited (see Note 5) 800 800 -55 to 125 0 to 70 -65 to 150 -65 to 150 J or W package 300 300

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less,
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, RM4136 chips are alloy-mounted; RC4136 chips are glass-mounted.

DISSIPATION DERATING TABLE

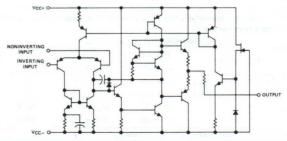
PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	800 mW	11.0 mW/°C	77° C
J (Glass-Mounted Chip)	800 mW	8.2 mW/°C	52°C
N	800 mW	9.2 mW/°C	63°C
W	800 mW	8.0 mW/°C	50° C

Also see Dissipation Derating Curves, Section 2.

TYPES RM4136, RC4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

DADAMETER		TEST COL	IDITIONS†	RM4136		RC4136			UNIT		
	PARAMETER	er.	1 EST CON	IDITIONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			2 41010	25°C		0.5	5		0.5	6	57
VIO	Input offset voltage	9	$R_S \leq 10 \text{ k}\Omega$	Full range			6			7.5	mV
E 707	199	4 4 4	er klad ette	25° C	1	5	200	- I-L	5	200	W- E
110	Input offset current	t		Full range			500	- 4415	117 14	300	nA
		7	A. T. T.	25° C		40	500		40	500	nA
IB	Input bias current			Full range			1500			800	nA
VICR	Common-mode input voltage range			25° C	±12	±14	TIRS TO	±12	±14	2 (5)	V
			$R_L = 10 k\Omega$	25°C	24	28		24	28	100	E) 9
VOPP	Maximum peak-to-	-	$R_L = 2 k\Omega$	25°C	20	26		20	26	bandala	V
	output voltage swin	ng	R _L ≥ 2 kΩ	Full range	20		30 Hz	20	and die	THE LAN	
	Large-signal differen	ntial	$R_L \ge 2 k\Omega$,	25°C	50	350		20	300		V/mV
AVD	voltage amplification		V _O = ±10 V	Full range	25			15			7 V/mV
B ₁	Unity-gain bandwid	ith		25°C	2	3.5	A	Section 1	3	11000	MHz
ri	Input resistance	1		25°C	0.3	5		0.3	5	ISHOUTE	МΩ
CMRR	Common-mode reje	ection ratio	R _S ≤ 10 kΩ	25° C	70	90	15-79	70	90		dB
ksvs*	Supply voltage sens	itivity	R _S ≤ 10 kΩ	25°C		30	150		30	150	μV/V
Vn	Equivalent input noise voltage (closed-loop)		$A_{VD} = 100$, $R_S = 1 \text{ k}\Omega$, f = 1 kHz, BW = 1 Hz	25° C		10	1768 1768 1768		10	r April	nV/√H:
	2 .		N-1-1	25°C		5	11.3		5	11.3	
'cc	Supply current		No load,	MIN TA		6	13.3		6	13.7	mA
	(All four amplifiers)	No signal	MAX TA		4.5	10	- calculate	4.5	10	
				25°C		150	340		150	340	1 100
PD	Total power dissipa		No load,	MINTA		180	400		180	400	mW
	(All four amplifiers		No signal	MAX TA		135	300		135	300	
	Market I	Open loop	$R_S = 1 k\Omega$	25°C		105			105		-ID
V_{01}/V_{02}	Channel separation	A _{VD} = 100	f = 10 kHz	25°C		105		AL LINE	105	100	dB

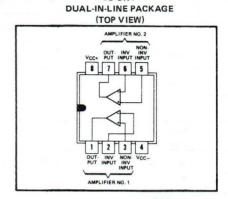

^{*}ksvs = \DIO/\DVCC

 † All characteristics are specified under open-loop operation, unless otherwise noted. Full range for RM4136 is -55° C to 125° C and for RC4136 is 0° C to 70° C.

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

		TEST SOMETIONS	RM4136			RC4136			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	$V_I = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$	1.00	0.13	11.1		0.13	Fit box	μs
SR	Slew rate at unity gain	$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$		1.5			1.0	THE T	V/µs

schematic (each amplifier)


INTEGRATED CIRCUITS

TYPES RM4558, RC4558 **DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS**

BULLETIN NO. DL-S 12365, MARCH 1976 - REVISED OCTOBER 1979

IG OR P

- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Unity Gain Bandwidth 3 MHz Typical
- Gain and Phase Match Between Amplifiers
- Designed to be Interchangeable with Raytheon RM4558 and RC4558

description

The RM4558 and RC4558 are dual general-purpose operational amplifiers with each half electrically similar to uA741 except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The RM4558 is characterized for operation over the full military temperature range of -55°C to 125°C; the RC4558 is characterized for operation from 0°C to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		RM4558	RC4558	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	V
Supply voltage V _{CC} (see Note 1)		-22	-18	V
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (any input, see Notes 1 and 3)		±15	±15	V
Duration of output short-circuit to ground, one amplifier at a time (see Note 4)	unlimited	unlimited	1.1
Continuous total dissipation at (or below) 25°C free-air temperature	(see Note 5)	680	680	mW.
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	JG package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	P package		260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG packages, RM4558 chips are alloymounted; RC4558 chips are glass-mounted.

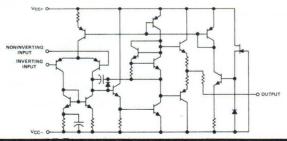
DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69°C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C
Р	680 mW	8.0 mW/°C	65°C

Also see Dissipation Derating Curves, Section 2,

TYPES RM4558, RC4558 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$


						RM4558	3		RC4558		UNIT
	PARAMETER		TEST CON	IDITIONS†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			D < 1010	25° C		0.5	5		0.5	6	mV
VIO	Input offset voltage		$R_S \leq 10 \text{ k}\Omega$	Full range			6			7.5	mv
				25° C		5	200		5	200	
10	Input offset current			Full range			500			300	nA
	4			25° C		40	500		40	500	nA
IB	Input bias current			Full range	17		1500	TIV Y		800	nA
VICR	Common-mode input voltage range		4	25° C	±12	±14	1 1	±12	±14		V
			R _L = 10 kΩ	25°C	24	28		24	28		
VOPP	Maximum peak-to-p		$R_L = 2 k\Omega$	25° C	20	26		20	26		V
0,1	output voltage swin	g	R _L ≥ 2 kΩ	Full range	20			20			
	Large-signal differen	ntial	$R_L \ge 2 k\Omega$,	25° C	50	350		20	300		
AVD	voltage amplification	n	V _O = ±10 V	Full range	25			15			V/mV
B ₁	Unity-gain bandwid	th		25° C	2	3.5			3		MHz
rį	Input resistance			25° C	0.3	5		0.3	5		MΩ
CMRR	Common-mode reje	ction ratio	R _S ≤ 10 kΩ	25° C	70	90		70	90		dB
ksvs*	Supply voltage sensi	itivity	R _S ≤ 10 kΩ	25° C		30	150		30	150	μV/V
∨ _n	Equivalent input noise voltage (closed-loop)	= -6	$A_{VD} = 100$, $R_S = 1 \text{ k}\Omega$, f = 1 kHz, BW = 1 Hz	25°C		10			10		nV/√Ha
				25° C		2.5	5.6		2.5	5.6	
1cc	Supply current		No load,	MINTA		3.0	6.6		3.0	6.6	mA
	(Both amplifiers)		No signal	MAX TA		2.0	5		2.3	5	1
			N. I.	25° C		75	170		75	170	
PD	Total power dissipat	tion	No load,	MINTA		90	200		90	200	mW
	(Both amplifiers)		No signal	MAXTA		60	150	1	70	150	
	01	Open loop	$R_S = 1 k\Omega$,	25°C		105			105		40
V ₀₁ /V ₀₂	Channel separation	A _{VD} = 100	f = 10 kHz	25°C	1	105			105		dB

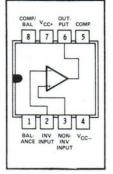
^{*}ksvs = \DIO/\DVCC

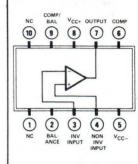
operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

DADAMETER		DADAMETER TEST CONDITIONS		RM4558			RC4558		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tr	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.13			0.13		μs
	Overshoot	C _L = 100 pF		5%			5%		
SR	Slew rate at unity gain	$V_{\parallel} = 10 \text{ V}, \qquad R_{\perp} = 2 \text{ k}\Omega,$ $C_{\perp} = 100 \text{ pF}$		1.5			1.0	61 2	V/μs

schematic (each amplifier)

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for RM4558 is -55° C to 125° C and for RC4558 is 0° C to 70° C.


TYPES SE5534, SE5534A, NE5534, NE5534A IOW-NOISE OPERATIONAL AMPLIFIERS


BULLETIN NO DI-S 12680 JULY 1979-REVISED OCTOBER 1979

- Equivalent Input Noise Voltage. . . 3.5 nV/√Hz Typ
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . . 100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing . . . 32 V Typ with $V_{CC+} = \pm 18 \text{ V}$ and $R_1 = 600 \Omega$
- High Slew Rate . . . 13 V/µs Typ
- Wide Supply Voltage Range . . . ± 3 V to ± 20 V
- Low Harmonic Distortion
- Designed to be Interchangeable with Signetics SE5534, SE5534A, NE5534, and NE5534A

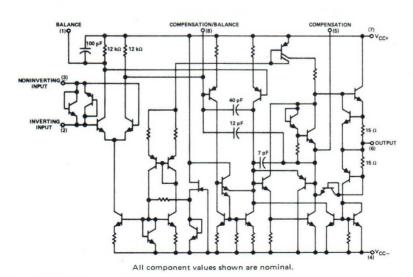
SE5534, SE5534A . . . JG NE5534, NE5534A . . . JG OR P **DUAL-IN-LINE PACKAGE** (TOP VIEW)

SE5534, SE5534A U FLAT PACKAGE (TOP VIEW)

NC - No connection

description

The SE5534, SE5534A, NE5534, and NE5534A are monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.


These operational amplifiers are internally compensated for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between pins 5 and 8. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability.

The SE5534A and NE5534A have guaranteed maximums on equivalent input noise voltage.

The SE5534 and SE5534A are characterized for operation over the full military temperature range of -55°C to 125°C; the NE5534 and NE5534A are characterized for operation from 0°C to 70°C.

schematic

079

TYPES SE5534, SE5534A, NE5534, NE5534A LOW-NOISE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)
Supply voltage, V _{CC} — (see Note 1)
Input voltage either input (see Notes 1 and 2)
Input current (see Note 3)
Duration of output short-circuit (see Note 4)
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 5):
SE5534, SE5534A in JG package
NE5534, NE5534A in JG package
P package
U package
Operating free-air temperature range: SE5534, SE5534A
NE5534, NE5534A 0°C to 70°C
Storage temperature range —65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG or U package
Lead temperature 1/16 inch (1.6 mm) from case for 10 seconds: P package 260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.
- 4. The output may be shorted to ground or either power supply, Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, SE5534 and SE5534A chips are alloy-mounted; NE5534 and NE5534A chips are glass-mounted.

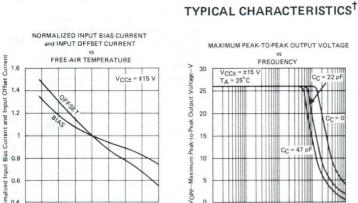
DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A
JG (Alloy-Mounted Chip)	1050 mW	8.4 mW/°C	25°C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	1000 mW	8.0 mW/°C	25°C
U	675 mW	5.4 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

TYPES SE5534, SE5534A, NE5534, NE5534A LOW-NOISE OPERATIONAL AMPLIFIERS

electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

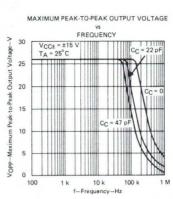

	PARAMETER	TEST OF	ONDITIONS†	SE55	34, SE	5534A	NE55	34, NE	5534A	
	PARAMETER	IESI CC	JUDITIONS,	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	T _A = 25°C			0.5	2		0.5	4	mV
V10	input offset voltage	TA = full range				3			5	mv
110	Input offset current	$T_A = 25^{\circ}C$	1916		10	200		20	300	nA
10	mpat offset carrent	T _A = full range				500			400	ПА
IIB	Input bias current	$T_A = 25^{\circ}C$			400	800		500	1500	- 0
ııB	input bias current	T _A = full range				1500			2000	nA
VICR	Common-mode input voltage range			±12	±13		±12	±13		٧
	Maximum peak-to-peak	_	V _{CC±} = ±15 V	24	26		24	26		
VOPP	output voltage swing	R _L ≥ 600 Ω	V _{CC±} = ±18 V	30	32		30	32		V
	Large-signal differential	R _L ≥ 600 Ω,	T _A = 25°C	50	100		25	100		
AVD	voltage amplification	$V_0 = \pm 10V$	T _A = full range	25			15			V/m\
	Small-signal differential		C _C = 0		6			6		
A _{vd}	voltage amplification	f = 10 kHz	C _C = 22 pF		2.2			2.2		V/m\
	3 a n.t.	$V_0 = \pm 10 \text{ V},$	CC = 0		200			200		
Pa	Maximum-output-swing	$V_0 = \pm 10 V$,	C _C = 22 pF		95			95		
ВОМ	bandwidth	$V_{CC\pm} = \pm 18 \text{ V},$ $R_L = 600 \Omega,$			70			70	-1 -5	kHz
В1	Unity-gain bandwidth	C _C = 22 pF,	C _L = 100 pF		10			10		MHz
rj	Input resistance			50	100		30	100		kΩ
z _o	Output impedance	$A_{VD} = 30 \text{ dB},$ $C_{C} = 22 \text{ pF},$	-		0.3	45		0.3		Ω
CMRR	Comm-mode rejection ratio			80	100		70	100		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})		v	86	100		80	100	100/11	dB
los	Output short-circuit current				38			38		mA
laa	Supply current	No load	T _A = 25°C		4	6.5	-	4	8	A
ICC	Supply culterit	INO IOAG	T _A = full range			9				mA

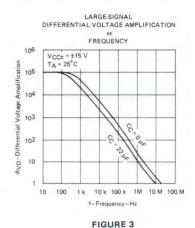
 $^{^{\}dagger}$ Full range for T_A is -55° C to 125 $^{\circ}$ C for SE5534 and SE5534A; and 0 $^{\circ}$ C to 70 $^{\circ}$ C for NE5534 and NE5534A.

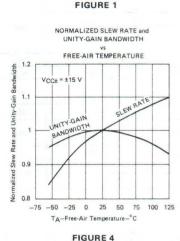
operating characteristics, $V_{CC\pm}$ = ±15 V, T_A = 25°C

	PARAMETER	TECT COM	DITIONS	SE55	34, NE	5534	SE5534A, NE5534A			
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	MIN TYP		MAX	UNIT
SR	Claus rate at units anim	C _C = 0			13		×	13		144
on	Slew rate at unity gain	C _C = 22 pF		6			6		V/μs	
t _r	Rise Time		VD = 1, C = 22 pF,		20		114	20		ns
	Overshoot factor	C _L = 100 pF	C - 22 pr ,		20%			20%	- 1	
t _r	Rise time		VD = 1, C = 47 pF,		50	道点		50		ns
5.2	Overshoot factor	C _L = 500 pF	C - 47 pr ,		35%	- I	у к -	35%	= 17	
.,	Equivalent input noise voltage	f = 30 Hz			7			5.5	7	nV/√Hz
Vn	Equivalent input noise voltage	f = 1 kHz			4			3.5	4.5	nv/√⊓z
1	Equivalent input noise current	f = 30 Hz			2.5			1.5		pA/√Hz
In .	Equivalent input noise current	f = 1 kHz			0.6			0.4		pA/V HZ
F	Average noise figure	$R_S = 5 k\Omega$, f	= 10 Hz to 20 kHz					0.9		dB

TYPES SE5534, SE5534A, NE5534, NE5534A LOW-NOISE OPERATIONAL AMPLIFIERS


25 50 75 100 125


TA-Free-Air Temperature-°C


0

0.4

-75 -50 -25

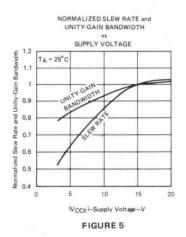
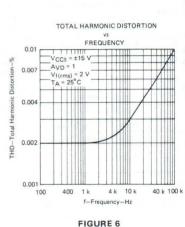
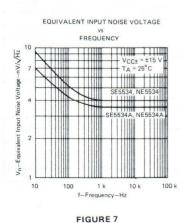
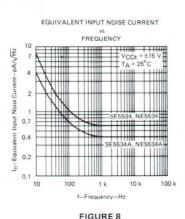





FIGURE 2

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LINEAR INTEGRATED CIRCUITS

TYPES TL022M, TL022C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

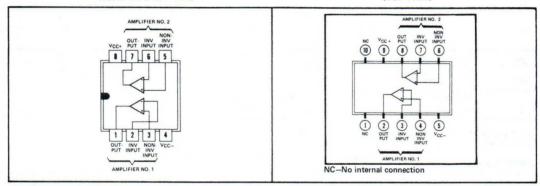
BULLETIN NO. DL-S 12038, SEPTEMBER 1973 - REVISED OCTOBER 1979

- Very Low Power Consumption
- Typical Power Dissipation with ±2-V Supplies . . . 170 μW
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection

- Low Input Offset Voltage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- Popular Dual Op Amp Pin-Out

description

179


The TL022 is a dual low-power operational amplifier designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use.

The TL022M is characterized for operation over the full military temperature range of -55° C to 125° C; the TL022C is characterized for operation from 0° C to 70° C.

terminal assignments

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

			TL022M	TL022C	UNIT
Supply voltage V _{CC+} (see Note 1)			22	18	V
Supply voltage V _{CC} — (see Note 1)			-22	-18	V
Differential input voltage (see Note 2)			±30	±30	V
Input voltage (any input, see Notes 1 and 3)			±15	±15	V
Duration of output short-circuit (see Note 4)			unlimited	unlimited	
0	Each amplifier		500	500	
Continuous total dissipation at (or below) 25°C	Total poolsons	JG or P package	680	680	mW
free-air temperature range (see Note 5)	Total package	U package	675	675	
Operating free-air temperature range			-55 to 125	0 to 70	°C
Storage temperature range			-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 6	60 seconds	JG or U package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 1	10 seconds	P package		260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either power supply. For the TL022M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air termperature.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, TL022M chips are alloy-mounted; TL022C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL022M, TL022C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

	DADAMETER	TEST CON	DITIONST		TL022	М		TL0220	3	UNIT
	PARAMETER	TEST CON	DITIONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		D < 1010	25°C		1	5		1	5	mV
VIO	Input offset voltage	$R_S \leq 10 \text{ k}\Omega$	Full range			6		144.0	7.5	T mv
			25°C	191	5	40	13 27.	15	80	
10	Input offset current	mrt Alle	Full range			100		1	200	nA
			25°C		50	100		100	250	
IB	Input bias current		Full range			250			400	nA
· · · ·	Common-mode	n to the little	25°C	±12	±13	10 35	±12	±13	0.1	V
VICR	input voltage range	with the first terms	Full range	±12	my nath	716	±12			\ \
	Maximum peak-to-peak	R _L = 10 kΩ	25°C	20	26	. +	20	26		1
VOPP	output voltage swing	R _L ≥ 10 kΩ	Full range	20		43.00	20	per cape	101	V
	Large-signal differential	R _L ≥ 10 kΩ,	25°C	72	86		- 60	80		10
AVD	voltage amplification	V _O = ±10 V	Full range	72			60			- dB
B ₁	Unity-gain bandwidth		25°C		0.5			0.5		MHz
		D 44016	25°C	60	72		60	72	7.7	10
CMRR	Common-mode rejection ratio	$R_S \leq 10 \text{ k}\Omega$	Full range	60		-	60		HINCH-	dB
le =	Supply voltage sensitivity		25°C		30	150		30	200	1404
ksvs	(AVIO/AVCC)	$R_S \leq 10 \text{ k}\Omega$	Full range			150			200	μV/V
v _n	Equivalent input noise voltage	A _{VD} = 20 dB, B = 1 Hz, f = 1 kHz	25°C		50			50		nV/√H₂
los	Short-circuit output current	1 1 1 1 1 1	25°C	+	±6	11 1 2		±6		mA
	Supply current	No load,	25°C		130	200		130	250	
cc	(Both amplifiers)	No signal	Full range			200			250	μА
-	Total dissipation	No load,	25°C		3.9	6	AG .	3.9	7.5	
PD	(Both amplifiers)	No signal	Full range			6			7.5	mW

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for TL022M is -55°C to 125°C and for TL022C is 0°C to 70°C.

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER		TEST CON	TEST CONDITIONS		TL022M			TL022C		
		1EST CON			TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	V ₁ = 20 mV,	$R_L = 10 k\Omega$,		0.3			0.3		μs
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%	5		5%	6	3
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 10 \text{ k}\Omega$, See Figure 1		0.5			0.5		V/μs

DISSIPATION DERATING TABLE

2404405	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69° C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C
P	680 mW	8.0 mW/°C	65°C
U	675 mW	5.4 mW/° C	25°C

Also see Dissipation Derating Curves, Section 2.

10;

TYPES TL022M, TL022C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

PARAMETER MEASUREMENT INFORMATION

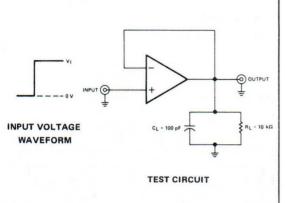


FIGURE 1-RISE TIME, OVERSHOOT FACTOR, AND SLEW RATE

TYPICAL CHARACTERISTICS

TOTAL POWER DISSIPATED vs

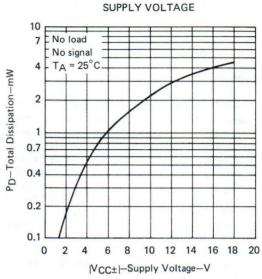
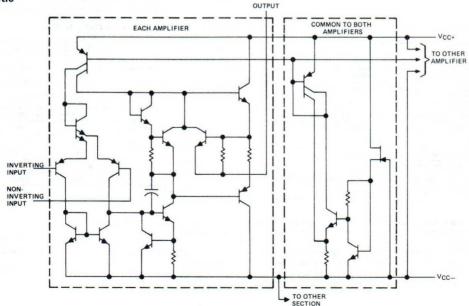



FIGURE 2

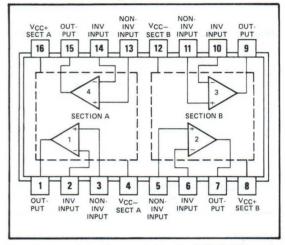
schematic

LINEAR INTEGRATED CIRCUITS

TYPES TL044M. TL044C **QUAD LOW-POWER OPERATIONAL AMPLIFIERS**

BULLETIN NO. DL-S 12039, SEPTEMBER 1973 - REVISED OCTOBER 1979

- **Very Low Power Consumption**
- Typical Power Dissipation with ±2-V Supplies . . . 340 µW
- Low Input Bias and Offset Currents
- **Output Short-Circuit Protection**


description

The TL044 is a guad low-power operational amplifier designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use. Power may be applied separately to Section A (amplifiers 1 and 4) or Section B (amplifiers 2 and 3) while the other pair remains unpowered.

The TL044M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL044C is characterized for operation from 0°C to 70°C.

- Low Input Offset Voltage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- Power Applied in Pairs

JOR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

Pins 4 and 12 are internally connected together in the N package only.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL044M	TL044C	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	٧
Supply voltage V _{CC} — (see Note 1)		-22	-18	٧
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (any input, see Notes 1 and 3)		±15	±15	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	
Continuous total dissipation at (or below) 25°C	Each amplifier	500	500	101
free-air temperature range (see Note 5)	Total package	680	680	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J or W Package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N Package		260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the TL044M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL044M chips are alloymounted; TL044C chips are glass-mounted.

TYPES TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

	PARAMETER	TEST CON	DITIONST	1	LO44N	I		TL044	С	UNIT
	PANAMETER	TEST CON	DITIONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	R _S ≤ 10 kΩ	25°C		1	5		1	5	mV
V10	input offset voltage	HS = 10 K32	Full range			6			7.5	mv
110	Input offset current		25°C		5	40		15	80	nA
110	input oriset current		Full range			100			200	nA
IIB	Input bias current		25°C		50	100		100	250	nA
ılR	input bias current		Full range			250			400	nA.
VICE	Common-mode		25°C	±12	±13		±12	±13		V
VICH	input voltage range		Full range	±12			±12			\ \
Venn	Maximum peak-to-peak	$R_L = 10 k\Omega$	25°C	20	26		20	26		V
VOPP	output voltage swing	R _L ≥ 10 kΩ	Full range	20			20			V
A	Large-signal differential	$R_{L} \ge 10 \text{ k}\Omega$,	25°C	72	86		60	80		-ID
AVD	voltage amplification	$V_0 = \pm 10 \text{ V}$	Full range	72			60			dB
B ₁	Unity-gain bandwidth		25°C		0.5			0.5		MHz
CMRR	Common-mode rejection ratio	D < 10 kg	25° C	60	72		60	72		ID.
CIVINN	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$	Full range	60			60			dB
le = =	Supply voltage sensitivity	D- < 101-0	25°C		30	150		30	200	1/0/
ksvs	(AVIO/AVCC)	$R_S \leq 10 \text{ k}\Omega$	Full range			150			200	μV/V
		AVD = 20 dB,								
Vn	Equivalent input noise voltage	B = 1 Hz,	25°C		50			50		nV/√Hz
		f = 1 kHz								
los	Short-circuit output current		25°C		±6			±6		mA
	Supply current	No load,	25°C		250	400		250	500	
Icc	(Four amplifiers)	No signal	Full range			400			500	μΑ
D	Total dissipation	No load,	25°C		7.5	12		7.5	15	T
PD	(Four amplifiers)	No signal	Full range			12			15	mW

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for TL044M is -55° C to 125° and for TL044C is 0° C to 70° C.

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

	DADAMETED	TEST CONDITIONS		TL044M			TL044C		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	V _I = 20 mV, R _L = 10 kΩ	,	0.3			0.3		μs
	Overshoot factor	C _L = 100 pF, See Figure		5%	5		5%	ó	
SR	Slew rate at unity gain	$V_I = 10 \text{ V}$, $R_L = 10 \text{ k}\Omega$ $C_L = 100 \text{ pF}$, See Figure		0.5			0.5		V/µs

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	680 mW	11.0 mW/°C	88° C
J (Glass-Mounted Chip)	680 mW	8.2 mW/°C	67°C
N	680 mW	9.2 mW/°C	76° C
W	680 mW	8.0 mW/°C	65°C

Also see Dissipation Derating Curves, Section 2.

TYPES TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS

PARAMETER MEASUREMENT INFORMATION TYPICAL CHARACTERISTICS TOTAL POWER DISSIPATED SUPPLY VOLTAGE No load No signal - TA = 25°C P_D-Total Dissipation-mW 2 1 0.7 INPUT VOLTAGE C1 = 100 oF 7 WAVEFORM 0.4 TEST CIRCUIT 0.2 0.1 2 8 10 12 14 16 18 20 |VCC±|-Supply Voltage-V FIGURE 1-RISE TIME, OVERSHOOT FACTOR,

schematic (each section)

AND SLEW RATE

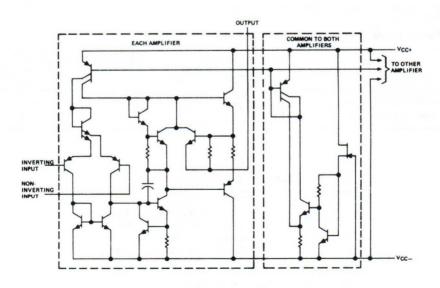


FIGURE 2

LINEAR INTEGRATED CIRCUITS

TYPES TL060, TL060A, TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JEET-INPUT OPERATIONAL AMPLI

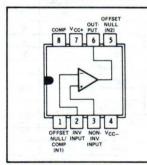
BULLETIN NO. DL-S 12647, NOVEMBER 1978-REVISED OCTOBER 1979

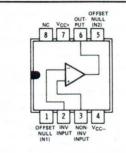
19 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY **TEMPERATURE RANGES**

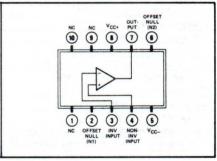
- Very Low Power Consumption
- Typical Supply Current . . . 200 μA
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection

- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate . . . 3.5 V/μs Typ

description

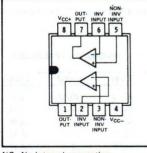

The JFET-input operational amplifiers of the TL061 series are designed as low-power versions of the TL081 series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and bias currents. The TL061 series features the same terminal assignments as the TL071 and TL081 series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

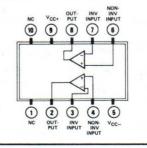

Device types with an "M" suffix are characterized for operation over the full military temperature range of -55°C to 125°C, those with an "I" suffix are characterized for operation from -25°C to 85°C, and those with a "C" suffix are characterized for operation from 0°C to 70°C.

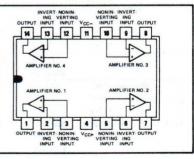


TL061, TL061A, TL061B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

TL061 U FLAT PACKAGE (TOP VIEW)

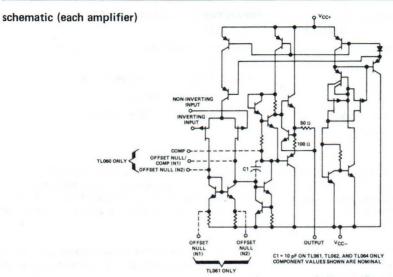





TL062, TL062A, TL062B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

TL062 U FLAT PACKAGE (TOP VIEW)

TL064...J, N, OR W PACKAGE TL064A, TL064B . . . J OR N PACKAGE (TOP VIEW)



NC-No internal connection

1079

Copyright © 1979 by Texas Instruments Incorporated

TYPES TLO60, TLO60A, TLO61, TLO61A, TLO61B, TLO62, TLO62A, TLO62B, TLO64, TLO64A, TLO64B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless other wise noted)

		TL06_M	TL06_I	TL06_C TL06_AC TL06_BC	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage, V _{CC} — (see Note 1)		-18	-18	-18	٧
Differential input voltage (see Note 2)		±30	±30	±30	V
Input voltage (see Notes 1 and 3)		±15	±15	±15	٧
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	Unlimited	
Continuous total dissipation at (or below)	J, JG, N, P, or W package	680	680	680	14/
25°C free-air temperature (see Note 5)	U package	675			mW
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- For operation above 25°C, free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL06_M chips are alloy-mounted; TL06_I, TL06_C, TL06_AC, and TL06_BC chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	680 mW	11.0 mW/°C	88°C
J (Glass-Mounted Chip)	680 mW	8.2 mW/°C	67°C
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69°C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C
N	680 mW	9.2 mW/°C	76°C
P	680 mW	8.0 mW/°C	65°C
U	675 mW	5.4 mW/°C	25°C
W	680 mW	8.0 mW/°C	65°C

116

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL060	TL061	TL062	TL064
TL06_M	JG	JG, U	JG, U	J, W
TL06_1	JG, P	JG, P	JG, P	J, N
TL06_C	JG, P	JG, P	JG, P	J, N
TL06_AC	JG, P	JG, P	JG, P	J, N
TL06_BC		JG, P	JG, P	J, N

TYPES TLO60, TLO60A, TLO61, TLO61A, TLO61B, TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

	PARAMETER	TEST	CONDITIONS [†]	MIN	L06_I			TYP		T	L06_0 L06_A L06_B	C C	דומט
			'60, '61, '62	101114	3	6	IVIIII	3	6		3	15	
		$R_S = 50 \Omega$,	'64		3	9		3	6		3	15	
		$T_A = 25^{\circ}C$	'60A, '61A, '62A, '64A		-						3	6	
		1A 25 0	'61B, '62B, '64B								2	3	1
VIO	Input offset voltage		'60, '61, '62			9			9			20	mV
		$R_S = 50 \Omega$,	64			15			9			20	
		$T_A = \text{full range}$	'60A, '61A, '62A, '64A			10						7.5	-
		A - full range	'61B, '62B, '64B	-		-				-		5	1
αVIO	Temperature coefficient of input offset voltage	$R_S = 50 \Omega$,	T _A = full range		10			10			10		μV/°
-	or impact or rockage		'60, '61, '62, '64		5	100		5	100		5	200	
		TA = 25°C	'60A, '61A, '62A, '64A								5	100	pA
			'61B, '62B, '64B					-			5	100	
110	Input offset current‡		'60, '61, '62, '64			20			10			5	
		TA = full range	'60A, '61A, '62A, '64A									3	nA
			'61B, '62B, '64B									3	1
			'60, '61, '62, '64		30	200		30	200		30	400	
		T _A = 25°C	'60A, '61A, '62A, '64A								30	200	pA
Les s	land bio access †		'61B, '62B, '64B								30	200	1
IB	Input bias current‡		'60, '61, '62, '64			50			20			10	
		T _A = full range	'60A, '61A, '62A, '64A									7	nA
			'61B, '62B, '64B									7	
	Common-mode input		'60, '61, '62, '64	±11	±12		±11.	5 ±12		±10	±11		
VICR	voltage range	$T_A = 25^{\circ}C$	'60A, '61A, '62A, '64A							±11.	5 ±12		V
			'61B, '62B, '64B							±11.	5 ±12		
VOPP	Maximum peak-to-peak	$T_A = 25^{\circ}C$,	R _L = 10 kΩ	20	27		20	27		20	27		V
· OFF	output voltage swing	T _A = full range,	R _L ≥ 10 kΩ	20			20			20			·
		$R_L \ge 10 \text{ k}\Omega$,	'60, '61, '62, '64	4	6		4	6		3	6		
		$V_0 = \pm 10 V$,	'60A, '61A, '62A, '64A							4	6		
AVD	Large-signal differential	T _A = 25°C	'61B, '62B, '64B							4	6		V/m
	voltage amplification	$R_L \ge 10 k\Omega$,	'60, '61, '62, '64	4			4			3			J * / · · ·
		$V_0 = \pm 10 V$,	'60A, '61A, '62A, '64A							4			
		T _A = full range	'61B, '62B, '64B			- 2				4			
B ₁	Unity-gain bandwidth	$T_A = 25^{\circ}C$,	$R_L = 10 \text{ k}\Omega$		1			1			1		MH:
ri	Input resistance	$T_A = 25^{\circ}C$			1012			1012			1012		Ω
0115	Common-mode rejection	$R_S \leq 10 \text{ k}\Omega$.	'60, '61, '62, '64	80	86		80	86		70	76		
CMRR	ratio	T _A = 25°C	'60A, '61A, '62A, '64A							80	86		dB
			'61B, '62B, '64B							80	86		-
	Supply voltage rejection	$R_S \leq 10 \text{ k}\Omega$	'60, '61, '62, '64	80	95		80	95		70	95		-
ksvr	ratio (Δ V _{CC±} /Δ V _{IO})	TA = 25°C	'60A, '61A, '62A, '64A			-				80	95		dB
			'61B, '62B, '64B	-						80	95		-
PD	Total power dissipation (each amplifier)	No load, T _A = 25°C	No signal,		6	7.5		6	7.5		6	7.5	mV
Icc	Supply current (each amplifier)	No load, TA = 25°C	No signal,		200	250		200	250		200	250	μА

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -55°C to 125°C for TL06_M; -25°C to 85°C for TL06_I; and 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC.

Copyright © 1979 by Texas Instruments Incorporated

[‡]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as is possible.

TYPES TLOGO, TLOGOA, TLOG1, TLOG1A, TLOG1B, TLOG2, TLOG2A, TLOG2B, TLOG4, TLOG4A, TLOG4B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

operating characteristics, VCC± = ±15 V, TA = 25°C

	DADAMETED	TEST CONDITIONS		TL06_M			AL	UNIT		
	PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNII
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	R _L = 10 kΩ, See Figure 1	2	3.5			3.5		V/μs
tr	Rise time	V _I = 20 mV,	$R_L = 10 k\Omega$,		0.2		1	0.2		μs
	Overshoot factor	CL = 100 pF,	See Figure 1		10%	- 1'4		10%		
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$,	f = 1 kHz		42			42		nV/√H:

PARAMETER MEASUREMENT INFORMATION

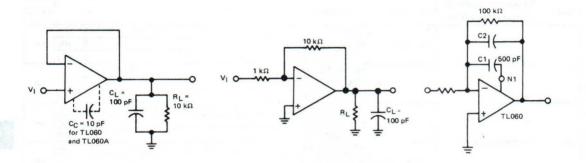
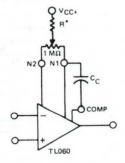



FIGURE 1-UNITY-GAIN AMPLIFIER

FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER FIGURE 3-FEED-FORWARD COMPENSATION

INPUT OFFSET VOLTAGE NULL CIRCUITS

*For best results use R = 20 M Ω for $V_{CC\pm}$ = ±15 V to R = 5 M Ω for $V_{CC\pm}$ = ±3 V.

FIGURE 4

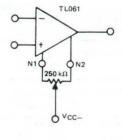
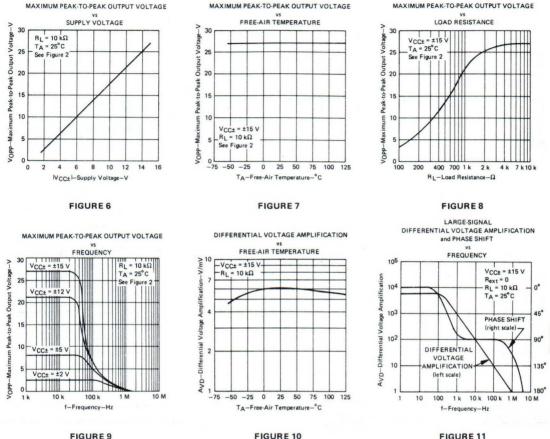
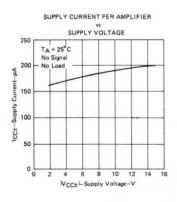
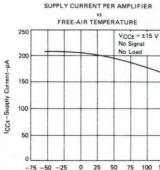
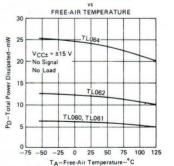



FIGURE 5


INCORPORATED

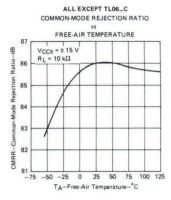

TYPES TLOGO, TLOGOA, TLOG1, TLOG1A, TLOG1B, TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JEET-INPUT OPERATIONAL AMPLIFIERS

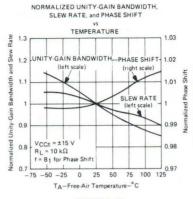

TYPICAL CHARACTERISTICS[†]

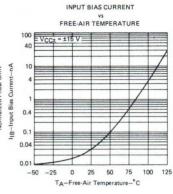
TOTAL POWER DISSIPATED

FIGURE 12

78


TA-Free-Air Temperature-°C FIGURE 13


FIGURE 14


[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 10-pF compensation capacitor is used with TL060 and TL060A.

TYPES TL060, TL060A, TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

FIGURE 15

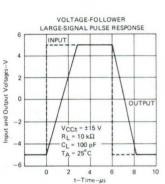
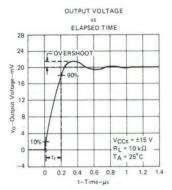



FIGURE 16

FIGURE 17

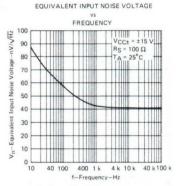


FIGURE 18

120

FIGURE 19

FIGURE 20

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 10-pF compensation capacitor is used with TL060 and TL060A.

TYPICAL APPLICATION DATA

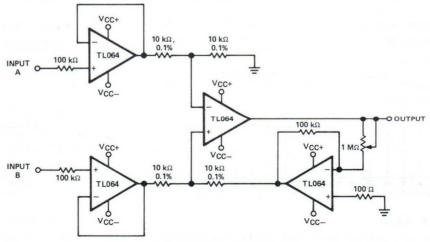


FIGURE 21-INSTRUMENTATION AMPLIFIER

TYPES TLOGO, TLOGOA, TLOG1, TLOG1A, TLOG1B, TLOG2, TLOG2A, TLOG2B, TLOG4, TLOG4A, TLOG4B LOW-POWER JEET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

0.5-Hz SQUARE-WAVE OSCILLATOR

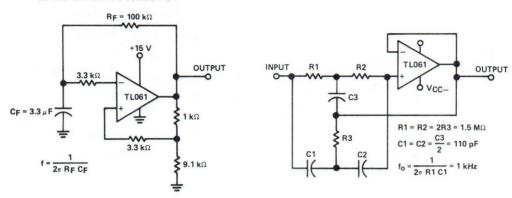


FIGURE 22-0.5-Hz SQUARE-WAVE OSCILLATOR

FIGURE 23-HIGH-Q NOTCH FILTER

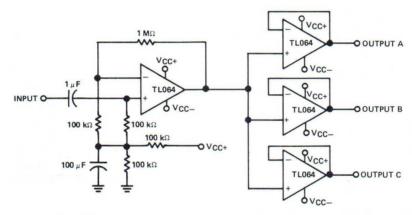


FIGURE 24-AUDIO DISTRIBUTION AMPLIFIER

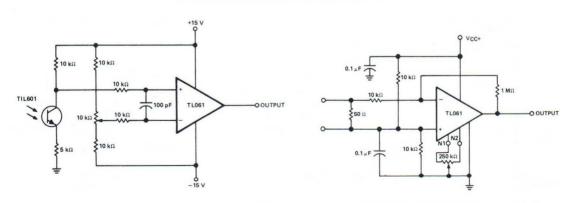


FIGURE 25-LOW-LEVEL LIGHT DETECTOR PREAMPLIFIER

FIGURE 26-AC AMPLIFIER

TYPES TLOGO, TLOGOA, TLOG1, TLOG1A, TLOG1B, TL062, TL062A, TL062B, TL064, TL064A, TL064B, LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

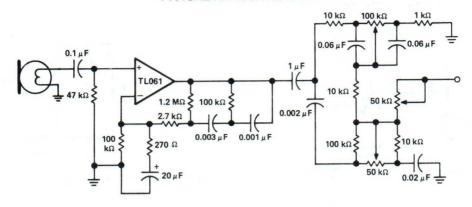
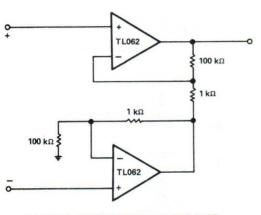



FIGURE 27-MICROPHONE PREAMPLIFIER WITH TONE CONTROL

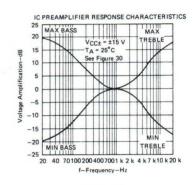


FIGURE 28-INSTRUMENTATION AMPLIFIER

FIGURE 29

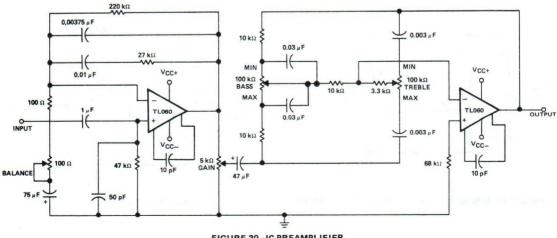
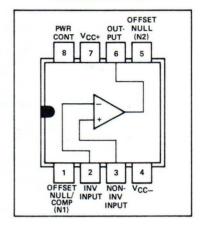


FIGURE 30-IC PREAMPLIFIER

LINEAR INTEGRATED CIRCUITS


TYPES TLO66I, TL066C, TL066AC, TL066BC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

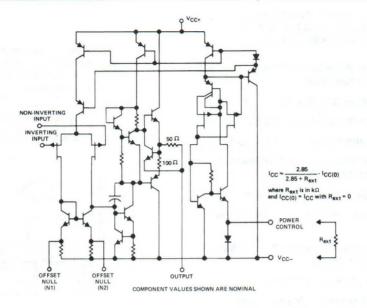
BULLETIN NO. DL-S 12667, FEBRUARY 1979-REVISED OCTOBER 1979

5 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

- Very Low, Adjustable ("Programmable")
 Power Consumption
- Adjustable Supply Current . . . 5 to 200 μA
- Very Low Input Bias and Offset Currents
- Wide Supply Range . . . ± 1.2 V to ± 18 V
- Wide Common-Mode and Differential Voltage Ranges
- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Typ Unity-Gain Bandwidth . . . 1 MHz (100 kHz at 25 μW)
- High Slew Rate . . . 3.5 V/μs Typ
- Internal Frequency Compensation
- Latch-Up-Free Operation

TL066, TL066A, TL066B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

description


79

The TL066, TL066A, and TL066B are JFET-input operational amplifiers similar to the TL061 with the additional feature of being power-adjustable. They feature very low input offset and bias currents, high input impedance, wide bandwidth, and high slew rate. The power-control feature permits the amplifiers to be adjusted to require as little as 25 microwatts of power. This type of amplifier, which provides for changing several characteristics by varying one external element, is sometimes referred to as being "programmable". The JFET input stage combined with the adjustable-low-power feature results in superior bandwidth and slew rate performance compared to low-power bipolar-input devices.

The TL066I is characterized for operation from -25°C to 85°C , and the TL066C, TL066AC, and TL066BC are characterized for operation from 0°C to 70°C .

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL0661	TL066C TL066AC TL066BC	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	V
Supply voltage, V _{CC} — (see Note 1)		-18	-18	V
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (see Notes 1 and 3)	2-	±15	±15	V
Voltage between power-control terminal and V _{CC} -		±0.5	±0.5	V
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	mW
Continuous total dissipation at (or below) 25°C free-air temperature (see Not	e 5)	680	680	TTIVV
Operating free-air temperature range		-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	JG Package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	P Package	260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC+}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, the TL066I, TL066C, TL066AC, and TL066BC chips are glass-mounted.

DISSIPATION DERATING TABLE

DAGKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47° C
P	680 mW	8.0 mW/°C	65°C

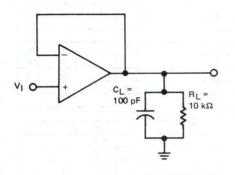
Also see Dissipation Derating Curves, Section 2.

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, V_{CC±} = ±15 V

	PARAMETER	TEST COM	NDITIONS†	2	TL0661			TL0660 TL066A TL066B	С	רואט
				MIN	TYP	MAX	MIN	TYP	MAX	
		$R_S = 50 \Omega$	TL066		3	6		3	15	
		T _A = 25°C	TL066A					3	6	
VIO	Input offset voltage	1A - 25 C	TL066B					2	3	
V10	input offset vortage	$R_S = 50 \Omega$,	TL066			9			20	mV
		T _A = full range	TL066A						7.5	
	- 12 - 2 2 12	TA - full range	TL066B					3 5	5	=
αVIO	Temperature coefficient of input offset voltage	$R_S = 50 \Omega$,	$T_A = full range$		10			10		μV/°(
			TL066		5	100		5	200	
		TA = 25°C	TL066A					5	100	pA
l.o	Input offset current‡		TL066B		***************************************			5	100	
110	input offset current+		TL066			10			5	
		T _A = full range	TL066A						3	nA
			TL066B						3	
			TL066		30	200		30	400	
		T _A = 25°C	TL066A					30	200	pA
IB	Input bias current‡		TL066B					30	200	
IB	Input bias current		TL066			20			10	
		T _A = full range	TL066A						7	nA
***************************************			TL066B						7	
	Common-mode input		TL066	±12		~~~	±10			
VICR	voltage range	T _A = 25°C	TL066A				±12			V
			TL066B				±12			
VOPP	Maximum peak-to-peak	$T_A = 25^{\circ}C$,	R _L = 10 kΩ	20	27		20	27		V
	output voltage swing	T _A = full range,	R _L ≥ 10 kΩ	20			20			
		$R_L \ge 10 k\Omega$,	TL066	4	6		3	6		
		$V_0 = \pm 10 V$,	TL066A				4	6		
AVD	Large-signal differential	T _A = 25°C	TL066B				4	6		V/m\
VD	voltage amplification	$R_{L} \ge 10 \text{ k}\Omega$,	TL066	4		milion-terranion	3			1 *,
		$V_0 = \pm 10 V$,	TL066A				4			
		T _A = full range	TL066B				4			
B ₁	Unity-gain bandwidth	T _A = 25°C,	$R_L = 10 k\Omega$		1			1		MHz
ri	Input resistance	T _A = 25°C			1012			1012		Ω
ro	Output resistance	$T_A = 25^{\circ}C$,	f = 1 kHz		220			220		Ω
	Common-mode rejection	$R_S \leq 10 \text{ k}\Omega$,	TL066	80	86		70	76		
CMRR	ratio	T _A = 25°C	TL066A				80	86		dB
		A = 7 5	TL066B				80	86		
	Supply voltage rejection	R _S ≤ 10 kΩ,	T-L066	80	95		70	95		
ksv R	ratio (Δ V _{CC±} /Δ V _{IO})	T _A = 25°C	TL066A				80	95		dB
	.= . 001. = . 10/		TL066B				80	95		
PD	Total power dissipation	No load, T _A = 25°C	No signal,		6	7.5		6	7.5	mW
Icc	Supply current	No load, T _A = 25°C	No signal,		200	250		200	250	μА

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -25° C to 85° C for TL066l and 0° C to 70° C for TL066C, TL066AC, and TL066BC. The electrical parameters are measured with the power-control terminal (pin 8) connected to V_{CC-} .


[‡]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as is possible.

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_{ext} = 0$

	PARAMETER	PARAMETER TEST CONDITIONS				MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 10 \text{ k}\Omega$, See Figure 1		3.5	To Park	V/µs
tr	Rise time	$V_1 = 20 \text{ mV},$	R _L = 10 kΩ		0.2		μs
-	Overshoot factor	C _L = 100 pF,	See Figure 1		10%		
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$,	f = 1 kHz		42		nV/√Hz

PARAMETER MEASUREMENT INFORMATION

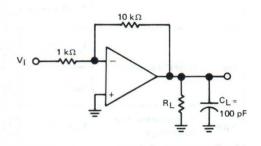


FIGURE 1-UNITY-GAIN AMPLIFIER

FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER

INPUT OFFSET VOLTAGE NULL CIRCUIT

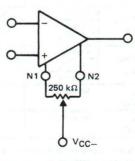
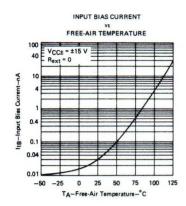
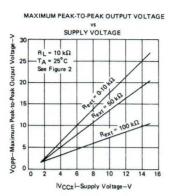




FIGURE 3

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS†

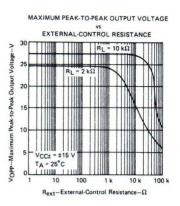
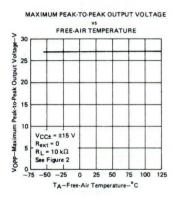
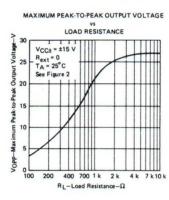




FIGURE 4

FIGURE 5

FIGURE 6

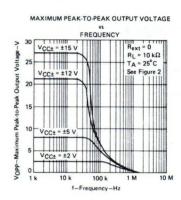
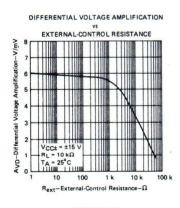
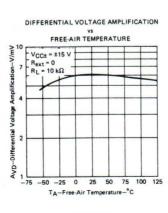




FIGURE 7

FIGURE 8

FIGURE 9

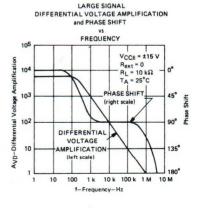
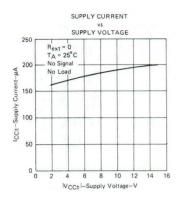
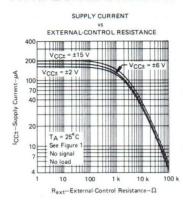


FIGURE 10

079


FIGURE 11


FIGURE 12

†Data at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS†

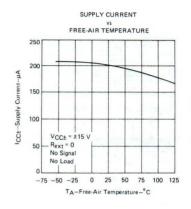


FIGURE 13

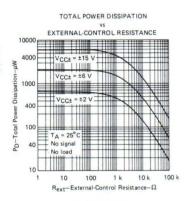


FIGURE 14

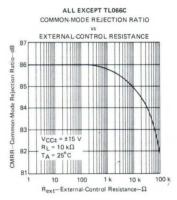


FIGURE 15

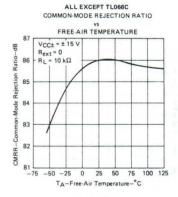
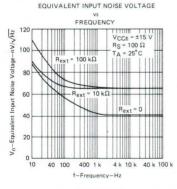
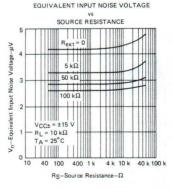
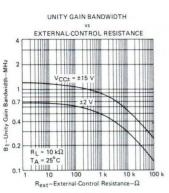



FIGURE 16

FIGURE 18

1079

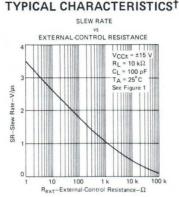

FIGURE 19

FIGURE 20

[†]Data at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices,

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

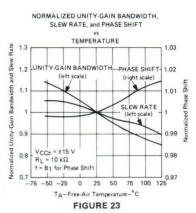
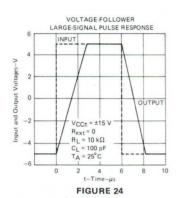
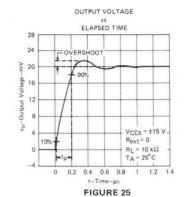




FIGURE 21

79

21 FIGURE 22

†Data at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.

TYPICAL APPLICATION DATA

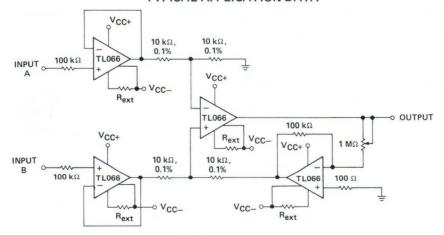


FIGURE 26-INSTRUMENTATION AMPLIFIER

TYPES TLOGGI, TLOGGC, TLOGGAC, TLOGGBC ADJUSTABLE LOW-POWER JEET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

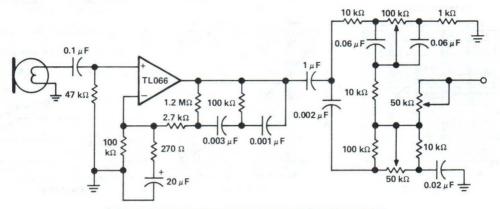


FIGURE 27-MICROPHONE PREAMPLIFIER WITH TONE CONTROL

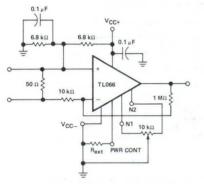


FIGURE 28-AC AMPLIFIER

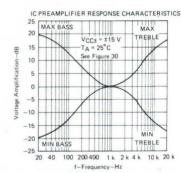
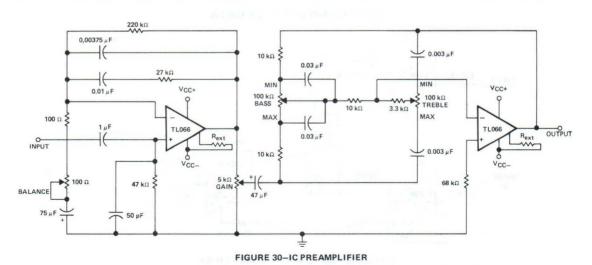



FIGURE 29

TEXAS INSTRUMENTS

LINEAR INTEGRATED CIRCUITS

TYPES TLO70, TLO70A, TLO71, TLO71A, TLO71B, TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

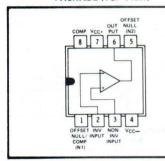
BULLETIN NO. DL-S 12640, SEPTEMBER 1978-REVISED OCTOBER 1979

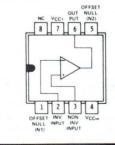
20 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

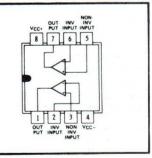
- Low Noise . . . $V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$
- Low Harmonic Distortion . . . 0.01% Typ
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection

- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation
- Low Power Consumption
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ

description

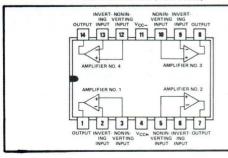

The JFET-input operational amplifiers of the TL071 series are designed as low-noise versions of the TL081 series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and low noise make the TL071 series ideally suited as amplifiers for high-fidelity and audio preamplifier applications. Each amplifier features JFET-inputs (for high input impedance) coupled with bipolar output stages all integrated on a single monolithic chip.

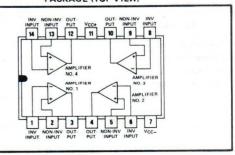

Device types with an "M" suffix are characterized for operation over the full military temperature range of -55°C to 125°C, those with an "I" suffix are characterized for operation from -25°C to 85°C, and those with a "C" suffix are characterized for operation from 0°C to 70°C.



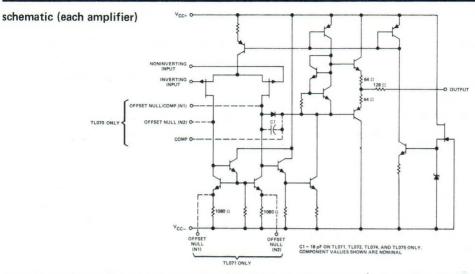
TL071, TL071A, TL071B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

TL072, TL072A, TL072B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)





TL074, TL074A, TL074B
J OR N DUAL-IN-LINE
OR W PACKAGE (TOP VIEW)


TL075 N DUAL-IN-LINE PACKAGE (TOP VIEW)

79

Copyright © 1979 by Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL07_C	TL07_I	TL07_C TL07_AC TL07_BC	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage, V _{CC} (see Note 1)		-18	-18	-18	V
Differential input voltage (see Note 2)		±30	±30	±30	V
Input voltage (see Notes 1 and 3)		±15	±15	±15	V
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	Unlimited	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)		680	680	680	mW
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG or W package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	260	°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
 - 5. For operation above 25°C, free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL07_M chips are alloy-mounted; TL07_I, TL07_C, TL07_AC, and TL07_BC chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	680 mW	11.0 mW/°C	88°C
J (Glass-Mounted Chip)	680 mW	8.2 mW/°C	67°C
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69° C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47° C
N	680 mW	9.2 mW/°C	76° C
P	680 mW	8.0 mW/°C	65°C
W	680 mW	8.0 mW/° C	65°C

Also see Dissipation Derating Curves, Section 2.

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL070	TL071	TL072	TL074	TL075
TL07_M	JG,	JG,	JG,	J, W	*
TL07_I	JG, P	JG, P	JG, P	J, N	*
TL07_C	JG, P	JG, P	JG, P	J, N	N
TL07_AC	JG, P	JG, P	JG, P	J, N	*
TL07_BC	*	JG, P	JG, P	J, N	*

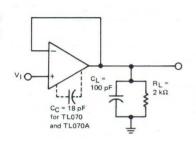
^{*}These combinations are not defined by this data sheet.

electrical characteristics, VCC± = ±15 V

	PARAMETER	TEST	CONDITIONS [†]	Т	L07_	М		TL0	7_I	T	L07_ L07_A L07_E	AC	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
			′70, ′71, ′72, ′75‡		3	6		3	6		3	10	
		$R_S = 50 \Omega$,	′74		3	9		3	6		3	10	
		$T_A = 25^{\circ} C$	'70A, '71A, '72A, '74A								3	6	
V	Input offset voltage		'71B, '72B, '74B								2	3	
VIO	input offset voltage		'70, '71, '72, '75 [‡]			9			9			13	mV
		$R_S = 50 \Omega$,	'74			15			9			13	
		T _A = full range	'70A, '71A, '72A, '74A									7.5	
			'71B, '72B, '74B									5	
αVIO	Temperature coefficient of input offset voltage	$R_S = 50 \Omega$,	T _A = full range		10			10			10		μV/°
			'70, '71, '72, '74, '75‡		- 5	50		5	50		5	50	
		T _A = 25° C	'70A, '71A, '72A, '74A								5	50	рА
			'71B, '72B, '74B								5	50	1
110	Input offset current §		'70, '71, '72, '74, '75‡		-	20			10			2	
		TA = full range										2	nA
		TA ram ramge	'71B, '72B, '74B									2	1110
			'70, '71, '72, '74, '75‡		30	200		30	200		30	200	-
		TA = 25° C	'70A, '71A, '72A, '74A			200	-		200		30	200	рА
		1.A 20 0	'71B, '72B, '74B								30	200	
IB	Input bias current §		'70, '71, '72, '74, '75‡			50			20		00	7	
		Ta = full range	'70A, '71A, '72A, '74A			30			20			7	nΑ
		A san range	'71B, '72B, '74B				-					7	117
			'70, '71, '72, '74, '75‡	±11	±12		±11	±12		±10	±11	/	
\/	Common-mode input	T - 25° C		TII	IIZ		±11	IIZ		±10	±12		V
VICR	voltage range	$T_A = 25^{\circ} C$	'70A, '71A, '72A, '74A	-						-			\ \
		T - 05° 0	'71B, '72B, '74B	-						±11	±12	-	-
	Maximum peak-to-peak	$T_A = 25^{\circ} C$,	$R_L = 10 \text{ k}\Omega$	24	27		24	27		24	27		١
VOPP	output voltage swing	TA = full range	R _L ≥ 10 kΩ	24			24			24			V
			R _L ≥ 2 kΩ	20	24		20	24		20	24		
		$R_L \ge 2 k\Omega$,	′70, ′71, ′72, ′74, ′75‡	35	200		50	200		25	200		-
		$V_0 = \pm 10 \text{ V},$	'70A, '71A, '72A, '74A							50	200		-
AVD	Large-signal differential	T _A = 25°C	'71B, '72B, '74B							50	200		V/m
	voltage amplification	$R_L \ge 2 k\Omega$,	′70, ′71, ′72, ′74, ′75‡	20			25			15			
		$V_0 = \pm 10 \text{ V},$	'70A, '71A, '72A, '74A				-			25			-
			'71B, '72B, '74B							25			-
B ₁	Unity-gain bandwidth	$T_A = 25^{\circ}C$,	R _L = 10 kΩ		3			3			3		МН
ri	Input resistance	$T_A = 25^{\circ} C$			1012			1012			1012		Ω
	Common-mode rejection	$R_S \leq 10 \text{ k}\Omega$	′70, ′71, ′72, ′74, ′75‡	80	86		80	86		70	76		
CMRR	ratio	T _A = 25° C	'70A, '71A, '72A, '74A							80	86		dB
			'71B, '72B, '74B							80	86		-
	Supply voltage rejection	$R_S \leq 10 \text{ k}\Omega$	′70, ′71, ′72, ′74, ′75‡	80	86	2	80	86		70	76	-	-
ksvr	ratio (Δ V _{CC±} /Δ V _{IO})	$T_A = 25^{\circ} C$	'70A, '71A, '72A, '74A				-			80	86		dB
			'71B, '72B, '74B							80	86		-
^l cc	Supply current (per amplifier)	No load, T _A = 25° C	No signal,		1.4	2.5		1.4	2.5		1.4	2.5	mA
Vo1/Voz	2 Channel separation	$A_{VD} = 100,$	$T_A = 25^{\circ} C$		120			120			120		dB

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -55°C to 125°C for TL07_M; -25°C to 85°C for TL07_I; and 0°C to 70°C for TL07_C, TL07_AC, and TL07_BC.

[‡]Types TL075I and TL075M are not defined by this data sheet.


[§]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18, Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

operating characteristics, $VCC^{\pm} = \pm 15 \text{ V}$, $T_{\Delta} = 25^{\circ} \text{ C}$

					TL07_	_M	ALL OT	HERS	
	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	MIN TYP	MAX	UNIT
SR	Slew rate at unit gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1	10	13		13		V/µs
tr	Rise time	$V_1 = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.1		0.1		μς
	Overshoot factor	$C_{L} = 100 pF$	See Figure 1		10		10		%
14.0	Equivalent input noise	B 400 G	f = 1 kHz		18		18		nV/√Hz
Vn	voltage	R _S = 100 Ω	f = 10 Hz to 10 kHz		4		4	14	μV
In	Equivalent input noise current	$R_S = 100 \Omega$,	f = 1 kHz		0.01		0.01		pA/√Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 V$, $R_L \ge 2 k\Omega$,	$R_S \le 1 \text{ k}\Omega$, f = 1 kHz		0.01		0.01		%

PARAMETER MEASUREMENT INFORMATION

10 kΩ

1 kΩ

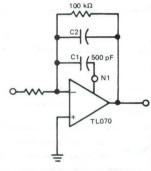
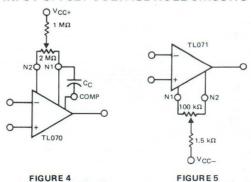
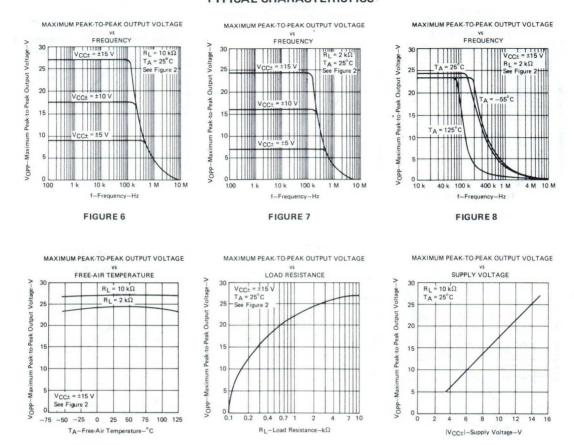



FIGURE 1-UNITY-GAIN AMPLIFIER

FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER


FIGURE 3-FEED-FORWARD COMPENSATION

INPUT OFFSET VOLTAGE NULL CIRCUITS

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS[†]

TOTAL POWER DISSIPATED

FREE-AIR TEMPERATURE

VCC± = ±15 V

TL074, TL075

No signal

TI 072

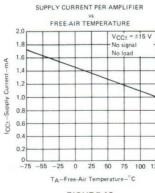
250

225

175

150

125

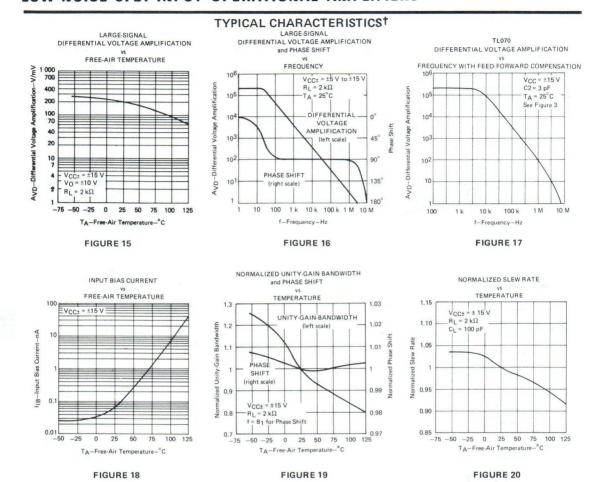

50

25


-75 -50 -25

Dissipated

Teto 75


TA-Free-Air Temperature-°C

25 50 75

FIGURE 13

FIGURE 14

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, A 18-pF compensation capacitor is used with TL070 and TL070A.

FREE-AIR TEMPERATURE

VCC± = ±15 V

88

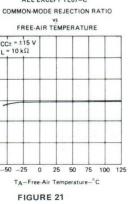
87

8F

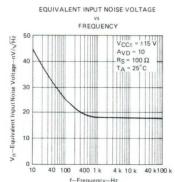
84

-75 -50 -25

0 25 50


FIGURE 21

Rejection


-Mode RE

CMRR-Con

= 10 kΩ

75

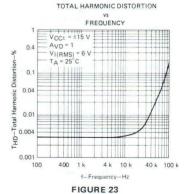
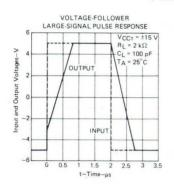



FIGURE 22 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 18-pF compensation capacitor is used with TL070 and TL070A.

TYPICAL CHARACTERISTICS[†]

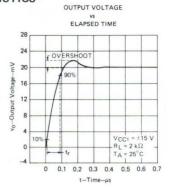


FIGURE 24

FIGURE 25

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 18-pF compensation capacitor is used with TL070 and TL070A.

TYPICAL APPLICATION DATA

0.5-Hz SQUARE-WAVE OSCILLATOR

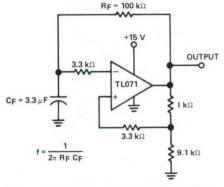
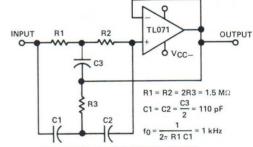
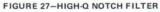
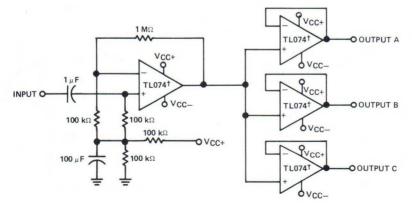
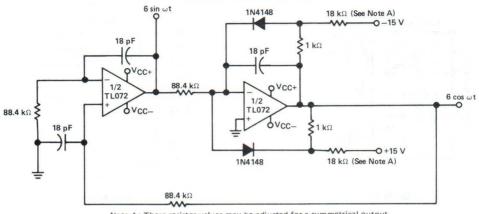
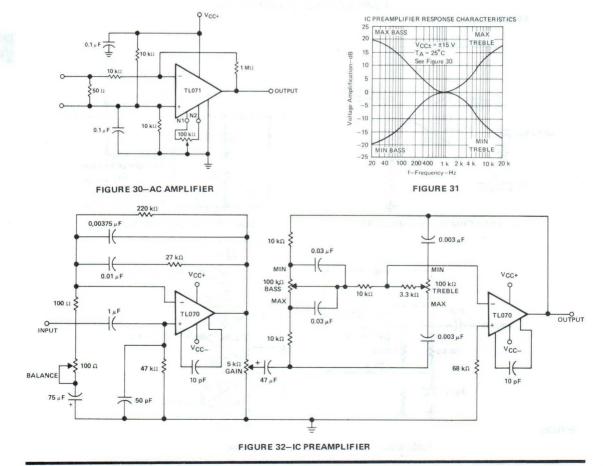




FIGURE 26-0.5-Hz SQUARE-WAVE OSCILLATOR

t or TL075

18


FIGURE 28-AUDIO DISTRIBUTION AMPLIFIER

TYPICAL APPLICATION DATA

Note A: These resistor values may be adjusted for a symmetrical output.

FIGURE 29-100-KHz QUADRATURE OSCILLATOR

TEXAS INSTRUMENTS

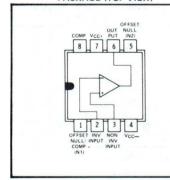
LINEAR INTEGRATED CIRCUITS

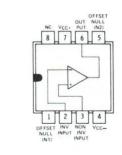
TYPES TL080 THRU TL085, TL080A THRU TL084A, TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

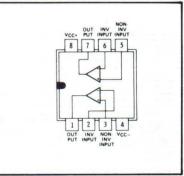
BULLETIN NO. DL-S 12484, FEBRUARY 1977-REVISED OCTOBER 1979

24 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

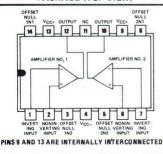
- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection

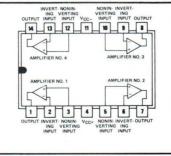

- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL080, TL080A)
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ

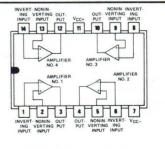

description


The TL081 JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL081 Family.

Device types with an "M" suffix are characterized for operation over the full military temperature range of -55° C to 125° C, those with an "I" suffix are characterized for operation from -25° C to 85° C, and those with a "C" suffix are characterized for operation from 0° C to 70° C.

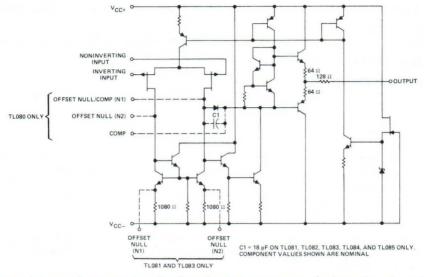

TL080, TL080A JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW) TL081, TL081A, TL081B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW) TL082, TL082A, TL082B JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)




TL083, TL083A J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TL084, TL084A, TL084B JOR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

TL085 N DUAL-IN-LINE PACKAGE (TOP VIEW)


NC-No internal connection

079

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL080 THRU TL085, TL080A THRU TL084A, TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL08_M	TL08_I	TL08_C TL08_AC TL08_BC	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage, V _{CC} — (see Note 1)	-18 -18		-18	V	
Differential input voltage (see Note 2)	±30	±30	±30	V	
Input voltage (see Notes 1 and 3)	±15	±15	±15	V	
Duration of output short circuit (see Note 4)	Unlimited	Unlimited	Unlimited		
Continuous total dissipation at (or below) 25°C free-air temperat	680	680 680		mW	
Operating free-air temperature range	-55 to 125	−55 to 125		°C	
Storage temperature range	-65 to 150	-65 to 150 -65 to 150 -65		°C	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, or W package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds		260	260	°C	

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL08_M chips are alloy-mounted; TL08_I, TL08_C, TL08_AC, and TL08_BC chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	680 mW	11.0 mW/°C	88°C
J (Glass-Mounted Chip)	680 mW	8.2 mW/°C	67°C
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69°C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C
N	680 mW	9.2 mW/°C	76° C
P	680 mW	8.0 mW/°C	65°C
W	680 mW	8.0 mW/°C	65°C

Also see Dissipation Derating Curves, Section 2.

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES										
	TL080	TL081	TL082	TL083	TL084	TL085				
TL08_M	JG	JG	JG	J	J, W					
TL08_1	JG, P	JG, P	JG, P	J, N	J, N					
TL08_C	JG, P	JG, P	JG, P	J, N	J, N	N				
TL08_AC	JG, P	JG, P	JG, P	J, N	J, N					
TL08_BC	*	JG, P	JG, P		J, N					

^{*}These combinations are not defined by this data sheet,

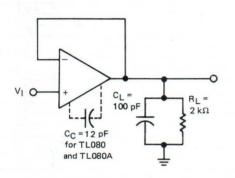
TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A, TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, VCC± = ±15 V

PARAMETER		TEST CONDITIONS†		TL08_M MIN_TYP_MAX			TL08_I			TL08_C TL08_AC TL08_BC MIN TYP MAX		UNIT	
-				IVIIIV			IVITIN			IVIIIV I			
		B 50.0	180,181,182,183,185		3	6		3	6		5	15	-
		$R_S = 50 \Omega$,	TL084		3	9		3	6		5	15	
		$T_A = 25^{\circ}C$	TL08_A								3	6	
VIO	Input offset voltage		'81B,'82B,'84B			0			0	-	2	3	mV
	-	D - 50 0	'80,'81,'82,'83,'85‡			9 15			9		-	20	
		$R_S = 50 \Omega$,	TL084			15			9				-
		T _A = full range	TL08_A '81B,'82B,'84B									7.5	-
αVIO	Temperature coefficient	$R_S = 50 \Omega$,	$T_A = \text{full range}$		10			10			10	5	μV/°C
- 10	of input offset voltage	3 55 57			4.00			-					
			TL08_‡		5	100		5	100		5	200	
		$T_A = 25^{\circ}C$	TL08_A								5	100	pA
110	Input offset current §		'81B,'82B,'84B								5	100	
.10	mput onset current	T _A = full range	TL08_‡			20			10			5	nA
			TL08_A									3	
			'81B,'82B,'84B									3	
	Input bias current§	T _A = 25°C	TL08_‡		30	200		30	200		30	400	
			TL08_A								30	200	pA
IIB			'81B,'82B,'84B								30	200	
.10		T _A = full range	TL08_‡			50			20			10	
			TL08_A									7	nA
			'81B,'82B,'84B									7	
	Common-mode input voltage range		TL08_‡	±11	±12		±11	±12		±10 ±	11		
VICR		$T_A = 25^{\circ}C$	TL08_A								12		V
	vortage range		'81B,'82B,'84B								12		
	Maximum peak-to-peak output voltage swing	$T_A = 25^{\circ}C$	$R_L = 10 k\Omega$	24	27		24	27		24	27		
VOPP		TA = full range	R _L ≥ 10 kΩ	24			24			24			V
	Cutput vertage svving		$R_{L} \ge 2 k\Omega$	20	24		20	24		20	24		
		$R_L \ge 2 k\Omega$,	TL08_‡	25	200		50	200			200		
		$V_0 = \pm 10 V$,	TL08_A								200		
AVD		$T_A = 25^{\circ}C$	'81B,'82B,'84B								200		V/mV
VD	voltage amplification	$R_L \ge 2 k\Omega$,	TL08_‡	15			25			15			
		$V_0 = \pm 10 \text{ V},$	TL08_A							25			
		T _A = full range	'81B,'82B,'84B							25			
B ₁	Unity-gain bandwidth	$T_A = 25^{\circ}C$			3			3			3		MHz
ri	Input resistance	$T_A = 25^{\circ}C$	T=:	-	1012			1012)12		Ω
OMBB	Common-mode rejection	$R_S \ge 10 \text{ k}\Omega$.	TL08_‡	80	86		80	86		70	76		-
CMRR	ratio	$T_{\Delta} = 25^{\circ} C$	TL08_A							80	86		dB
		,	'81B,'82B,'84B							80	86		
	Supply voltage rejection	$R_S \ge 10 \text{ k}\Omega$.	TL08_‡	80	86		80	86		70	76		-
ksvr		$T_A = 25^{\circ}C$	TL08_A							80	86		dB
			'81B,'82B,'84B							80	86		
Icc	Supply current (per amplifier)	No load, T _A = 25°C	No signal,		1.4	2.8		1.4	2.8		1.4	2.8	mA
Vo1/Vo2	Channel separation	$A_{VD} = 100,$	$T_A = 25^{\circ}C$		120			120		1	120		dB

[†] All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -55°C to 125°C for TL08_M; -25°C to 85°C for TL08_I; and 0°C to 70°C for TL08_C, TL08_AC, and TL08_BC.

[‡] Types TL085I and TL085M are not defined by this data sheet.


[§] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as is possible.

TYPES TLOSO THRU TLOSS, TLOSOA THRU TLOS4A, TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

operating characteristics, VCC± = ±15 V, TA = 25° C

PARAMETER		TEST CONDITIONS			TL08_N	1	AL	UNIT		
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1	8	13			13		V/μs
tr	Rise time	$V_1 = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.1			0.1		μѕ
	Overshoot factor	CL = 100 pF,	See Figure 1		10%	-		10%		
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$,	f = 1 kHz		25			25		nV/√H

PARAMETER MEASUREMENT INFORMATION

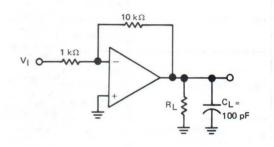
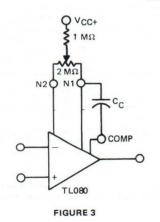
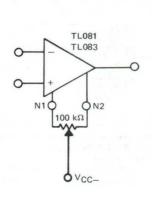
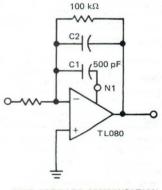
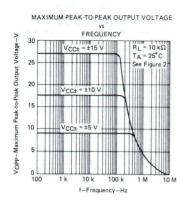




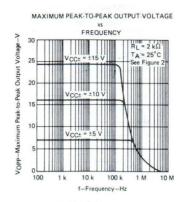
FIGURE 1-UNITY-GAIN AMPLIFIER

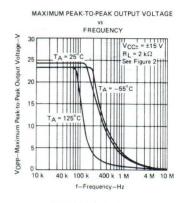
FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER

INPUT OFFSET VOLTAGE NULL CIRCUITS



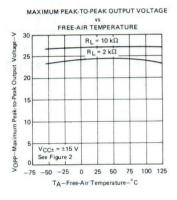

FIGURE 4

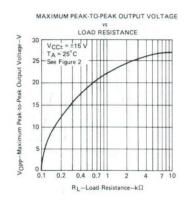

FEED-FORWARD COMPENSATION

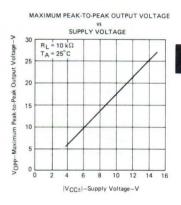

FIGURE 5

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A, TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]






FIGURE 6

RE 6 FIGURE 7

FIGURE 8

FIGURE 9

LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION

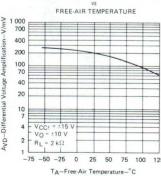
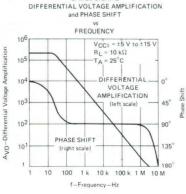



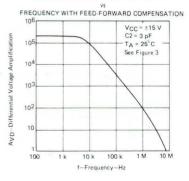
FIGURE 12

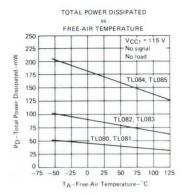
179

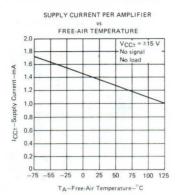
FIGURE 10 LARGE-SIGNAL

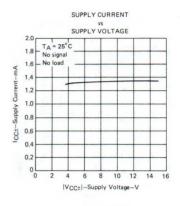
FIGURE 11

TL080, TL080A
DIFFERENTIAL VOLTAGE AMPLIFICATION




FIGURE 14


FIGURE 13


[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A, TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

FIGURE 15

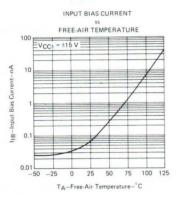


FIGURE 16

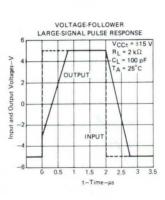


FIGURE 17

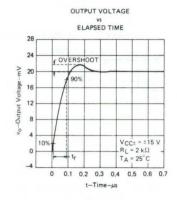


FIGURE 18

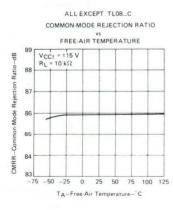


FIGURE 19



FIGURE 20

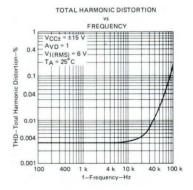


FIGURE 21

FIGURE 22

FIGURE 23

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A, TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

0.5-Hz SQUARE-WAVE OSCILLATOR

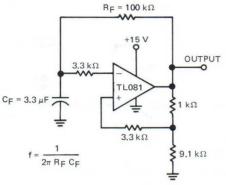


FIGURE 24-0,5-Hz SQUARE-WAVE OSCILLATOR

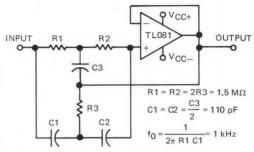


FIGURE 25-HIGH-Q NOTCH FILTER

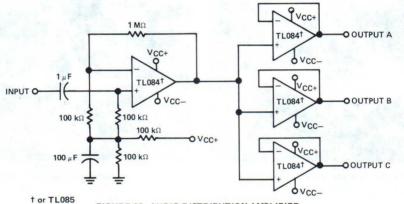
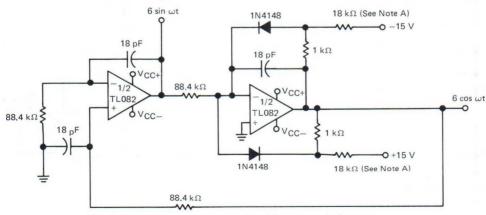



FIGURE 26-AUDIO DISTRIBUTION AMPLIFIER

Note A: These resistor values may be adjusted for a symmetrical output.

FIGURE 27-100-kHz QUADRATURE OSCILLATOR

TYPES TLOSO THRU TLOSS, TLOSOA THRU TLOS4A, TLOS1B, TLOS2B, TLOS4B JFET-INPUT OPERATIONAL AMPLIFIERS

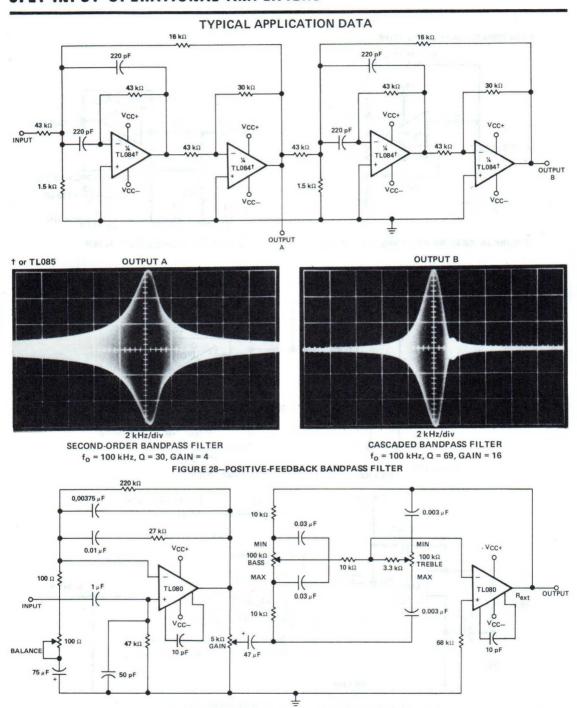
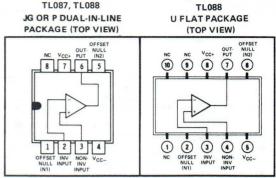
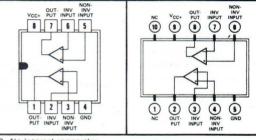


FIGURE 29-IC PREAMPLIFIER

TYPES TLO87, TLO88, TL287, TL288 JFET-INPUT OPERATIONAL AMPLIFIERS


BULLETIN NO. DL-S 12642, MARCH 1979 - REVISED OCTOBER 1979

- Low Input Offset Voltage . . . 0.5 mV Max
- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ


description

079

These JFET-input operational amplifiers incorporate well-matched high-voltage JFET and bipolar transistors in a monolithic integrated circuit. They feature low input offset voltage, high slew rate, low input bias and offset current, and low temperature coefficient of input offset voltage. Offset-voltage adjustment is provided for the TL087 and TL088.

TL287, TL288 JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW) TL288 U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

Device types with an "M" suffix are characterized for operation over the full military temperature range of -55° C to 125° C, those with an "I" suffix are characterized for operation from -25° C to 85° C, and those with a "C" suffix are characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL088M TL288M	TL087I TL088I TL287I TL288I	TL087C TL088C TL287C TL288C	UNIT		
Supply voltage, V _{CC+} (see Note 1)	11	18	18	18	V	
Supply voltage, V _{CC} — (see Note 1)	-18	-18	-18	V		
Differential input voltage (see Note 2)	±30	±30	±30	V		
Input voltage (see Notes 1 and 3)	±15	±15	±15	V		
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	Unlimited		
Continuous total dissipation at (or below)	JG or P package	680	680	680	m\M	
25°C free-air temperature (see Note 5)	U package	675			mW	
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°c	
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	JG or U package	300	300	300	°C	
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	P package		260	260	°C	

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, TL088M and TL288M chips are alloy-mounted; TL087I, TL088I, TL287I, TL288I, TL087C, TL088C, TL287C and TL288C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL087, TL088, TL287, TL288 JFET-INPUT OPERATIONAL AMPLIFIERS

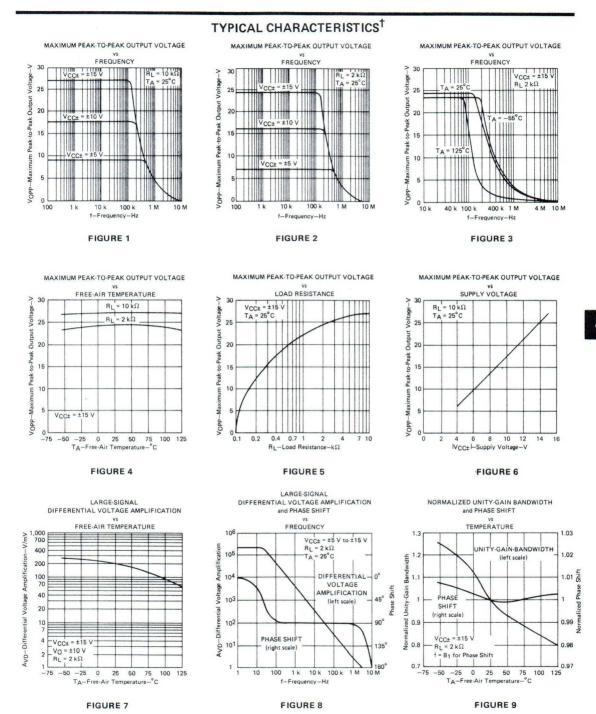
electrical characteristics,	VCC±	$= \pm 15 \text{ V}$	
-----------------------------	------	----------------------	--

PARAMETER		TEST CONDITIONS [†]		TL088M TL288M			7	TL087 TL088 TL287 TL288		TL087C TL088C TL287C TL288C			UNIT
				MIN	TYP	MAX	MIN	TYP		MIN		MAX	
		$R_S = 50 \Omega$,	TL087, TL287					0.1	0.5		0.1	0.5	
VIO	Input offset voltage	$T_A = 25^{\circ}C$	TL088, TL288		1	3		1	3		1	3	mV
V10	impat offset vortage	$R_S = 50 \Omega$,	TL087, TL287						2			1.5	
		TA = full range	TL088, TL288			6			6			5	
ανιο	Temperature coefficient of input offset voltage	$R_S = 50 \Omega$,	T _A = full range		10			10			10		µ∨/°C
	0	T _A = 25°C			5	100		5	100		5	100	рА
110	Input offset current §	T_{Δ} = full range		1		25	1		3		You	2	nA
	0	TA = 25°C			60	400		60	400		60	400	pA
IB	Input bias current §	T _A = full range				100	 		20			7	nA
VICE	Common-mode input			VCC-+	4		VCC-	+3.5		Vcc-	.+5		
	voltage range	TA = 25°C		to			to			to			V
				VCC+-	4		VCC	+		Vcc	+	OC.	
	Marrian um mante an mante	$T_A = 25^{\circ}C$,	$R_L = 10 k\Omega$	24	27		24	27		24	27		
VOPP	Maximum peak-to-peak output voltage swing TA = full ran		R _L ≥ 10 kΩ	24			24			24			V
		A = full range	R _L ≥ 2 kΩ	20			20			20	- TAL		
	Large-signal differential	$R_L \ge 2 k\Omega$, $T_A = 25^{\circ}C$	V _O = ± 10 V,	50	200		50	200		25	200		V/mV
AVD	voltage amplification	$R_L \ge 2 k\Omega$, $T_A = \text{full range}$	V _O = ±10 V,	25			25			15			V/mV
B ₁	Unity-gain bandwidth	TA = 25°C			3			3			3		MHz
ri	Input resistance	T _A = 25°C			1012			10 ^{1 2}			1012		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ,	T _A = 25°C	80	95		80	95		70	95		dB
ksvr	Supply voltage rejection ratio (Δ V _{CC±} /Δ V _{IO})	R _S ≤ 10 kΩ,	T _A = 25°C	80	95		80	95		70	95	1	dB
lcc	Suppy Current (per amplifier)	No load, T _A = 25°C	No signal,		1.4	2.8		1.4	2.8		1.4	2.8	mA

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -55°C to 125°C for TL_88M; -25°C to 85°C for TL_8_1; and 0°C to 70°C for TL_8_C.

operating characteristics V_{CC+} = ±15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS		TL088M, TL288M			ALL OTHERS			UNIT
	PARAMETER	TEST CONL	MIN	TYP	MAX	MIN	TYP	MAX	ONT	
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	8	13			13		V/µs
		$C_{L} = 100 pF$	$A_{VD} = 1$							Services .
tr	Rise time	$V_1 = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.1			0.1		μѕ
	Overshoot factor	$C_{L} = 100 pF$,	AVD = 1		10%			10%		
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$,	f = 1 kHz		18			18		nV/√Hz

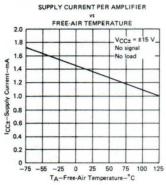

DISSIPATION DERATING TABLE

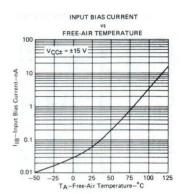
DAOKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	T_A 69° C 47° C
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69°C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47° C
P	680 mW	8.0 mW/°C	65°C
U	675 mW	5.4 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

[§] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

TYPES TL087, TL088, TL287, TL288 JFET-INPUT OPERATIONAL AMPLIFIERS

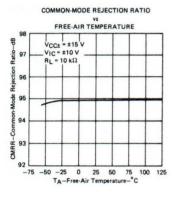


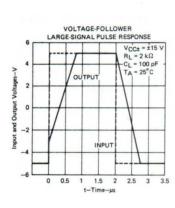

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPES TL087, TL088, TL287, TL288 JFET-INPUT OPERATIONAL AMPLIFIERS

TOTAL POWER DISSIPATED VS FREE-AIR TEMPERATURE 125 VCC± = ±15 V No signal . No load 7/287, 7/288 TL087, 7/L088

TYPICAL CHARACTERISTICS[†]




TA-Free-Air Temperature-°C

25 50 75 100

FIGURE 11

FIGURE 12

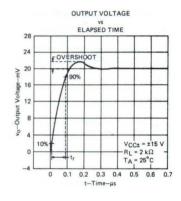
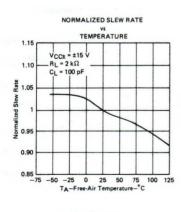
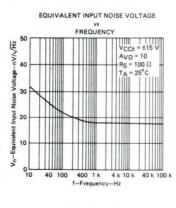




FIGURE 13

FIGURE 14

FIGURE 15

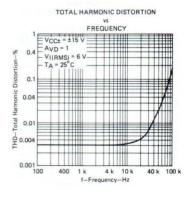
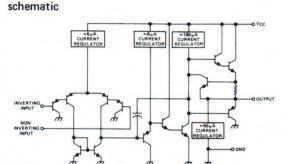


FIGURE 16

FIGURE 1

FIGURE 18

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TYPES TL321M, TL321I, TL321C OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 12515 APRIL 1977 - REVISED OCTOBER 1979

- Wide Range of Supply Voltages Single Supply . . . 3 V to 30 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 3 nA Typ (TL321M) Input Bias Current . . . 45 nA Typ

- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±32 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Internal Frequency Compensation

description

079

The TL321 is a high-gain, frequency-compensated operational amplifier that was designed specifically to operate from a single supply over a wide range of

JG OR P
DUAL-IN-LINE
PACKAGE (TOP VIEW)

NC VCC PUT NC

8 7 6 5

NC-No internal connection

voltages. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 30 volts and Pin 7 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the TL321 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ±15-volt supplies.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Differential input voltage (see Note 2) ±32 V
Input voltage range (either input) -0.3 V to 32 V
Duration of output short-circuit to ground at (or below 25°C
free-air temperature (V _{CC} ≤ 15 V) (see Note 3)
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4)
Operating free-air temperature range: TL321M
TL321I
TL321C
Storage temperature range -65°C to 150°C
Lèad temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, TL321M chips are alloy-mounted; TL321I and TL321C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL321M, TL321I, TL321C OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DARAMETER	TEGT COMPLE	LONGT	TL321	IM, TL	3211	Т	L321C		UNIT			
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT			
\/	1	V _O = 1.4 V,	25°C		2	5	-	2	7	mV			
VIO	Input offset voltage	V _{CC} = 5 V to 30 V	Full range			7			9	mv			
Low	Input offset current	V _O = 1.4 V	25°C		3	30		5	50	nA			
10	input onset current	VO - 1.4 V	Full range			100	Tr. Water	134,16	150	nA			
L	Input bios surrent	V _O = 1.4 V,	25°C		-45	-150	7 7 810	-45	-250	nA			
IB	Input bias current	See Note 5	Full range			-300			-500	IIA			
		112	25°C	0 to			0 to						
VICR	Common-mode input	V _{CC} = 30 V	25 0	V _{CC} -1.5			V _{CC} -1.5			V			
VICH	voltage range	VCC - 30 V	Full range	Full range	Full range	Full range	0 to			0 to			1 *
			Tunifunge	V _{CC} -2			V _{CC} -2	I le-					
	High-level output voltage	$V_{CC} = 30 \text{ V},$ $R_L = 2 \text{ k}\Omega$	Full range	26			26			V			
VOH		$V_{CC} = 30 \text{ V},$ $R_L \ge 10 \text{ k}\Omega$	Full range	27	28		27	28		ľ			
VOL	Low-level output voltage	R _L ≤ 10 kΩ	Full range		5	20		5	20	mV			
AVD	Large-signal differential	V _{CC} = 15 V, V _O = 1 V to 11 V,	25° C	50	100		25	100		V/m\			
AVD	voltage amplification	$R_L \ge 2 k\Omega$	Full range	25			15			7.111			
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	25°C	70	85		65	85		dB			
ksvr*	Supply voltage rejection ratio	R _S ≤ 10 kΩ	25°C	65	100		65	100		dB			
		V _{CC} = 15 V, V _{ID} = 1 V,	25° C	-20	-40		-20	-40	multip				
		V _O = 0 V	Full range	-10	-20		-10	-20	1 8	mA			
10	Output current	V _{CC} = 15 V, V _{ID} = -1 V,	25° C	10	20		10	20	11611				
		$V_0 = 5 V$	Full range	5	8		5	8					
		$V_{ID} = -1 V,$ $V_{O} = 200 \text{ mV}$	25° C	12	50	1	12	50		μА			
las	Consider augment	No load,	25°C		0.4			0.4		^			
cc	Supply current	No signal Full				1			1	mA			

^{*}ksvR = AVCC/AVIO

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

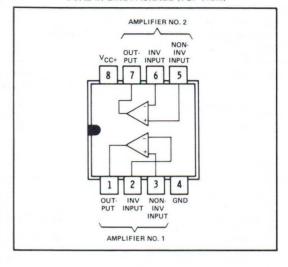
DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69°C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47° C
P	680 mW	8.0 mW/°C	65°C

Also see Dissipation Derating Curves, Section 2.

[†]All characteristics are specified under open-loop conditions. Full range is -55°C to 125°C for TL321M, -25°C to 85°C for TL321, and 0°C to 70°C for TL321C.

TYPES TL322M, TL322I, TL322C DUAL LOW-POWER OPERATIONAL AMPLIFIERS


BULLETIN NO. DL-S 12731, OCTOBER 1979

- Wide Range of Supply Voltages Single Supply . . . 3 V to 36 V or Dual Supplies
- Class AB Output Stage
- True Differential Input Stage
- Low Input Bias Current
- Internal Frequency Compensation
- Short-Circuit Protection

description

The TL322M, TL322I, and the TL322C are dual operational amplifiers similar in performance to the uA741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 volts to 36 volts. Operation from split supplies is also possible provided the difference between the two supplies is 3 volts to 36 volts. The common-mode input range includes the negative supply. Output range is from the negative supply to VCC - 1.5 V. Quiescent supply currents per amplifier are typically less than one-half those of the uA741.

JG OR P **DUAL-IN-LINE PACKAGE (TOP VIEW)**

The TL322M is characterized for operation over the full military temperature range of -55°C to 125°C. The TL322I is characterized for operation from -40°C to 85°C. The TL322C is characterized for operation from 0°C to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL322M	TL3221	TL322C	UNIT
Supply voltage V _{CC+} (see Note 1)		18	18	18	V
Supply voltage V _{CC} — (see Note 1)		-18	-18	-18	V
Supply voltage V _{CC+} with respect to V _{CC-}		36	36	36	V
Differential input voltage (see Note 2)		±36 ±36		±36	V
Input voltage (see Notes 1 and 3)	± 18	±18	± 18	V	
Continuous total dissipation at (or below) 25° C	JG package	1050	825	825	101
free-air temperature (see Note 4)	P package		1000	1000	mW
Operating free-air temperature range		-55 to 125	-40 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	JG package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	P package		260	260	°C

- NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-}
 - 4. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG packages, TL322M chips are alloymounted; TL3221 and TL322C chips are glass-mounted.

DISSIPATION DERATING TABLE

BAGKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	1050 mW	8.4 mW/°C	25°C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	1000 mW	8.0 mW/°C	25°C

Also see Dissipation Denating Curves, Section 2.

Copyright © 1979 by Texas Instruments Incorporated

079

ADVANCE INFORMATION This document contains information on

INCORPORATED

a new product. Specifications are subject POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 to change without notice.

TYPES TL322M,TL322I,TL322C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature: V_{CC+} = 14 V, V_{CC-} = 0 V for TL322I; $V_{CC\pm}$ = ±15 V for TL322M and TL322C

	DADAMETER	TEST OF	TEST CONDITIONS†		L322M		Т	L3221		7	L3220		רומט
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
17	l	$T_A = 25^{\circ}C$,	See Note 5		2	8		2	8		2	10	mV
VIO	Input offset voltage	TA = full range	e, See Note 5			10			10	11 15 1	1 10 13 10	12	mv
αVIO	Temperature coefficient of input offset voltage	T _{A.} = 25°C			10			10	7	99 mes	10		μV/°
lia	Input offset current	$T_A = 25^{\circ}C$,	See Note 5		30	75		30	75		30	50	lnΔ
110	input onset current	TA = full range	e, See Note 5			250			250			200	1 '''
αIIO	Temperature coefficient of input offset current	T _A = 25°C		ě.	50			50			50		pA/°
L	Innut biss surrent	T _A = 25°C			-0.2	-0.5		-0.2	-0.5		-0.2	-0.5	μА
IB	Input bias current	TA = full range	9			-1.5			-1			-0.8	1 44
	Common made input			Vcc-	Vcc-	_	Vcc-	- Vcc	_	VCC.	_ Vcc	_	
VICR	Common-mode input	TA = 25°C		to	to		to	to	HE .	to	to		V
	voltage range‡			13	13.5		12	12.5	3.,17	13	13.5	1.6)	
	Peak output	$R_L = 10 k\Omega$,	$T_A = 25^{\circ}C$	±12	±13.5	100	±12	±12.5	114	±12	±13.5		
VOM	voltage swing	$R_L = 2 k\Omega$,	$T_A = 25^{\circ}C$	±10	±13		±10	±12		±10	±13		V
	vortage swing	$R_L = 2 k\Omega$,	T _A = full range	±10			±10			±10			
AVD	Large-signal differential	$R_L = 2 k\Omega$,	T _A = 25°C		200		20	200		20	200	ILA TEN	V/m
~VD	voltage amplification	V _O = ±10 V	T _A = full range	25			15			15		910 1	V /II
ВОМ	Maximum-output- swing bandwidth	$V_{OPP} = 20 V$, $A_{VD} = 1$, $THD \le 5\%$	$R_L = 2 k\Omega$, $T_A = 25^{\circ}C$,		9			9	u 1		9	X 11	kH
В1	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	$V_0 = 50 \text{ mV},$		1		- 3 7	1		Harrier and the	1	, ng	МН
Φm	Phase margin	$C_L = 200 \text{ pF},$ $T_A = 25^{\circ} \text{ C}$	$R_L = 2 k\Omega$,	14 ME	60°	7-6	rerage.	60°		D1 93	60°	n di	4
ri	Input resistance	f = 20 Hz,	T _A = 25°C	0.3	1		0.3	1		0.3	1		MS
ro	Output resistance	f = 20 Hz,	T _A = 25°C		75			75	1 1		75		Ω
CMRR	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$,	T _A = 25°C	70	90		70	90	the V	70	90	ar le	dB
ksvs	Supply voltage sensitivity $(\Delta V_{1O}/\Delta V_{CC})$	T _A = 25°C			30	150		30	150	1	30	150	μV/
los	Short-circuit output current §	T _A = 25°C	-18	±10	±30	±45	±10	±30	±45	±10	±30	±45	m.A
Icc	Total supply current	No load, T _A = 25°C	No signal,		1.4	2.5		1.4	4	in and	1.4	4	m.A

[†]All characteristics are specified under open-loop conditions unless otherwise noted. Full range for T_A is -55°C to 125°C for TL322M; -40°C to 85°C for TL322I and 0°C to 70°C for TL322C.

[‡]The V_{ICR} limits are directly linked volt-for-volt to supply voltage, viz the positive limit is 2 volts less than V_{CC+}.

[§] Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 5: V_{IO} and I_{IO} are defined at V_{O} = 0 V for TL322M and TL322C and V_{O} = 7 V for TL322I.

TYPES TL322M,TL322I,TL322C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

electrical characteristics, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25°C (unless otherwise noted)

DAD	AMETER	TEST CONDITIONS†	TL:	322M		TL	3221		TL3	22C		UNIT
PAR	AMETER	LEST CONDITIONS.	MIN	TYP	MAX	MIN	TYP MA	AX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 2.5 V		2	8			8		2	10	mV
110	Input offset current	V _O = 2.5 V		30	75			75		30	50	nA
IB	Input bias current	-		-0.2	-0.5			0.5		-0.2	-0.5	рА
1	Peak output	R _L = 10 kΩ	3.3	3.5		3.3	3.5		3.3	3.5		
VOM	voltage swing §	$R_L = 10 \text{ k}\Omega$, $V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} - 1.	.7		V _{CC+} - 1.	7		V _{CC+} - 1.7			٧
AVD	Large-signal differential voltage amplification	$R_L = 2 k\Omega, \Delta V_O = 2 V$	20	200		20	200		20	200		V/mV
ksvs	Power supply sensitivity $(\Delta V_{10}/\Delta V_{CC\pm})$				150		1	50			150	μV/V
Icc	Supply current	No load, No signal		1.2	2.5		1.2	4		1.2	4	mA
V ₀₁ /V ₀₂	Channel separation	f = 1 kHz to 20 kHz		120			120			120		dB

[†] All characteristics are specified under open-loop conditions.

operating characteristics: V_{CC+} = 14 V, V_{CC-} = 0 V for TL322I, $V_{CC\pm}$ = ±15 V for TL322M and TL322C TL322C; T_A = 25°C, A_{VD} = 1 (unless otherwise noted)

	PARAMETER	Т	EST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_1 = \pm 10 V$,	CL = 100 pF,	See Figure 1		0.6		V/µs
tr	Rise time	AV - 50 V	0 - 100 - 5	D 4010	1	0.35		μs
tf	Fall time	$\Delta V_0 = 50 \text{ mV},$	$C_L = 100 pF$,	$R_L = 10 \text{ k}\Omega$,		0.35		μs
	Overshoot factor	See Figure 1				20%		
	Crossover distortion	V _{IPP} = 30 mV,	V _{OPP} = 2 V,	f = 10 kHz		1%		

PARAMETER MEASUREMENT INFORMATION

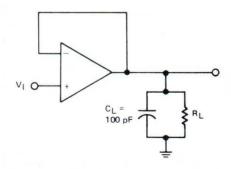
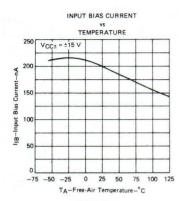


FIGURE 1-UNITY-GAIN AMPLIFIER


[§] Output will swing essentially to ground.

TYPES TL322M, TL322I, TL322C **DUAL LOW-POWER OPERATIONAL AMPLIFIERS**

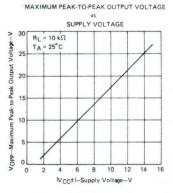
TYPICAL CHARACTERISTICS†

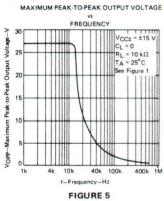
INPUT BIAS CURRENT

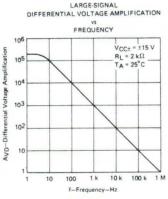
SUPPLY VOLTAGE

200 Ig-Input Bias Current-150 0

TA = 25°C




FIGURE 2


FIGURE 3

8 10 12 14

NCC ± I-Supply Voltage-V

FIGURE 4

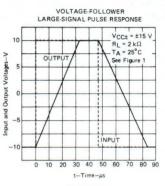
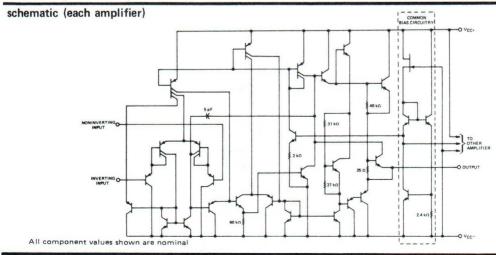
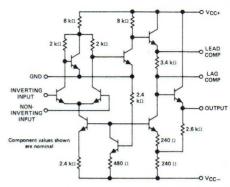



FIGURE 6

FIGURE 7

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPES TL702M, TL702C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS


BULLETIN NO. DL-S 12407, JUNE 1976-REVISED OCTOBER 1979

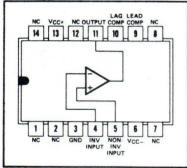
- Open-Loop Voltage Amplification . . . 2600 Typ
- CMRR . . . 80 dB Typ

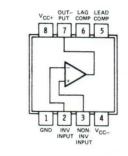
description

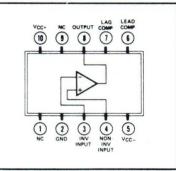
The TL702 is a high-gain, wideband operational amplifier having differential inputs and single-ended emitter-follower outputs. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. Component matching, inherent in silicon monolithic circuit-fabrication techniques, produces an amplifier

schematic

with low-drift and low-offset characteristics. The TL702 is particularly useful for applications requiring transfer or generation of linear and non-linear functions up to a frequency of 30 MHz.


The TL702M is characterized for operation over the full military temperature range of -55° C to 125° C. The TL702C is characterized for operation over the temperature range of 0° C to 70° C.


terminal assignments


J OR N DUAL-IN-LINE
OR W FLAT PACKAGE (TOP VIEW)

JG DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

)79

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL702M	TL702C	UNIT
Supply voltage VCC+ (see Note 1)		14	14	V
Supply voltage VCC— (see Note 1)	-1	-7	-7	V
Differential input voltage (see Note 2)		±5	±5	V
Input voltage (either input, see Notes 1 and 3)		-6 to 1.5	-6 to 1.5	V
Peak output current (t _W ≤ 1 s)		50	50	mA
Continuous total dissipation at (or below) 70°C free-air temperatu	re (see Note 4)	300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N package		260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the lesser of the two supply voltages.
 - For operation of TL702M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL702M chips are alloy-mounted; TL702C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL702M, TL702C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TL702M

electrical characteristics at specified free-air temperature

							10	TL7	02M	/ii		2
	PARAMETER	TES	T CONDITIO	ONST			C+ = 1		V _{CC+} = 6 V			UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	ereğile.
.,	Input offset voltage	Rs ≤ 2 kΩ		2	25°C		2	5		2	5	mV
VIO	Input offset voltage	ns 4 2 Kiz			ull range			6			6	1
	Average temperature coefficient	R _S = 50 Ω	W lock		to 25°C		10			10		μV/°C
αVIO	of input offset voltage	115 - 30 32			to 125°C		-5		DOM: N	5	111.00	100
				2	25°C		0.5	2		0.3	2	
110	Input offset current			_	-55°C		1	3			3	μΑ
				1	25°C	-	0.2	3			3	
	Average temperature coefficient			-55°C	to 25°C	,va	6	/N	0	5		nA/°C
αIIO	of input offset current		9.1	25°C 1	to 125°C		3	10 /0	alie d	2		IIA/ C
	1 1 . 25			1	25°C		4	10		2.5	7	μА
IB	Input bias current			-	-55°C		6.5	20			14	μΑ.
	Common-mode input	Positive swing			25°C	0.5	1		0.5	1		V
VICR	voltage range	Negative swing		-	25 C	-4	-5		-1.5	-2	-	1
	Maximum peak-to-peak	R _L > 100 kΩ				10	10.6		5	5.4		V
VOPP	output voltage swing	R _L = 10 kΩ					8			4		1
			1	. 2	25°C	1400	2600	4.	34	W.S.		33201
AVD	Large-signal differential	R _L > 100 kΩ	$V_0 = \pm 5$	F	-ull range	1000			à mai	100		
	voltage amplification		V _O = ±2.	5 V 2	25°C	10,1 31	1 100	3 39	380	700	T a S	
				:	25°C	8	25	-	12	40		1.0
ri	Input resistance			F	Full range	3	0,21	1778	4			kΩ
ro	Output resistance	V _O = 0,	See Note	3 2	25°C		200	500		300	700	Ω
CMRR	Common-mode rejection ratio	R _S ≤ 2 kΩ			25°C	70	80	-	70	80	1	dB
ksvs*	Supply voltage sensitivity	$R_S \leq 2 k\Omega$		1	25°C		60	300	1	60	300	µV/V
Icc	Supply current	No load,	No signal	1	25°C	1	5	6.7		2.1	3.9	mA
PD	Total power dissipation	No load.	No signal		25°C		90	120		19	35	mW

^{*}ksvs = $\Delta V_{10}/\Delta V_{CC}$

NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113° C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
JG (Glass-Mounted Chip)	300 mW	6.6 mW/°C	104° C
N	300 mW	9.2 mW/°C	117°C
U	300 mW	5.4 mW/°C	94° C
W	300 mW	8.0 mW/°C	112°C

Also see Dissipation Derating Curves, Section 2.

[†] All characteristics are specified under open-loop operation. Full range for TL702M is -55°C to 125°C.

TYPES TL702M, TL702C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TL702C

electrical characteristics at specified free-air temperature, V_{CC+} = 12 V, V_{CC-} = -6 V

	BARAMETER	TEC	CONDITIONS	+	7	L702	С	UNIT
	PARAMETER	TES	CONDITIONS		MIN	TYP	MAX	UNIT
				25°C		5	10	
VIO	Input offset voltage	$R_S \leq 2 k\Omega$		Full Range			15	mV
^α VIO	Average temperature coefficient of input offset voltage	R _S = 50 Ω		Full Range		5		μV/°(
	1		11170 m	25°C		0.5	5	μА
110	Input offset current			Full Range			7.5	μΑ
	Average temperature coefficient	-25		0°C to 25°C		5		nA/°
αΙΙΟ	of input offset current			25°C to 70°C		3		liiA/ C
			× .	25°C		4	15	μА
IB	Input bias current	the second of		0°C		4.5	20	μΑ
	Common-mode	Positive swing		25°C	0.5	1	a and	V
VICR	input voltage range	Negative swing		7 25 C	-4	-5		\ \ \
V _{OPP}	Maximum peak-to-peak output voltage swing	R _L ≥ 100 kΩ		25° C	10	10.6		V
-	Large-signal differential	5 - 1001.0		25°C	1000	2600		
AVD	voltage amplification	$R_L \ge 100 k\Omega$,	$VO = \pm 9 V$	Full Range	800			
				25°C	-6	25		kΩ
rį	Input resistance			Full Range	3.5			KZZ
ro	Output resistance	V _O = 0,	See Note 3	25°C		200	600	Ω
CMRR	Common-mode rejection ratio	$R_S \leq 2 k\Omega$		25°C	65	80		dB
ksvs*	Supply voltage sensitivity	$R_S \le 2 k\Omega$		25°C		60	300	μV/\
Icc	Supply current	No load,	No signal	25°C		5	7	mA
PD	Total power dissipation	No load,	No signal	25°C		90	125	mW

 $[*]k_{SVS} = \Delta V_{IO}/\Delta V_{CC}$

NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TL702M, TL702C

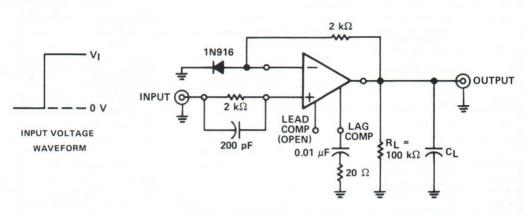
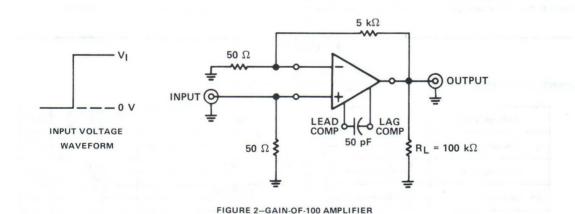
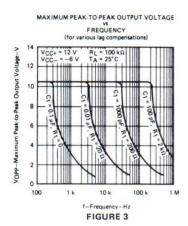
operating characteristics $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_A = 25^{\circ} \text{C}$

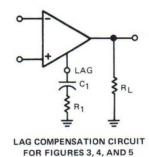
		TEST	BOTH TYPES	UNIT		
	PARAMETER Rise time Overshoot factor	FIGURE	TEST CONDITIONS	MIN TYP MAX	UNI	
		1	V _I = 10 mV, C _L = 0	25 120	ns	
tr	Rise time	2	V _I = 1 mV	10 30	ns	
		1	V _I = 10 mV, C _L = 100 pF	10% 50%		
	Overshoot factor	2	V _I = 1 mV	20% 40%		
0.0	01	1	V _I = 6 V, C _L = 100 pF	1.7	V/µs	
SR	Slew rate	2	V _I = 100 mV	11	ν/μς	

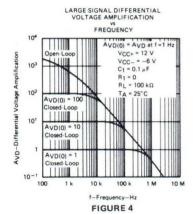
[†] All characteristics are specified under open-loop operation. Full range for T.L.702C is 0°C to 70°C.

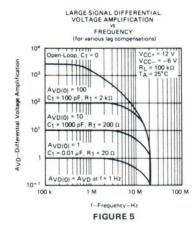
TYPES TL702M, TL702C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

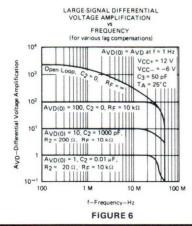
PARAMETER MEASUREMENT INFORMATION

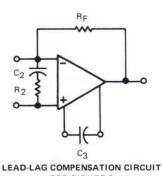





FIGURE 1-UNITY-GAIN AMPLIFIER




TYPES TL702M, TL702C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS


TYPICAL CHARACTERISTICS

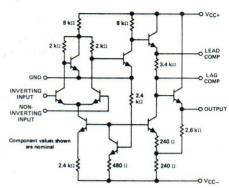


FOR FIGURE 6

FINE CONTRACTOR OF THE SECOND SECOND

- SANST

TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

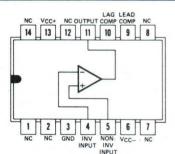

BULLETIN NO. DL-S 12408, JUNE 1976-REVISED OCTOBER 1979

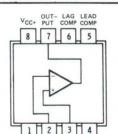
- Open-Loop Voltage Amplification . . . 3600 Typ
- Designed to be Interchangeable With Fairchild µA702
- CMRR . . . 100 dB Typ

description

The uA702 is a high-gain, wideband operational amplifier having differential inputs and single-ended emitter-follower outputs. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. Component matching, inherent in silicon monolithic circuit-fabrication techniques, produces an amplifier

schematic

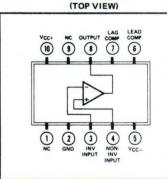



with low-drift and low-offset characteristics. The uA702 is particularly useful for applications requiring transfer or generation of linear and non-linear functions up to a frequency of 30 MHz.

The uA702M is characterized for operation over the full military temperature range of -55°C to 125°C.

terminal assignments J DUAL-IN-LINE

OR W FLAT PACKAGE (TOP VIEW)


INV NON

INPUT

INPUT

JG DUAL-IN-LINE

PACKAGE (TOP VIEW)

FLAT PACKAGE

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)											
Supply voltage V _{CC} — (see Note 1)											
Differential input voltage (see Note 2)											±5 V
Input voltage (either input, see Notes 1 and 3) .										-6	V to 1.5 V
Peak output current $(t_W \leq 1 s)$. 50 mA
Continuous total dissipation at (or below) 70°C fre	e-air	tempe	eratur	e (see	Note	4)					. 300 mW
Operating free-air temperature range									 	-55°	C to 125°C
Storage temperature range										-65°	C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for	or 60	secon	ds .								300°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the network ground terminal,

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the lesser of the two supply voltages.
- 4. For operation above 70°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, uA702M chips are alloy-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
U	300 mW	5.4 mW/°C	94° C
W	300 mW	8.0 mW/°C	112°C

Also see Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature

				_		C+ = 1			C+ = (
	PARAMETER	TES	T CONDITION	NS [†]		- = -	MAX		- = -	MAX	UNIT
				25°C	MIN	0.5	2	IMIN	0.7	3	
VIO	Input offset voltage	$R_S \leq 2 k\Omega$		Full range	-	0.5	3		0.7	4	mV
	Average temperature coefficient			-55°C to 25°C		2	10		3	15	
αVIO	of input offset voltage	$R_S = 50 \Omega$	H	25°C to 125°C		2.5	10		3.5	15	μV/°
-	or input or set voltage			25°C		0.2	0.5		0.12	0.5	-
110	Input offset current			-55° C		0.4	1,5		0.3	1.5	μА
.10	par on ser canon			125° C		0.08	0.5		0.05	0.5	
	Average temperature coefficient		T	-55°C to 25°C		3	16		2	13	
αΙΙΟ	of input offset current			25°C to 125°C		1	5		0.7	4	nA/
				25°C		2	5		1.2	3.5	
IB	Input bias current			-55°C		4.3	10		2.6	7.5	μΑ
1/	Common-mode	Positive swing		0=00	0.5	1		0.5	1		1
VICR	input voltage range	Negative swing		25°C	-4	-5		-1.5	-2		V
				25°C	10	10.6		5	5.4		
	Maximum peak-to-peak	R _L ≥ 100 kΩ		Full range	10			5			V
VOPP	output voltage swing	R _L = 10 kΩ		25°C	7	8		3	4		\ \
		R _L ≥ 10 kΩ		Full range	7			3			1
			T	25°C	2500	3600	6000				
	Large-signal differential		$V_0 = \pm 5 V$	Full range	2000		7000				1
AVD	voltage amplification	R _L ≥ 100 kΩ		25°C				600	900	1500	1
			$V_0 = \pm 2.5$	Full range				500		1750	1
				25°C	16	40		22	67		1.0
rį	Input resistance			Full range	6			8			ks:
ro	Output resistance	V _O = 0,	See Note 3	25° C		200	500		300	700	Ω
				25°C	80	100		80	100		dB
CMRR	Common-mode rejection ratio	$R_S \leq 2 k\Omega$		Full range	70			70			OB
	Supply voltage sensitivity			25°C		75			75		μ٧/
ksvs	(AVIO/AVCC)	R _S ≤ 2 kΩ		Full range			200			200	1 40
				25°C		5	6.7		2.1	3.3	
Icc	Supply current	No load,	No signal	-55° C		5	7.5		2.1	3.9	m/
				125°C		4.4			1.7	3.3	
				25°C		90			19	30	
PD	Total power dissipation	No load,	No signal	-55°C		90	135		19	35	mV
				125°C		80	120		15	30	

[†]All characteristics are specified under open-loop operation. Full range is -55°C to 125°C.

NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

operating characteristics V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP MAX	UNIT
	Dies simo	1	$V_1 = 10 \text{ mV}, \qquad C_L = 0$	25 120	ns
tr	Rise time	2	V _I = 1 mV	10 30	ns
	0	1	V _I = 10 mV, C _L = 100 pF	10% 50%	
	Overshoot factor	2	V _I = 1 mV	20% 40%	
00	Classication	1	$V_{I} = 6 V$, $C_{L} = 100 pF$	1.7	
SR	Slew rate	2	V _I = 100 mV	11	V/µs

PARAMETER MEASUREMENT INFORMATION

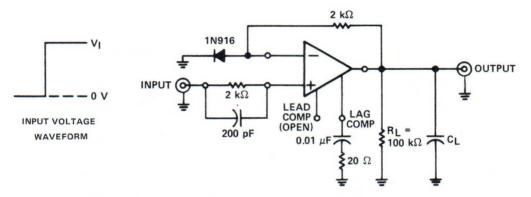


FIGURE 1-UNITY-GAIN AMPLIFIER

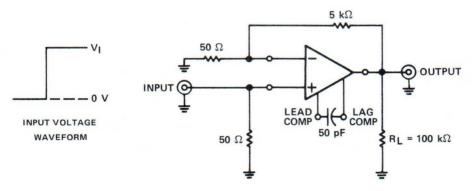
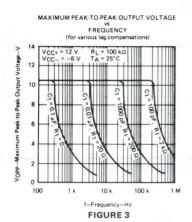
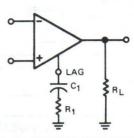
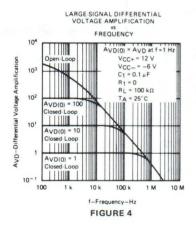
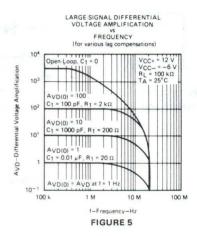
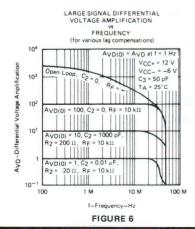
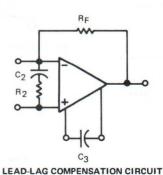




FIGURE 2-GAIN-OF-100 AMPLIFIER


TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER


TYPICAL CHARACTERISTICS





LAG COMPENSATION CIRCUIT FOR FIGURES 3, 4, AND 5

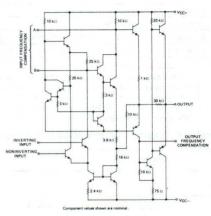
FOR FIGURE 6

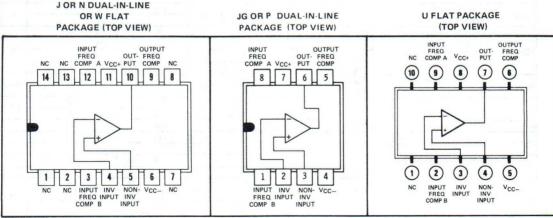
TYPES uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 11447, FEBRUARY 1971-REVISED OCTOBER 1979

- Common-Mode Input Range . . . ± 10 V Typical
- Designed to be Interchangeable with Fairchild μA709A, μA709, and μA709C
- Maximum Peak-to-Peak Output Voltage Swing . . . 28 V Typical with 15 V Supplies

description


These circuits are general-purpose operational amplifiers, each having high-impedance differential inputs and a low-impedance output. Component with silicon monolithic matching, inherent circuit-fabrication techniques, produces an amplifier low-offset characteristics. low-drift and Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. These amplifiers are particularly useful for applications requiring transfer or generation of linear or nonlinear functions.


The uA709A circuit features improved offset characteristics, reduced input-current requirements,

and lower power dissipation when compared to the uA709 circuit. In addition, maximum values of the average temperature coefficients of offset voltage and current are guaranteed.

The uA709AM and uA709M are characterized for operation over the full military temperature range of -55° C to 125° C. The uA709C is characterized for operation from 0° C to 70° C.

schematic

NC-No internal connection

79

Copyright © 1979 by Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA709AM uA709M	uA709C	UNIT
Supply voltage V _{CC+} (see Note 1)		18	18	V
Supply voltage V _{CC} (see Note 1)	*************************************	-18	-18	V
Differential input voltage (see Note 2)		±5	±5	V
Input voltage (either input, see Notes 1 and 3)		±10	±10	V
Duration of output short-circuit (see Note 4)		5	5	S
Continuous total dissipation at (or below) 70°C free-air temperatur	e (see Note 5)	300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 10 volts, whichever is less.

4. The output may be shorted to ground or either power supply.

5. For operation of uA709AM and uA709M above 70°C free-air temperature, refer to the Dissipation Derating Curves, Section 2. In the J and JG packages, uA709AM and uA709M chips are alloy-mounted; uA709C chips are glass-mounted.

electrical characteristics at specified free-air temperature, VCC± = ±9 V to ±15 V (unless otherwise noted)

	DADAMETED	7507	CONDITION	ot	u	A709A	И		UNIT		
	PARAMETER	IEST	CONDITION	5'	MIN	TYP#	MAX	MIN	TYP‡	MAX	UNIT
		D < 1010		25°C		0.6	2		1	5	1
VIO	Input offset voltage	R _S ≤ 10 kΩ		Full range			3			6	mV
		$R_S = 50 \Omega$		Full range		1.8	10	100	3	24	
αVIO	Average temperature coefficient			-55°C to 25°C		4.8	25		6	2000	μV/°C
1.0	of input offset voltage	$R_S = 10 \text{ k}\Omega$		25°C to 125°C		2	15		6	born	
	R			25°C		10	50	100	50	200	
110	Input offset current			-55°C		40	250	2 1	100	500	nA
				125°C		3.5	50		20	200	
	Average temperature coefficient			-55°C to 25°C		0.45	2.8	- 6 1			0.
αΠΟ	of input offset current			25°C to 125°C	1	0.08	0.5		1 18		nA/°C
				25°C		0.1	0.2		0.2	0.5	
IB	Input bias current	i d		-55°C		0.3	0.6		0.5	1.5	μΑ
	Common-mode			25°C	±8	±10		±8	±10		
VICR	input voltage range	$V_{CC\pm} = \pm 15 \text{ V}$		Full range	±8			±8			V
				25°C	24	28		24	28		
	Maximum peak-to-peak	$V_{CC\pm} = \pm 15 \text{ V},$	$R_L \ge 10 \text{ k}\Omega$	Full range	24			24			
VOPP	output voltage swing	V _{CC±} = ±15 V,	$R_L = 2 k\Omega$	25°C	20	26		20	26		V
		V _{CC±} = ±15 V,		Full range	20			20	-		1
	Large-signal differential	V _{CC±} = ±15 V,		25°C		45			45	1.4	
AVD	voltage amplification	VO = ±10 V	_	Full range	25		70	25		70	V/m\
				25°C	350	750	-	150	400		
ri .	Input resistance			-55°C	85	185		40	100		kΩ
ro	Output resistance	V _O = 0,	See Note 6	25°C		150			150	85	Ω
		re or ren as		25°C	80	110		70	90		100
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ		Full range	80			70			dB
le = =	Power supply sensitivity	5 2 40 10		25°C		40	100		25	150	μν/ν
ksvs	(AVIO/AVCC)	R _S ≤ 10 kΩ		Full range	-		100			150] μν/ν
	102 201 2	145.14	NI I	25°C		2.5	3.6		2.6	5.5	
ICC	Supply current	V _{CC±} = ±15 V,	No load,	-55°C		2.7	4.5				mA
		No signal	411	125°C		2.1	3		^		
	and the second second	V +15 V	No local	25°C		75	108		78	165	
PD	Total power dissipation	$V_{CC\pm} = \pm 15 \text{ V},$	NO IOSO,	-55°C		81	135				mW
		No signal		125°C		63	90				

 $^{^\}dagger$ All characteristics are specified under open-loop operation. Full range for uA709AM and uA709M is -55° C to 125° C.

Note 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

 $[\]ddagger$ AII typical values are at $V_{CC\pm} = \pm 15 \text{ V}$.

electrical characteristics at specified free-air temperature (unless otherwise noted $V_{CC\pm} = \pm 15 \text{ V}$)

PARAMETER		TEST CONDITIONS†						
	PARAMETER	TES		MIN	TYP	MAX	UNIT	
\/ -	lancet offert valence	$V_{CC\pm} = \pm 9 \text{ V to } \pm 1$	25°C		2	7.5		
VIO	Input offset voltage	R _S ≤ 10 kΩ		Full range			10	mV
1	I anut offeet europe			25°C		100	500	- 0
110	Input offset current	$V_{CC\pm} = \pm 9 \text{ V to } \pm 1$	15 V	Full range			750	nΑ
Low	Inquit him aureant	V - 10 V/+- 11				0.3	1.5	^
IB	Input bias current	V _{CC±} = ±9 V to ±15 V		Full range			2	μΑ
VI	Input voltage range			25°C	±8	±10		V
	Maximum peak-to-peak output voltage swing	R _L ≥ 10 kΩ		25°C	24	28		
				Full range	24			.,
VOPP		$R_L = 2 k\Omega$		25°C	20	26	1	V
		R _L ≥ 2 kΩ		Full range	20			
	Large-signal differential			25°C	15	45		
AVD	voltage amplification	$R_{L} \leq 2 k\Omega$,	$V_0 = \pm 10 \text{ V}$	Full range	12			V/mV
	Input resistance			25°C	50	250		
rį				Full range	35		7	kΩ
ro	Output resistance	V _O = 0,	See Note 6	25°C		150		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ		25°C	65	90		dB
ΔV _{IO} /ΔV	CC Supply voltage sensitivity	R _S ≤ 10 kΩ		25°C		25	200	μV/V
PD	Total power dissipation	No load,	No signal	25°C		80	200	mW

 $^{^\}dagger$ All characteristics are specified under open-loop operation. Full range for uA709C is 0° C to 70° C.

NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics $V_{CC\pm} = \pm 9 \text{ V to } \pm 15 \text{ V}, \text{ TA} = 25^{\circ}\text{C}$

6

PARAMETER		TEST	TEST CONDITIONS					UNIT
					MIN	TYP	MAX	1
tr	r Rise time	V = 20 = V B = 2 kg	Coo Figure 1	C _L = 0		0.3	1	μs
	Overshoot factor	$V_1 = 20 \text{ mV}, R_L = 2 \text{ ks}$	z, See Figure i	C _L = 100 pF		6%	30%	

PARAMETER MEASUREMENT INFORMATION

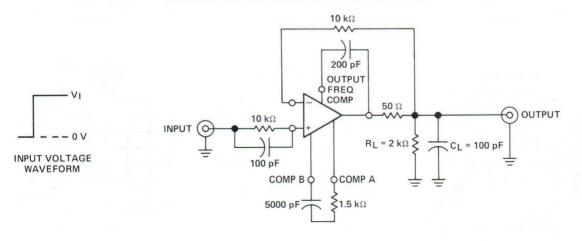


FIGURE 1-RISE TIME AND SLEW RATE

TYPICAL CHARACTERISTICS (unless designated maximum or minimum)

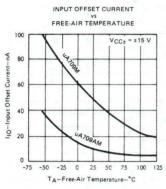


FIGURE 2

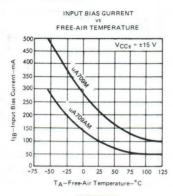


FIGURE 3

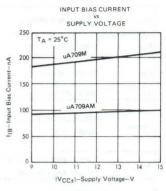


FIGURE 4

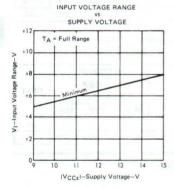


FIGURE 5

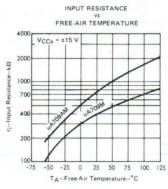


FIGURE 6

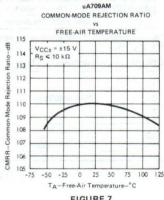
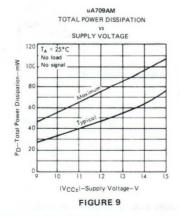
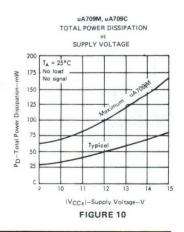
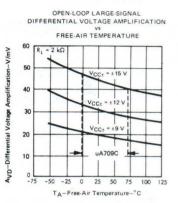
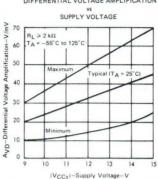




FIGURE 7





TYPICAL CHARACTERISTICS

(unless designated maximum or minimum)

UA709AM, UA709M
OPEN-LOOP LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
VS
SUPPLY VOLTAGE

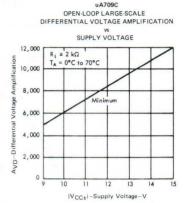


FIGURE 11

FIGURE 12

FIGURE 13

C2

R₂

OUTPUT

COMP

COMP B O

C1 7

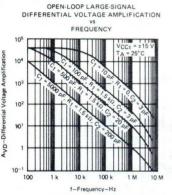
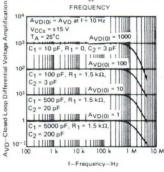
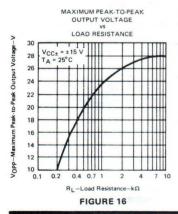
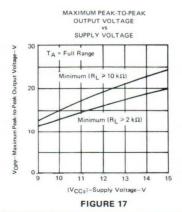



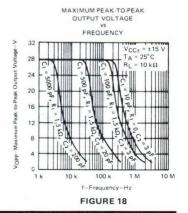
FIGURE 14

CLOSED-LOOP LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY


When the amplifier is operated with capacitive loading, R $_2$ = 50 $\Omega_{\rm c}$

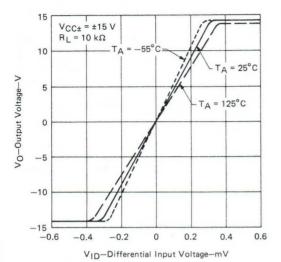
\$R1


O COMP A


FIGURE 15

FREQUENCY COMPENSATION CIRCUIT FOR FIGURES 14, 15, AND 18

6



Texas Instruments

TYPICAL CHARACTERISTICS

uA709AM, uA709M

VOLTAGE TRANSFER CHARACTERISTICS

FIGURE 19

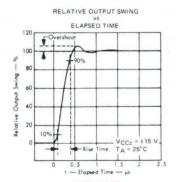
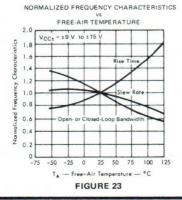
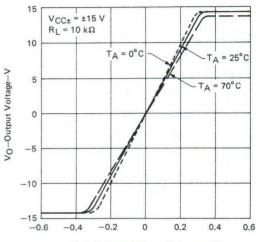




FIGURE 21

uA709C

VOLTAGE TRANSFER CHARACTERISTICS

V_{ID}-Differential Input Voltage-mV

FIGURE 20

CLOSED-LOOP DIFFERENTIAL VOLTAGE AMPLIFICATION

VCC± = 115 V

40 TA = 25°C

10 AVD—Closer-Loop Amplification

FIGURE 22

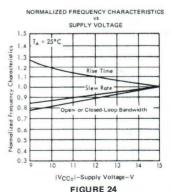
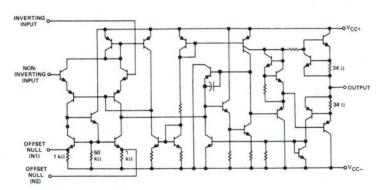


FIGURE 2

TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

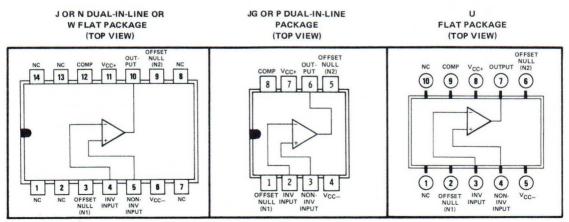
BULLETIN NO. DL-S 11363, NOVEMBER 1970-REVISED OCTOBER 1979

- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up


description

The uA741 is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.


The uA741M is characterized for operation over the full military temperature range of -55° C to 125° C; the uA741C is characterized for operation from 0° C to 70° C.

schematic

Resistor values shown are nominal

terminal assignments

NC-No internal connection

179

Copyright © 1979 by Texas Instruments Incorporated

TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

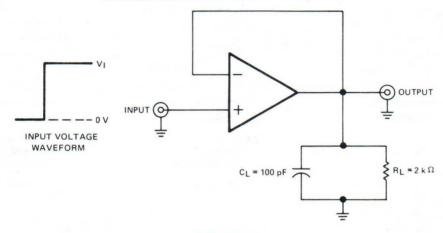
		uA741M	uA741C	UNIT	
Supply voltage V _{CC+} (see Note 1)	A - I - CY	22	18	V	
Supply voltage V _{CC} — (see Note 1)		-22	-18	٧	
Differential input voltage (see Note 2)		±30	±30	٧	
Input voltage (either input, see Notes 1 and 3)	roltage (either input, see Notes 1 and 3) ±15 ±				
Voltage between either offset null terminal (N1/N2) and V _{CC} -	veen either offset null terminal (N1/N2) and V _{CC} -				
Duration of output short-circuit (see Note 4)		unlimited	unlimited		
Continuous total power dissipation at (or below) 25°C free-air tem	perature (see Note 5)	500	500	mW	
Operating free-air temperature range		-55 to 125	0 to 70	°C	
Storage temperature range		-65 to 150	-65 to 150	°C	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	°C	
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	°C	

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- The output may be shorted to ground or either power supply. For the uA741M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. In the J and JG packages, uA741M chips are alloy-mounted; uA741C chips are glass-mounted.

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

PARAMETER		TEST CONDITIONS†		uA741M			uA741C			UNIT
		I EST CON	IDITIONS'	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	Input offset voltage	R _S ≤ 10 kΩ	25°C		1	5		1	6	mV
VIO		HS = 10 K32	Full range			6			7.5	mv
ΔV _{IO(adj)}	Offset voltage adjust range		25°C		±15			±15		mV
	1		25°C		20	200		20	200	nA
110	Input offset current		Full range			500			300] nA
			25°C		80	500		80	500	
IB	Input bias current		Full range			1500			800	nA
\/	Common-mode		25°C	±12	±13		±12	± 13		V
VICR	input voltage range		Full range	±12			±12			7 '
V _{OPP}	Maximum peak-to-peak output voltage swing	R _L = 10 kΩ	25°C	24	28		24	28		V
		R _L ≥ 10 kΩ	Full range	24			24			
		$R_L = 2 k\Omega$	25°C	20	26		20	26		
		R _L ≥ 2 kΩ	Full range	20			20			
	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	50	200		20	200		V/mV
AVD	voltage amplification	$V_0 = \pm 10 \text{ V}$	Full range	25			15			
rį	Input resistance		25° C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25°C		75		Africa	75		Ω
Ci	Input capacitance		25°C		1.4		L N	1.4		pF
01100		D < 4010	25°C	70	90		70	90		10
CMRR	Common-mode rejection ratio	$R_S \leq 10 \text{ k}\Omega$	Full range	70			70			dB
leas sa	Supply voltage sensitivity	D- < 10 to	25°C		30	150		30	150	μν/ν
ksvs	$(\Delta V_{1O}/\Delta V_{CC})$	$R_S \le 10 \text{ k}\Omega$	Full range			150			150	
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA
	Supply suggest	No load,	25°C		1.7	2.8		1.7	2.8	mA
Icc	Supply current	No signal	Full range			3.3			3.3	
n_	Total name discipation	No load,	25°C		50	85		50	85	mW
PD	Total power dissipation	tal power dissipation No signal Full range			100			100	11100	


[†]All characteristics are specified under open-loop operation. Full range for uA741M is -55°C to 125°C and for uA741C is 0°C to 70°C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

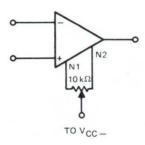
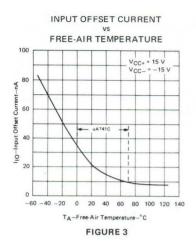
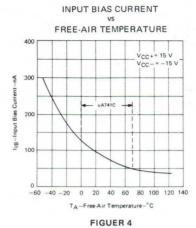
operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

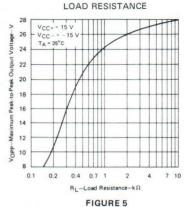
PARAMETER		TEST CONDITIONS	uA741M			uA741C			
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tr	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.3			0.3		μs
	Overshoot factor	C _L = 100 pF, See Figure 1		5%			5%		
SR	Slew rate at unity gain	$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega,$ $C_I = 100 \text{ pF}, \text{See Figure 1}$		0.5			0.5		V/μs

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE

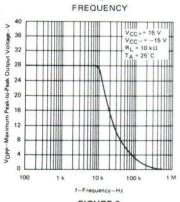
TYPICAL APPLICATION DATA

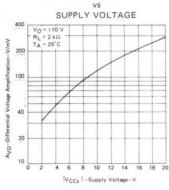





FIGURE 2-INPUT OFFSET VOLTAGE NULL CIRCUIT

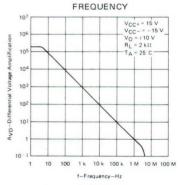
TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS

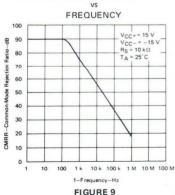




MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION



OPEN-LOOP LARGE-SIGNAL
DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs

FIGURE 6

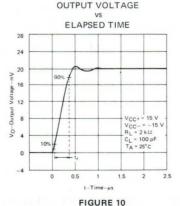
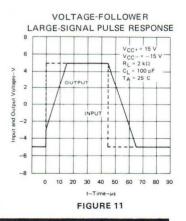
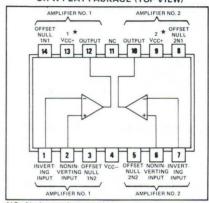



FIGURE 8

67

TEXAS INSTRUMENTS


TYPES uA747M, uA747C **DUAL GENERAL-PURPOSE** OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 11446, FEBRUARY 1971-REVISED OCTOBER 1979

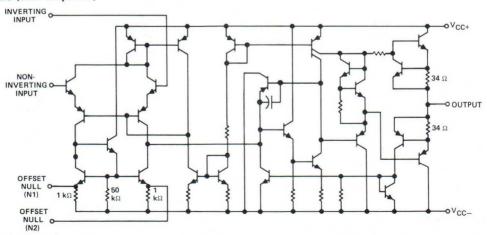
- No Frequency Compensation Required
- Low Power Consumption
- **Short-Circuit Protection**
- Offset-Voltage Null Capability

- Wide Common-Mode and Differential Voltage Ranges
- No Latch-up
- Designed to be Interchangeable with Fairchild µA747M and µA747C

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

NC-No internal connection

* On parts date-coded 7701 or higher, the two positive supply terminals (1 V_{CC+} and 2 V_{CC+}) are connected together internally. For parts without this internal connection, order uA747-1M or uA747-1C.


description

The uA747 is a dual general-purpose operational amplifier featuring offset-voltage null capability. Each half is electrically similar to uA741.

The high common-mode input voltage range and the absence of latch-up make this amplifier ideal for voltage-follower applications. The device is shortcircuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The uA747M is characterized for operation over the full military temperature range of -55°C to 125°C; the uA747C is characterized for operation from 0°C to 70°C

schematic (each amplifier)

Resistor values shown are nominal

Copyright © 1979 by Texas Instruments Incorporated

TYPES uA747M, uA747C DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

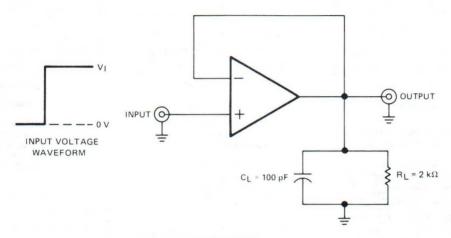
			uA747M	uA747C	UNIT
Supply voltage V _{CC+} (see Note 1)	There	part of the	22	18	V
Supply voltage V _{CC} — (see Note 1)			-22	-18	V
Differential input voltage (see Note 2)			±30	±30	٧
Input voltage any input (see Notes 1 and 3)		, #12X	±15	±15	V
Voltage between any offset null terminal (N1/N2) as	±0.5	±0.5	٧		
Duration of output short-circuit (see Note 4)	unlimited	unlimited			
Continuous total dissipation at (or below) 25°C	Each amplifier		500	500	mW
free-air temperature (see Note 5)	Total package	J,N, or W package	800	800	11100
Operating free-air temperature range			-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C		
Lead temperature 1/16 inch (1,6 mm) from case for	60 seconds	J or W package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for	10 seconds	N package		260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less,
- The output may be shorted to ground or either power supply. For the uA747M only, the unlimited duration of the short-circuit
 applies at (or below) 125°C case temperature or 75°C free-air temperature.
- For operation above 25°C free-air temperature and for total package ratings, refer to Dissipation Derating Table. In the J package, uA747M chips are alloy-mounted; uA747C chips are glass-mounted.

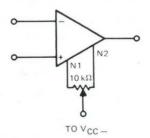
electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

PARAMETER		TEST CONDITIONS†			uA747M			UNIT		
				MIN	TYP	MAX	X MIN	TYP	MAX	UNIT
		D < 1010	25°C		1	5		1	6	
VIO	Input offset voltage	$R_S \leq 10 \mathrm{k}\Omega$	Full range			6			7.5	mV
ΔV _{IO} (adj)	Offset voltage adjust range		25°C		± 15			±15		mV
			25° C		20	200		20	200	
110	Input offset current		Full range			500			300	nA
			25°C		80	500		80	500	
IB	input voltage range Maximum peak-to-peak output voltage swing		Full range			1500		- 111	800	nA
1/	Common-mode		25° C	±12	± 13		±12	±13	117 J 147	V
VICR	input voltage range		Full range	±12			±12	- 253	-	V
V _{OPP}		R _L = 10 kΩ	25° C	24	28		24	28	5.0547	
	Maximum peak-to-peak output voltage swing	$R_L \ge 10 \text{ k}\Omega$	Full range	24			24] ,,
		$R_L = 2 k\Omega$	25°C	20	26		20	26	1 217	V
		$R_L \ge 2 k\Omega$	Full range	20			20	0.00	la L	
۸	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$,	25°C	50	200		25	200		V/mV
AVD		V _O = ±10 V F	Full range	25			15			
ri	Input resistance		25°C	0.3	2	N. S.	0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25° C		75			75		Ω
Ci	Input capacitance		25°C		1.4			1.4	2/2.	pF
			25°C	70	90		70	90		-
CMRR	Common-mode rejection ratio	$R_S \leq 10 \text{ k}\Omega$	Full range	70			70			dB
ksvs	Supply voltage sensitivity	B- < 101:0	25° C		30	150		30	150	
~5V5	(AVIO/AVCC)	$R_S \leq 10 k\Omega$	Full range			150			150	μV/V
los	Short-circuit output current		25°C		± 25	±40		± 25	±40	mA
	Supply current	No load,	25°C	- V	1.7	2.8		1.7	2.8	
ICC	(each amplifier)	No signal	Full range		4	3.3			3.3	mA
D_	Power dissipation	No load,	25°C		50	85		50	85	mW
PD	(each amplifier)	No signal	Full range			100			100	TTIVV
V ₀₁ /V ₀₂	Channel separation		25°C		120		-	120	1	dB


[†] All characteristics are specified under open-loop operation. Full range for uA747M is -55°C to 125°C and for uA747C is 0°C to 70°C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TYPES uA747M, uA747C **DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS**

operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C


PARAMETER		TEST CONDITIONS	uA747M			uA747C			LIBUT
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	$V_I = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$,	0.3			0.3	FI	μs
K.CIT	Overshoot factor	C _L = 100 pF, See Figure 1	-	5%			5%		
SR	Slew rate at unity gain	V _I = 10 V, R _L = 2 kΩ, C _I = 100 pF, See Figure 1		0.5	1		0.5		V/µs

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE

TYPICAL APPLICATION DATA

FIGURE 2-INPUT OFFSET VOLTAGE NULL CIRCUIT

DISSIPATION DERATING TABLE

DAGKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	800 mW	11.0 mW/°C	77° C
J (Glass-Mounted Chip)	800 mW	8.2 mW/° C	52°C
N	800 mW	9.2 mW/°C	63°C
W	800 mW	8.0 mW/°C	50°C

Also see Dissipation Derating Curves, Section 2.

TYPES uA747M, uA747C DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS

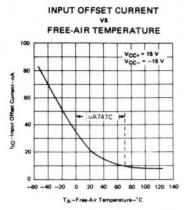


FIGURE 3

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

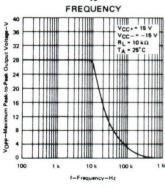


FIGURE 6
COMMON-MODE REJECTION RATIO

FREQUENCY 100 90 90 VCC+=15 V VCC+=15 V VCC+=15 V Rg = 10 kΩ TA = 28°C 100 110 100 1 k 10 k 100 k 1 M 10 M 100 M 1-Frequency-Hz

FIGURE 9

INPUT BIAS CURRENT

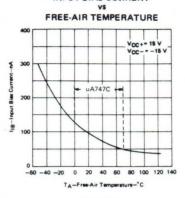


FIGURE 4

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

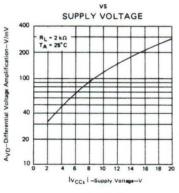
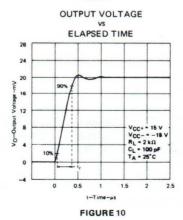
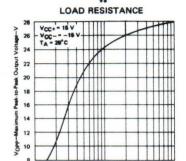




FIGURE 7

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

R_L-Load Resistance-kΩ FIGURE 5

0.7 1

0.2

0.1

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

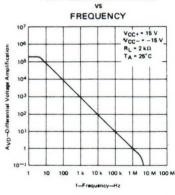
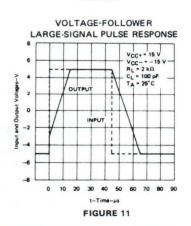



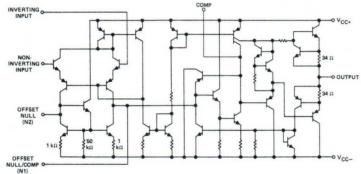
FIGURE 8

TEXAS INSTRUMENTS

LINEAR INTEGRATED CIRCUITS

TYPES uA748M, uA748C **GENERAL-PURPOSE**

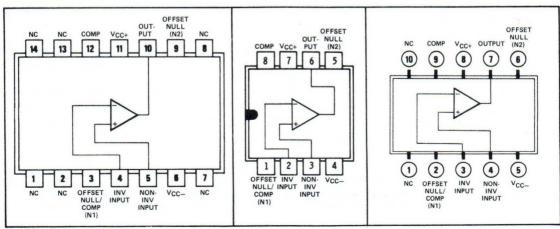
BULLETIN NO. DL-S 11418, DECEMBER 1970-REVISED OCTOBER 1979


- Frequency and Transient Response Characteristics Adjustable
- **Short-Circuit Protection**
- Offset-Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-up
- Same Pin Assignments as uA709

description

The uA748 is a general-purpose operational amplifier. It offers the same advantages and desirable features as the uA741 with the exception of internal compensation. The external compensation of the uA748 allows the changing of the frequency response (when the closed-loop gain is greater than unity) for applications requiring wider bandwidth or higher slew rate. This circuit features high gain, large differential and common-mode input voltage range, output shortcircuit protection, and may be compensated under unity-gain conditions with a single 30-pF capacitor. A potentiometer may be connected between the offset null inputs, as shown in Figure 12, to null out the offset voltage.

The uA748M is characterized for operation over the full military temperature range of -55°C to 125°C; the uA748C is characterized for operation from 0°C to 70°C.


schematic

Resistor values shown are nominal.

J OR N DUAL-IN-LINE PACKAGE OR W FLAT PACKAGE (TOP VIEW) JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

79

TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

\$300 C C C C C C C C C C C C C C C C C C	(80-1)	uA748M	uA748C	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	V
Supply voltage V _{CC} — (see Note 1)		-22	-18	٧
Differential input voltage (see Note 2)	di co	±30	±30	V
Input voltage (either input, see Notes 1 and 3)	and A o	±15	±15	V
Voltage between either offset null terminal (N1/N2) and V _{CC} -		-0.5 to 2	-0.5 to 2	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	THE WAY
Continuous total power dissipation at (or below) 25°C free-air tem	perature (see Note 5)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range	a s F	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1, 6 mm) from case for 60 seconds	J, JG, U, or W package	300	300	°C
Lead temperature 1/16 inch (1, 6 mm) from case for 10 seconds	N or P package		260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the uA748M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air termperature.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG package, uA748M chips are alloy-mounted; uA748C chips are glass-mounted.

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V, C_C = 30 pF

	242445752	TEOT 001	IDITIONS!		uA748M			uA748C		UNIT
	PARAMETER	TEST COM	IDITIONS†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		B = 4015	25°C		1	5		1	6	
VIO	Input offset voltage	$R_S \leq 10 \text{ k}\Omega$	Full range		91	6			7.5	mV
		e 1	25° C		20	200		20	200	
110	Input offset current		Full range			500			300	nA
			25°C		80	500	10	80	500	
IB	Input bias current		Full range			1500			800	nA
	Common-mode		25°C	±12	±13		±12	±13		
VICR	input voltage range		Full range	±12			±12			V
		$R_L = 10 k\Omega$	25°C	24	28		24	28		
	Maximum peak-to-peak	R _L ≥ 10 kΩ	Full range	24			24			1
VOPP	output voltage swing	$R_L = 2 k\Omega$	25°C	20	26		20	26		V
		R _L ≥ 2 kΩ	Full range	20			20			1
	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	50	200		20	200	1 W 10	
AVD	voltage amplification	V _O = ±10 V	Full range	25			15			V/mV
rį	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25°C		75			75	r.,	Ω
Ci	Input capacitance		25°C		1.4			1.4		pF
			25°C	70	90		70	90		
CMRR	Common-mode rejection ratio	$R_S \leq 10 \text{ k}\Omega$	Full range	70			70			dB
Ī	Supply voltage sensitivity	D- < 10 kg	25°C		30	150		30	150	μV/V
ksvs	(AVIO/AVCC)	$R_S \leq 10 \text{ k}\Omega$	Full range			150			150	μν/ν
los	Short-circuit output current		25°C		±25	±40	4	±25	±40	mA
lee.	Supply suppl	No load,	25° C		1.7	2.8		1.7	2.8	mA
ICC	Supply current	No signal	Full range			3.3			3.3	7 "
D-	Total name discination	No load,	25°C		50	85		50	85	mW
PD	Total power dissipation	No signal	Full range			100			100	Invv

[†]All characteristics are specified under open-loop operation. Full range for uA748M is -55°C to 125°C and for uA748C is 0°C to 70°C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TYPES uA748M, uA748C **GENERAL-PURPOSE OPERATIONAL AMPLIFIERS**

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		uA748M		uA748C			UNIT
1 - 514	PARAMETER	TEST CONDITIONS	MIN	MIN TYP MA		MIN TYP		MAX	UNIT
t _r	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.3			0.3		μs
	Overshoot factor	C _L = 100 pF, C _C = 30 pF, See Figure 1		5%			5%		
SR	Slew rate at unity gain	$V_{I} = 10 \text{ V}, \qquad R_{L} = 2 \text{ k}\Omega,$ $C_{L} = 100 \text{ pF}, C_{C} = 30 \text{ pF},$ See Figure 1		0.5			0.5		V/µs

PARAMETER MEASUREMENT INFORMATION

INPUT VOLTAGE WAVEFORM

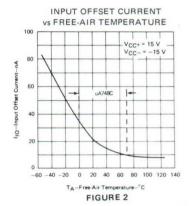
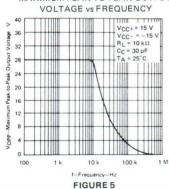
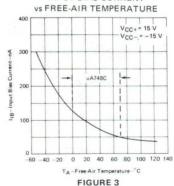
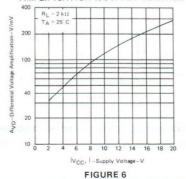
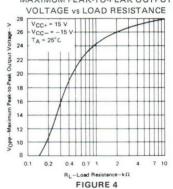
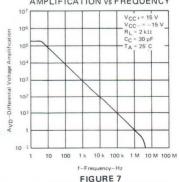




FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE

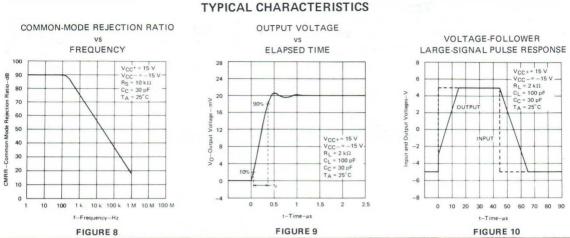

TYPICAL CHARACTERISTICS






OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE



OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY

TEXAS INSTRUMENTS INCORPORATED

TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

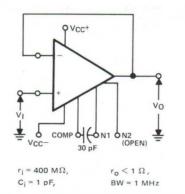


FIGURE 11-UNITY-GAIN VOLTAGE FOLLOWER

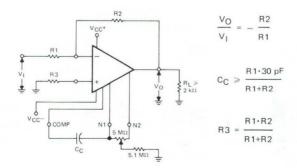


FIGURE 12-INVERTING CIRCUIT WITH ADJUSTABLE GAIN, COMPENSATION, AND OFFSET ADJUSTMENT

10

LINEAR INTEGRATED CIRCUITS

TYPE uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

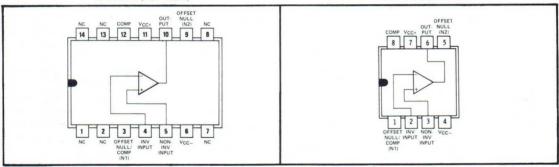
BULLETIN NO. DL-S 12307, SEPTEMBER 1973-REVISED OCTOBER 1979

- Low Input Currents
- Low Input Offset Parameters
- Frequency and Transient Response Characteristics Adjustable
- Short-Circuit Protection

- Offset-Voltage Null Capability
- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges
- Same Pin Assignments as uA748, uA709, LM101A/LM301 except U Package

description

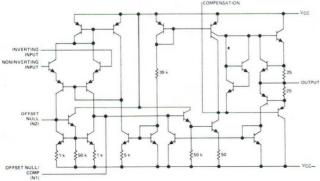
The uA777 is a precision operational amplifier. Low offset and bias currents improve system accuracy when used in applications such as long-term integrators, sample-and-hold circuits, and high-source-impedance summing amplifiers. This device is an excellent choice where a performance between that of super-beta-and general purpose operational amplifiers is required.


External compensation of the uA777 may be implemented in either normal or feed-forward configuration to satisfy bandwidth and slew-rate requirements. This circuit features high gain, wide differential and common-mode input voltage range, output short-circuit protection, and null capability.

The uA777C is characterized for operation from 0°C to 70°C.

terminal assignments

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)


J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

schematic

79

Resistor values shown are nominal and in ohms.

TYPE uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

The state of the s		uA777C	UNIT
Supply voltage V _{CC+} (see Note 1)		22	V
Supply voltage V _{CC} — (see Note 1)		-22	V
Differential input voltage (see Note 2)	The state of the s	±30	V
Input voltage (either input, see Notes 1 and 3)		±15	V
Voltage between either offset null terminal (N1/N2) and V _{CC}		-0.5 to 2	V
Duration of output short-circuit (see Note 4)		unlimited	*
Continuous total dissipation at (or below) 25°C free-air temperature (se	e Note 5)	500	mW
Operating free-air temperature range		0 to 70	°C
Storage temperature range		-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J or JG package	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package	260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or either power supply.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG package, uA777C chips are glass-mounted.

electrical characteristics at specified free-air temperature, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $C_C = 30 \text{ pF}$ (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS†	MIN	TYP	MAX	UNIT
	5-41 Sev. 5-00*		25°C		0.7	5	.,,
VIO	Input offset voltage	$R_S \le 50 \text{ k}\Omega$	0°C to 70°C			5	mV
αVIO	Average temperature coefficient of input offset voltage	R _S ≤ 50 kΩ	0°C to 70°C	a lu	4	30	μV/°C
			25°C		0.7	20	
110	Input offset current		0°C to 70°C			40	nA
	Average temperature coefficient		0°C to 25°C		20	600	pA/°
αΙΙΟ	of input offset current		25°C to 70°C		10	300	pA/
	Lance I Company		25°C		25	100	^
IB	Input bias current		0°C to 70°C			200	nA
V _{ICR}	Common-mode input voltage range		0°C to 70°C	±12	±13		V
	Maximum peak-to-peak	$R_L = 10 k\Omega$	0°C to 70°C	24	28		
VOPP	output voltage swing	$R_L = 2 k\Omega$	0°C to 70°C	20	26		V
	Large-signal differential	V _O = ±10 V,	25° C	25	250		
AVD	voltage amplification	R _L ≥2kΩ	0°C to 70°C	15		314	V/m\
ri	Input resistance		25°C	1	2		МΩ
ro	Output resistance		25° C		100		Ω
Ci	Input capacitance		25°C		3		pF
CMRR	Common-mode rejection ratio	$R_S = 50 k\Omega$	0°C to 70°C	70	95		dB
^k SVR	Supply voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	R _S ≤ 50 kΩ	0°C to 70°C		15	150	μV/V
los	Short-circuit output current		25°C		±25		mA
		No lead	25°C		1.9	3.3	
Icc	Supply current	No load,	0°C			3.3	mA
		No signal	70° C			3.3	1

[†]All characteristics are specified under open-loop operation.

TYPE uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ} \text{C}$

	PARAMETER		uA777C	UNIT		
	FARAMETER		TEST CONDITIO	MIN TYP MAX	JONIT	
tr	Rise time	$V_1 = 20 \text{ mV},$ $R_1 = 2 \text{ k}\Omega,$	A _V = 1,	C _C = 30 pF	0.3	μs
۲r	Trise time	C _L = 100 pF	A _V = 10,	$C_C = 3.5 pF$	0.2	μ5
	Overshoot factor	V ₁ = 20 mV,	A _V = 1,	C _C = 30 pF	5%	
	Overshoot factor	$R_L = 2 k\Omega$, $C_L = 100 pF$	A _V = 10,	C _C = 3.5 pF	5%	
SR	Slew rate	$R_L = 2 k\Omega$,	A _V = 1,	C _C = 30 pF	0.5	\//
Sh	Siew rate	C _L = 100 pF	A _V = 10,	C _C = 3.5 pF	5.5	V/μs

PARAMETER MEASUREMENT INFORMATION

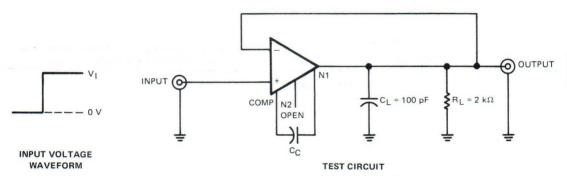
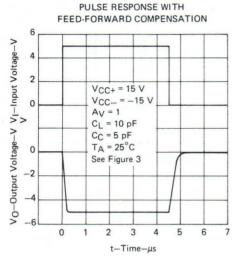


FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE


DISSIPATION DERATING TABLE

DAOKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	500 mW	11.0 mW/°C	105°C
J (Glass-Mounted Chip)	500 mW	8.2 mW/°C	89°C
JG (Alloy-Mounted Chip)	500 mW	8.4 mW/°C	90° C
JG (Glass-Mounted Chip)	500 mW	6.6 mW/°C	74°C
N	500 mW	9.2 mW/°C	96° C
P	500 mW	8.0 mW/°C	87°C

Also see Dissipation Derating Curves, Section 2.

HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

TYPICAL CHARACTERISTICS

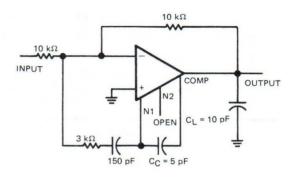


FIGURE 2

FIGURE 3-INVERTING CIRCUIT WITH UNITY GAIN AND FEED-FORWARD COMPENSATION

TYPICAL APPLICATION DATA

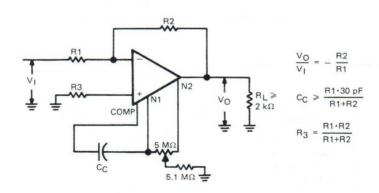


FIGURE 4—INVERTING CIRCUIT WITH ADJUSTABLE GAIN, SINGLE-POLE COMPENSATION, AND OFFSET ADJUSTMENT

Voltage Comparators

VOLTAGE COMPARATORS

Military Temperature Range (-55°C to 125°C)

9	^I IB μΑ MAX	V _{IO} mV MAX	l _{IO} μΑ MAX	AVD	I _{OL} mA MIN	RESPONSE TIME	POWER SUPPLIES	DEVICE	PACKAGE	PAGE
	45	3	7	40,000 TYP	16	40 MAX	12 V, −3 V to −12 V	LM106	J, JG, W	195
	0.15	4	0.02	200,000 TYP	8	140 TYP	15 V, -15 V	LM111	J, JG	201
	0.05	4	0.02	200,000 TYP	8	210 TYP	15 V, -15 V	TL111	J, JG, N, P	219
Single	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL331M	JG	223
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL510M	J, JG, U	233
	150	6	20	500 MIN	1.6	40 TYP	12 V, -6 V	TL710M	J, JG, U	239
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL810M	J, JG, U	245
	20	2	3	1250 MIN	2	40 TYP	12 V, -6 V	uA710M	J, JG, U	259
	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	LM193 [†]	JG, U	211
	45	3	7	40,000 TYP	16	40 MAX	12 V, −3 V to −12 V	TL506M	J, W	227
Dual	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL514M	J, W	237
	25	3	7	10,000 MIN	0.5	80 MAX	12 V, -6 V	TL820M	J	255
Dual-	30	6	5	8,000 MIN	0.5	80 MAX	12 V, -6 V	TL811M	J, U	249
Channel	150	6	20	500 MIN	0.5	80 MAX	12 V, -6 V	uA711M	J, U	263
Quad	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	LM139 [†]	J, W	209
Hex	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL336M [†]	J	225

Automotive Temperature Range (-40°C to 85°C)

Dual	0.25	7	0.05	100,000 TYP	6	1300 TYP	2 V to 36 V	LM2903 [†]	JG, P	215
Ound	0.25	7	0.05	100,000 TYP	6	1300 TYP	2 V to 36 V	LM2901 [†]	J, N	213
Quad	0.5	20	0.1	30,000 TYP	6	1300 TYP	2 V to 28 V	LM3302 [†]	J, N	217

[†]Capable of operating with a single 5-volt supply.

VOLTAGE COMPARATORS

Industrial Temperature Range (-25°C to 85°C)

	^I IΒ μΑ MAX	V _{IO} mV MAX	lIO μΑ MAX	A _{VD}	I _{OL} mA MIN	RESPONSE TIME	POWER SUPPLIES	DEVICE	PACKAGE	PAGE
	45	3	7	40,000 TYP	16	40 MAX	12 V, -3 V to -12 V	LM206	J, JG, N, P	195
0:1-	0.15	4	0.2	200,000 TYP	8	140 TYP	15 V, -15 V	LM211 [†]	J, JG, P	201
Single	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3111 [†]	JG, P	223
	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3311 [†]	JG, P	223
Dual	0.25	5	0.005	200,000 TYP	6	1300 TYP	2 V to 36 V	LM293 [†]	JG, P	211
Quad	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM239 [†]	J, N	209
Hex	0.1	5	0.025	200,000 TYP	6	1300 TYP	2 V to 36 V	TL3361 [†]	J, N	225

Commercial Temperature Range (0°C to 70°C)

			and the last of th							
	40	6.5	7.5	40,000 TYP	16	28 TYP	12 V, −3 V to −12 V	LM306	J, JG, N, P	195
	0.3	10	0.07	200,000 TYP	8	165 TYP	15 V, -15 V	LM311 [†]	J, JG, N, P	201
	0.01	13	0.004	200,000 TYP	8	210 TYP	15 V, -15 V	TL311 [†]	N, P	219
	0.01	10	0.004	200,000 TYP	8	210 TYP	15 V, -15 V	TL311A [†]	N, P	219
Single	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	TL331C [†]	JG, P	223
	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL510C	J, JG, N, P	233
	150	10	25	500 MIN		40 MAX	12 V, -6 V	TL710C	J, JG, N, P	239
	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL810C	J, JG, N, P	245
	25	5	5	1000 MIN	1.6	40 TYP	12 V, -6 V	uA710C	J, JG, N, P	259
	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM393 [†]	JG, P	211
Dual	40	6.5	7.5	40,000 TYP	16	28 TYP	12 V, −3 V to −12 V	TL506C	J, N	227
Duai	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL514C	J, N	237
	30	4.5	7.5	8000 MIN	0.5	80 MAX	12 V, -6 V	TL820C	J, N	255
Dual	50	10	10	5000 MIN	0.5	33 TYP	12 V, -6 V	TL810C	J, JG, N, P	245
Channel	150	10	25	500 MIN	0.5	40 TYP	12 V, -6 V	uA711C	J, N	263
Quad	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	LM339 [†]	J, N	209
Hex	0.25	5	0.05	200,000 TYP	6	1300 TYP	2 V to 36 V	TL336C [†]	N	225

[†]Capable of operating with a single 5-volt supply.

GLOSSARY DIFFERENTIAL COMPARATOR TERMS, DEFINITIONS, AND SYMBOLS

Input Offset Voltage (VIO)

The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to the specified level.

NOTE: The input offset voltage may also be defined for the case where two equal resistances (Rg) are inserted in series with the input leads.

Average Temperature Coefficient of Input Offset Voltage (aVIO)

The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{V1O} = \left| \frac{(V_{1O} \circledcirc T_{A(1)}) - (V_{1O} \circledcirc T_{A(2)})}{T_{A(1)} - T_{A(2)}} \right| \quad \text{where } T_{A(1)} \text{ and } T_{A(2)} \text{ are the specified temperature extremes.}$$

Input Offset Current (IIO)

The difference between the currents into the two input terminals with the output at the specified level.

Average Temperature Coefficient of Input Offset Current (allo)

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{\text{IIO}} = \left| \frac{(I_{\text{IO}} \circledast T_{\text{A(1)}}) - (I_{\text{IO}} \circledast T_{\text{A(2)}})}{T_{\text{A(1)}} - T_{\text{A(2)}}} \right| \quad \text{where } T_{\text{A(1)}} \text{ and } T_{\text{A(2)}} \text{ are the specified temperature extremes.}$$

Input Bias Current (IIB)

The average of the currents into the two input terminals with the output at the specified level.

High-Level Strobe Current (IIH(S))

The current flowing into or out of* the strobe at a high-level voltage.

Low-Level Strobe Current (IIL(S))

The current flowing out of* the strobe at a low-level voltage.

High-Level Strobe Voltage (VIH(S))

For a device having an active-low strobe, a voltage within the range that is guaranteed not to interfere with the operation of the comparator.

Low-Level Strobe Voltage (VIL(S))

For a device having an active-low strobe, a voltage within the range that is guaranteed to force the output high or low, as specified, independently of the differential inputs.

Input Voltage Range (VI)

The range of voltage that if exceeded at either input terminal will cause the comparator to cease functioning properly.

^{*}Current out of a terminal is given as a negative value.

GLOSSARY DIFFERENTIAL COMPARATOR TERMS, DEFINITIONS, AND SYMBOLS

Common-Mode Input Voltage (VIC)

The average of the two input voltages.

Common-Mode Input Voltage Range (VICR)

The range of common-mode input voltage that if exceeded will cause the comparator to cease functioning properly.

Differential Input Voltage (VID)

The voltage at the noninverting input with respect to the inverting input.

Differential Input Voltage Range (VID)

The range of voltage between the two input terminals that if exceeded will cause the comparator to cease functioning properly.

Differential Voltage Amplification (AVD)

The ratio of the change in output voltage to the change in differential input voltage producing it with the common-mode input voltage held constant.

High-Level Output Voltage (VOH)

The voltage at an output with input conditions applied that according to the product specification will establish a high level at the output.

Low-Level Output Voltage (VOL)

The voltage at an output with input conditions applied that according to the product specification will establish a low level at the output.

High-Level Output Current, (IOH)

The current into* an output with input conditions applied that according to the product specification will establish a high level at the output.

Low-Level Output Current, (IOL)

The current into* an output with input conditions applied that according to the product specification will establish a low level at the output.

Output Resistance (ro)

The resistance between an output terminal and ground.

Common-Mode Rejection Ratio (kCMR, CMRR)

The ratio of differential voltage amplification to common-mode voltage amplification.

NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

^{*}Current out of a terminal is given as a negative value.

GLOSSARY DIFFERENTIAL COMPARATOR TERMS, DEFINITIONS, AND SYMBOLS

Supply Current (ICC+, ICC-)

The current into* the VCC+ or VCC- terminal of an integrated circuit.

Total Power Dissipation (PD)

The total d-c power supplied to the device less any power delivered from the device to a load. NOTE: At no load: $P_D = V_{CC+} \cdot I_{CC+} + V_{CC-} \cdot I_{CC-}$.

Response Time

The interval between the application of an input step function and the instant when the output crosses the logic threshold voltage.

NOTE: The input step drives the comparator from some initial condition sufficient to saturate the output (or in the case of high-to-low-level response time, to turn the output off) to an input level just barely in excess of that required to bring the output back to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Strobe Release Time

The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from its active logic level to its inactive logic level.

^{*}Current out of a terminal is given as a negative value,

LINEAR INTEGRATED CIRCUITS

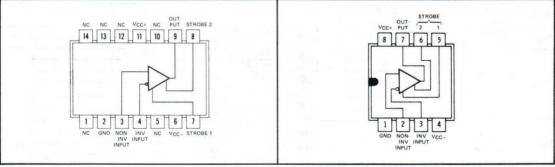
TYPES LM106, LM206, LM306 DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 11586, JANUARY 1972-REVISED OCTOBER 1979

- Fast Response Times
- Improved Gain and Accuracy
- Fan-Out to 10 Series 54/74 TTL Loads
- Strobe Capability
- Short-Circuit and Surge Protection
- Designed to be Interchangeable with National Semiconductor LM106, LM206, and LM306

description

The LM106, LM206, and LM306 are high-speed voltage comparators with differential inputs, a low-impedance high-sink-current (100 mA) output, and two strobe inputs. These devices detect low-level analog or digital signals and can drive digital logic or lamps and relays directly. Short-circuit protection and surge-current limiting is provided.


The circuit is similar to a TL810 with gated output. A low-level input at either strobe causes the output to remain high regardless of the differential input. When both strobe inputs are either open or at a high logic level, the output voltage is controlled by the differential input voltage. The circuit will operate with any negative supply voltage between -3 V and -12 V with little difference in performance.

The LM106 is characterized for operation over the full military temperature range of -55°C to 125°C, the LM206 is characterized for operation from -25°C to 85°C, and the LM306 from 0°C to 70°C.

terminal assignments

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

79

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)
Supply voltage V _{CC} — (see Note 1)
Differential input voltage (see Note 2)
Input voltage (either input, see Notes 1 and 3)
Strobe voltage range (see Note 1)
Output voltage (see Note 1)
Voltage from output to V _{CC} —
Duration of output short-circuit (see Note 4)
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 5) 600 mW
Operating free-air temperature range: LM106 Circuits
LM206 Circuits
LM306 Circuits
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J, JG, or W package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N or P package

NOTES: 1. All voltage values, except differential voltages and the voltage from the output to V_{CC}, are with respect to the network ground

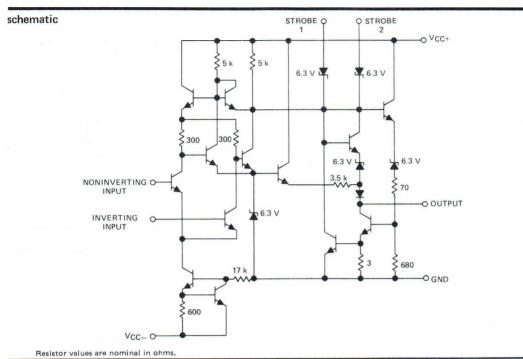
- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 7 volts, whichever is less.
- 4. The output may be shorted to ground or either power supply.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, LM106 chips are alloy-mounted; LM206 and LM306 chips are glass-mounted.

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -3 \text{ V}$ to -12 V (unless otherwise noted)

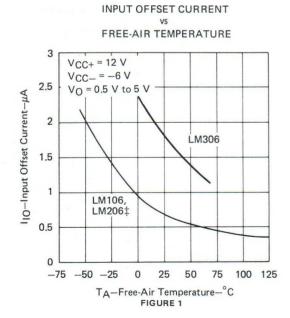
PARAMETER		TECT	CONDITIONS [†]		LM106, LM206 LM306				UNIT		
47-41-32-33-33-33-33		1231	CONDITIONS		MIN	TYP MA	X MIN			ONT	
VIO	Input offset voltage	$R_S \leq 200 \Omega$	See Note 6	25°C		0.5 §	2	1.6 §	5	mV	
V10	input offset voltage	ns ≈ 200 sz,	See Mote 6	Full range		118-3	3		6.5	1 mv	
αVIO	Average temperature coefficient of input offset voltage	$R_S = 50 \Omega$,	See Note 6	Full range		3 1	0	5	20	μV/° (
	Francis			25°C		0.7 §	3	1.88	5		
10	Input offset current		See Note 6	MIN		2	7	1	7.5	μA	
				MAX		0.4	3	0.5	5		
αμο	Average temperature coefficient of input		See Note 6			15 7	5	24	100		
	offset current	11 11 11		25°C to MAX		5 2	5	15	50		
				MIN to 25°C			5		40		
IB	Input bias current	$V_0 = 0.5 \text{ V to 5 V}$		25°C to MAX		7§ 2	0	16§		μΑ	
IL(S)	Low-level strobe current	V _(strobe) = 0.4 V		Full range		-1.7§-3.	2	-1.7§	-3.2	mA	
VIH(S)	High level strobe voltage	(otropo)		Full range	2.2		2.2			V	
VIL(S)	Low-level strobe voltage			Full range		0.	9		0.9	V	
VICR	Common-mode input voltage range	V _{CC} - = -7 V to -12 V		Full range	±5		±5			V	
VID	Differential input voltage range	SE MI		Full range	±5	78 N 40	±5			V	
AVD	Large-signal differential voltage amplification	No load, VO = 0.5 V to 5 V		25°C		40 §		40 §		V/m\	
1/	High-level		V _{ID} = 5 mV	Full range	2.5	5.	5				
VOH	output voltage	$I_{OH} = -400 \mu A$	V _{ID} = 8 mV	Full range			2.5		5.5	V	
		1 - 100 1	$V_{ID} = -5 \text{ mV}$	25°C		0.8 \$ 1.	5				
		IOL = 100 mA	$V_{1D} = -7 \text{ mV}$	25°C				0.8§	2		
V	Low-level	IOI = 50 mA	$V_{ID} = -5 \text{ mV}$	Full range			1			V	
VOL	output voltage	10L - 50 IIIA	$V_{ID} = -8 \text{ mV}$	Full range					1	V	
			V _{ID} = -5 mV	Full range		0.	1				
		IOL = 16 mA	$V_{ID} = -8 \text{ mV}$	Full range	_	0.	-		0.4		
			1	MIN to 25°C		0.02§	1		0.4		
	High-level		V _{ID} = 5 mV	25°C to MAX		10	-				
ЮН	output current	$V_{OH} = 8 V to 24 V$	V _{ID} = 7 mV	MIN to 25°C		10	-	0.02§	2	μΑ	
	The same of the sa		V _{ID} = 8 mV	25°C to MAX			+	0,020	100		
ICC+	Supply current from V _{CC+}	V _{ID} = -5 mV, No Id		Full range		6.6 § 1	0	6.6	10	mA	
ICC-	Supply current from VCC-	No load		Full range		-1.9 \ -3.		-1.9§		mA	

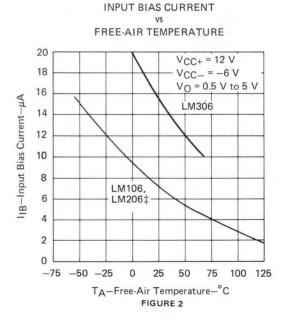
[†]Unless otherwise noted, all characteristics are measured with the strobe open.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C


DA DAMETED	TEST CONDITIONS!	LM106, LM206				LM306		LIBIT
PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	MIN	N TYP MAX		
Response time, low-to-high-level output	R_L = 390 Ω to 5 V, C_L = 15 pF, See Note 7		28	40		28		ns

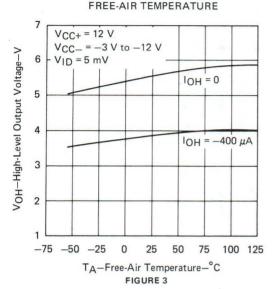
NOTE 7: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

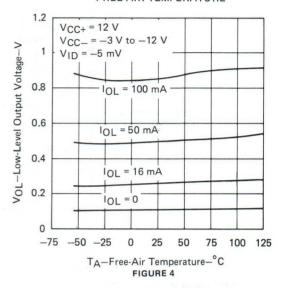

107


[§] These typical values are at V_{CC+} = 12 V, V_{CC−} = −6 V, T_A = 25°C. Full range (MIN to MAX) for LM106 is −55°C to 125°C; for LM206 is −25°C to 85°C; and for LM306 is 0°C to 70°C.

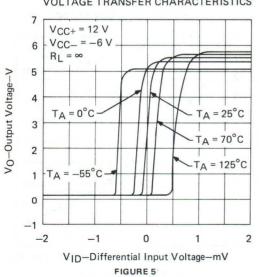
NOTE 6: The offset voltages and offset currents given are the maximum values required to drive the output down to the low range (V_{OL}) or up to the high range (V_{OH}). Thus these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

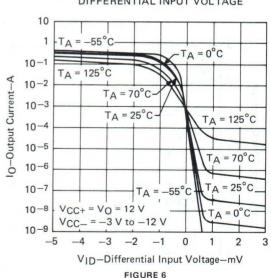
TYPICAL CHARACTERISTICS



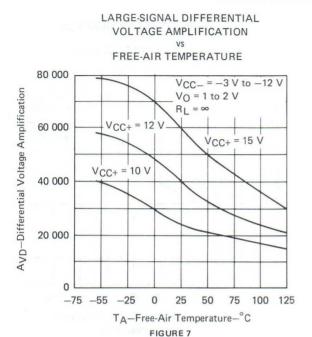

 \ddagger Data for free-air temperatures below -25° C and above 85° C is applicable for LM106 only.

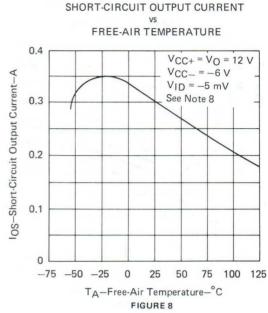
TYPICAL CHARACTERISTICS ‡

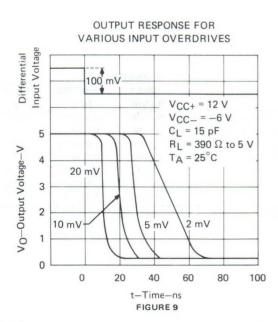

HIGH-LEVEL OUTPUT VOLTAGE

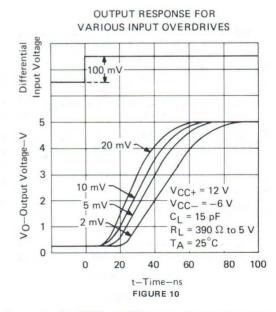

LOW-LEVEL OUTPUT VOLTAGE FREE-AIR TEMPERATURE

VOLTAGE TRANSFER CHARACTERISTICS

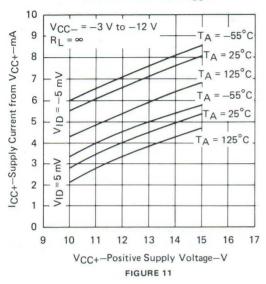


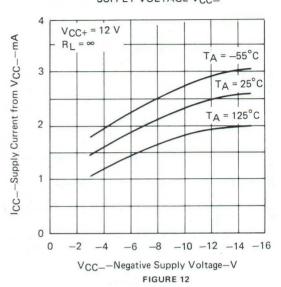

OUTPUT CURRENT DIFFERENTIAL INPUT VOLTAGE




‡Data for free-air temperature outside the range specified in the absolute maximum ratings for LM206 or LM306 is not applicable for those types.

TYPICAL CHARACTERISTICS[‡]




‡Data for free-air temperature outside the range specified in the absolute maximum ratings for LM206 or LM306 is not applicable for those types. NOTE 8: This parameter was measured using a single 5-ms pulse.

TYPICAL CHARACTERISTICS ‡



SUPPLY CURRENT FROM V_{CC}vs SUPPLY VOLTAGE V_{CC}-

TOTAL POWER DISSIPATION vs FREE-AIR TEMPERATURE

DISSIPATION DERATING TABLE

BACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	600 mW	11.0 mW/°C	95° C
J (Glass-Mounted Chip)	600 mW	8.2 mW/°C	77° C
JG (Alloy-Mounted Chip)	600 mW	8.4 mW/°C	79°C
JG (Glass-Mounted Chip)	600 mW	6.6 mW/°C	59° C
N	600 mW	9.2 mW/°C *	85°C
P	600 mW	8.0 mW/°C	75° C
W	600 mW	8.0 mW/°C	75°C

Also see Dissipation Derating Curves, Section 2.

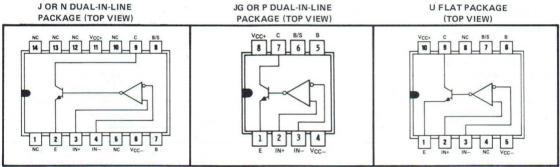
FIGURE 13

‡Data for free-air temperature outside the range specified in the absolute maximum ratings for LM206 or LM306 is not applicable for those types.

LINEAR INTEGRATED CIRCUITS

TYPES LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES

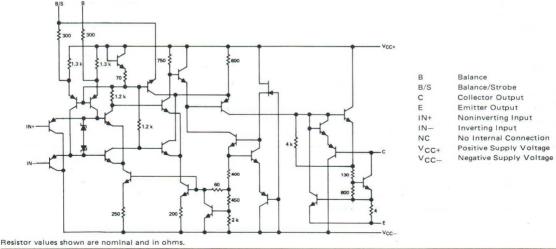
BULLETIN NO. DL-S 11797, SEPTEMBER 1973-REVISED OCTOBER 1979


- Fast Response Times
- Strobe Capability
- Designed to be Interchangeable with National Semiconductor LM111, LM211, and LM311
- Maximum Input Bias Current. . . 300 nA
- Maximum Input Offset Current. . . 70 nA
- Can Operate From Single 5-V Supply

description

The LM111, LM211, and LM311 are single high-speed voltage comparators. These devices are designed to operate from a wide range of power supply voltage, including ±15-volt supplies for operational amplifiers and 5-volt supplies for logic systems. The output levels are compatible with most DTL, TTL, and MOS circuits. These comparators are capable of driving lamps or relays and switching voltages up to 50 volts at 50 milliamperes. All inputs and outputs can be isolated from system ground. The outputs can drive loads referenced to ground, V_{CC+}, or V_{CC-}. Offset balancing and strobe capability are available and the outputs can be wire-OR connected. If the strobe input is low, the output will be in the off state regardless of the differential input. Although slower than the TL506 and TL514, these devices are not as sensitive to spurious oscillations.

The LM111 is characterized for operation over the full military temperature range of -55° C to 125° C, the LM211 is characterized for operation from -25° C to 85° C, and the LM311 is characterized for operation from 0° C to 70° C.


terminal assignments

NC-No internal connection

schematic

79

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

79° 32 P	LM111	LM211	LM311	UNIT
Supply voltage, V _{CC+} (see Note 1)	18	18	18	V
Supply voltage, V _{CC} — (see Note 1)	-18	-18	-18	V
Differential input voltage (see Note 2)	±30	±30	±30	V
Input voltage (either input, see Notes 1 and 3)	±15	±15	±15	V
Voltage from emitter output to V _{CC} -	30	30	30	V
Voltage from collector output to V _{CC} -	50	50	40	V
Duration of output short-circuit (see Note 4)	10	10	10	s
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)	500	500	500	mW
Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds J, JG, or U package	300	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds N or P package	1	260	260	°C

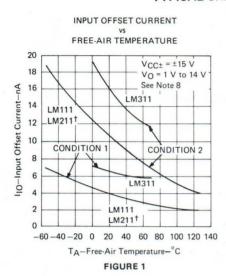
- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or ±15 volts, whichever is less.
 - 4. The output may be shorted to ground or either power supply.
 - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. In the J and JG packages, LM111 chips are alloy-mounted; LM211 and LM311 chips are glass-mounted.

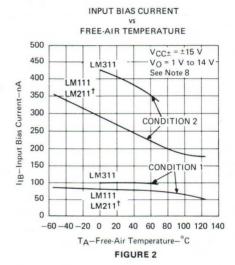
electrical characteristics at specified free-air temperature, V_{CC±} = ±15 V (unless otherwise noted)

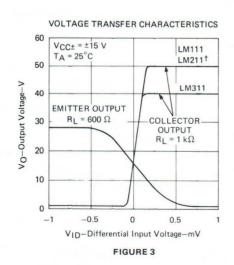
		the section of the se	accurate count		LM111, LM211 LM311			1-1				
	PARAMETER	TEST	CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
1/	land office values	D < FOLO	See Note 6	25°C		0.7	3		2	7.5	mV	
VIO	Input offset voltage	$R_{S} \leq 50 \text{ k}\Omega$,	Full ra				4			10	mv	
Lin	Input offset current	Sac Nata 6	ee Note 6 25° 0		Ŷ.	4	10		6	50	nA	
110	input offset current	See Note 6			1		20			70	IIA	
Tree	Input bias current	\/- = 1 \/ += 14 \/		25°C		75	100		100	250	nA	
IB	input bias current	V _O = 1 V to 14 V	O = 1 V to 14 V			-/-	150		11	300	nA	
I _{IL} (S)	Low-level strobe current	$V_{(strobe)} = 0.3 V$	V _{ID} ≤ -10 mV	25°C		-3			-3	v e F	mA	
VICR	Common-mode input voltage range			Full range	1	±14			±14		٧	
AVD	Large-signal differential voltage amplification	V _O = 5 V to 35 V,	R _L = 1 kΩ	25° C	40	200		40	200		V/m'	
		V V	V - 25 V	25°C		0.2	10			E 180	nA	
ОН	High-level (collector) output current	$V_{ID} = 5 \text{ mV},$	V _{OH} = 35 V	Full range			0.5				μΑ	
	output current	V _{ID} = 10 mV	V _{OH} = 35 V	25°C				4 74	0.2	50	nA	
		I _{OL} = 50 mA	$V_{ID} = -5 \text{ mV}$	25°C		0.75	1.5		-111			
		10L - 50 IIIA	$V_{ID} = -10 \text{ mV}$	25°C			16:	7 9	0.75	1.5	1	
VOL	Low-level (collector-to-emitter) output voltage	$V_{CC+} = 4.5 \text{ V},$ $V_{CC-} = 0 \text{ V},$	$V_{ID} = -6 \text{ mV}$	Full range		0.23	0.4	lu a f	ı		\ \	
	adome	IOL = 8 mA	$V_{ID} = -10 \text{ mV}$	Full range			0	Î	0.23	0.4		
ICC+	Supply current from V _{CC+} , output low	$V_{ID} = -10 \text{ mV},$	No load	25° C	· E	5.1	6	1-1	5.1	7.5	mA	
Icc-	Supply current from V _{CC} -, output high	V _{ID} = 10 mV,	No load	25°C		-4.1	-5		-4.1	-5	mA	

[†] Unless otherwise noted, all characteristics are measured with the balance and balance/strobe terminals open and the emitter output grounded. Full range for LM111 is -55° C to 125° C, for LM211 is -25° C to 85° C, and for LM311 is 0° C to 70° C.

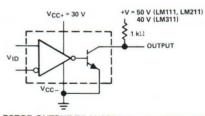
NOTE 6: The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V with a pull-up resistor of 7.5 k Ω to V_{CC+}. Thus these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

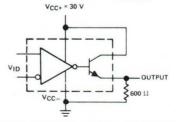

[‡]All typical values are at TA = 25°C.


switching characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Response time, low-to-high-level output	D = = 500 O to 5 V		115		ns
Response time, high-to-low-level output	$R_C = 500 \Omega$ to 5 V, $C_L = 5 pF$, See Note 7		165		ns

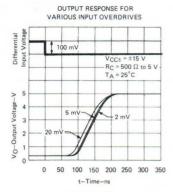
NOTE 7: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

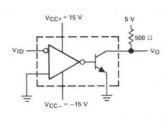

TYPICAL CHARACTERISTICS



179

COLLECTOR OUTPUT TRANSFER CHARACTERISTIC TEST CIRCUIT FOR FIGURE 3




EMITTER OUTPUT TRANSFER CHARACTERISTIC TEST CIRCUIT FOR FIGURE 3

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

NOTE 8: Condition 1 is with the balance and balance/strobe terminals open, Condition 2 is with the balance and balance/strobe terminals connected to V_{CC+}.

TYPICAL CHARACTERISTICS

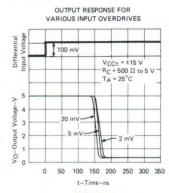
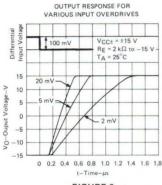
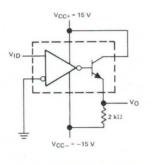
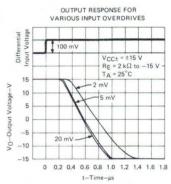
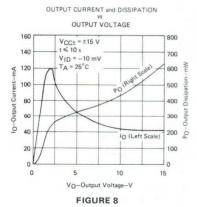
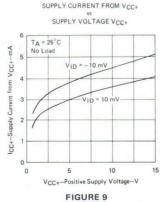




FIGURE 4

TEST CIRCUIT FOR FIGURES 4 AND 5

FIGURE 5


FIGURE 6

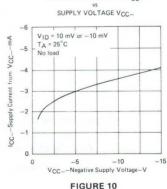

TEST CIRCUIT FOR FIGURES 6 AND 7

FIGURE 7

SUPPLY CURRENT FROM VCC-

TYPICAL APPLICATION DATA

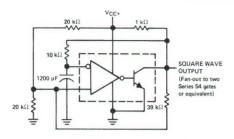


FIGURE 11-100-kHz
FREE-RUNNING MULTIVIBRATOR

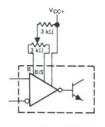


FIGURE 12 OFFSET BALANCING

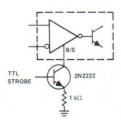


FIGURE 13-STROBING

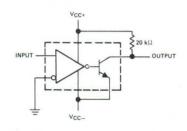
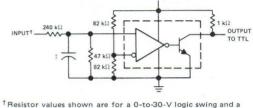



FIGURE 14-ZERO-CROSSING DETECTOR

- Resistor values shown are for a 0-to-30-V logic swing and a 15-V threshold.
- *May be added to control speed and reduce susceptibility to noise spikes.
 - FIGURE 15-TTL INTERFACE WITH HIGH-LEVEL LOGIC

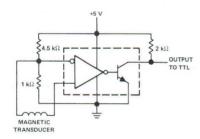


FIGURE 16-DETECTOR FOR MAGNETIC TRANSDUCER

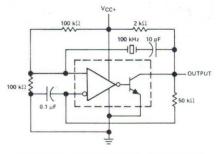


FIGURE 17-100-kHz CRYSTAL OSCILLATOR

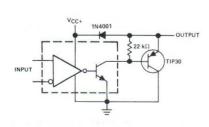
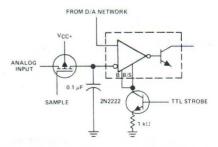



FIGURE 18-COMPARATOR AND SOLENOID DRIVER

Typical input current is 50 pA with inputs strobed off.

FIGURE 19-STROBING BOTH INPUT AND

OUTPUT STAGES SIMULTANEOUSLY

TYPICAL APPLICATION DATA

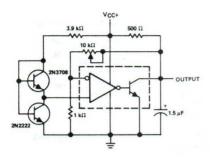


FIGURE 20 – LOW-VOLTAGE ADJUSTABLE REFERENCE SUPPLY

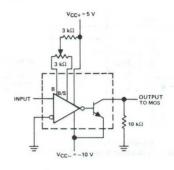
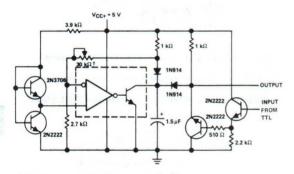



FIGURE 21- ZERO-CROSSING DETECTOR DRIVING MOS LOGIC

†Adjust to set clamp level.

FIGURE 22-PRECISION SQUARER

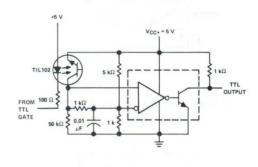


FIGURE 23 - DIGITAL TRANSMISSION ISOLATOR

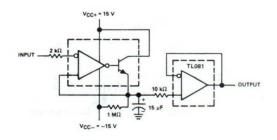


FIGURE 24 - POSITIVE-PEAK DETECTOR

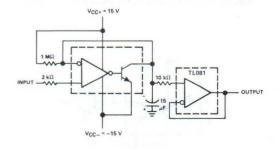
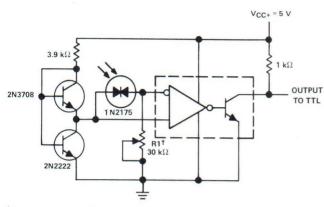
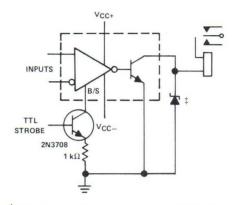



FIGURE 25 - NEGATIVE-PEAK DETECTOR


107

TYPICAL APPLICATION DATA

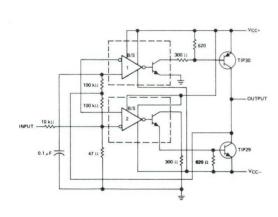

[†]R1 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing dark current by an order of magnitude.

FIGURE 26-PRECISION PHOTODIODE COMPARATOR

‡Transient voltage and inductive kickback protection.

FIGURE 27-RELAY DRIVER WITH STROBE

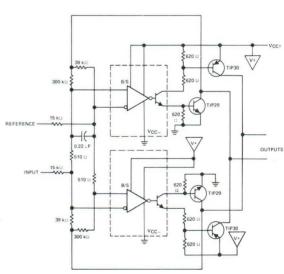
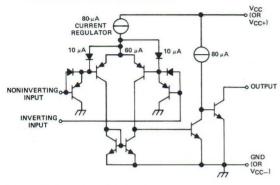


FIGURE 29-SWITCHING POWER AMPLIFIERS


LINEAR INTEGRATED CIRCUITS

TYPES LM139, LM239, LM339 QUADRUPLE DIFFERENTIAL COMPARATORS

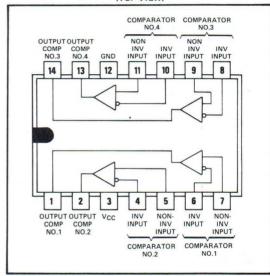
BULLETIN NO. DL-S 12236, MARCH 1975-REVISED OCTOBER 1979

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage . . . 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current
 ... 3 nA Typ (LM139)

schematic (each comparator)

Current values shown are nominal.

description


079

These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and pin 3 is at least 1.5 volts more positive

Low Input Offset Voltage . . . 2 mV Typ

- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS. and CMOS

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Differential input voltage (see Note 2) ±36 V
Input voltage range (either input)
Output voltage
Output current
Duration of output short-circuit to ground (see Note 3) unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4)
Operating free-air temperature range: LM139
LM239
LM339
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J or W package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM139 chips are alloy-mounted; LM239 and LM339 chips are glass-mounted.

TYPES LM139, LM239, LM339 QUADRUPLE DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

PARAMETER			T CONDITION	ot	L	LM139 LM239, LM339		39	LINUT		
		IES	T CONDITION	5'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	1	V _{CC} = 5 V to	30 V,	25°C		2	5		2	5	
VIO	Input offset voltage	VIC = VICE	IC = VICR, VO = 1.4V F				9			9	mV
1	1	V - 4 4 V	V _O = 1.4 V			3	25		5	50	
110	Input offset current	$V_0 = 1.4 \text{ V}$					100			150	nA
	L	Con Note 5		25°C		-25	-100	131	-25	-250	nA
IB	Input bias current	See Note 5	See Note 5				-300	THE RESERVE		-400	nA.
4				25° C	0 to			0 to		T TOTAL	
Vion	VICR Common-mode input	Vcc = 2 V to	n 36 V	25 0	V _{CC} -1.5			V _{CC} -1.5			V
voltage range	VCC 2 V		Full range	0 to			0 to				
	War Mar Pro Date			Full range	V _{CC} -2			VCC-2	2		
Λ	Large-signal differential	V _{CC} = 15 V,		25° C		200			200		V/mV
AVD	voltage amplification	$R_L = 15 k\Omega t$	o VCC	25 C	1 84	200		. 10	200		V/IIIV
Less	Ulah laval avanus avanas	V _{ID} = 1 V	V _{OH} = 5 V	25°C		0.1			0.1		nA
ЮН	High-level output current	AID - I A	V _{OH} = 30 V	Full range			1	-		1	μΑ
V	Law lavel autaut valtage	V 1V	1	25°C		250	500		250	500	mV
VOL	Low-level output voltage	$V_{ID} = -1 V$, $I_{OL} = 4 \text{ mA}$		vievel output voltage VID = -1 V, IOL = 4 mA Full range		700			700	mv	
IOL	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA
Icc	Supply current (four comparators)	No load		25° C		0.8	2		0.8	2	mA

[†]Full range (MIN to MAX) for LM139 is -55° C to 125° C, for the LM239 is -85° C to 125° C, and for the LM339 is 0° C to 70° C.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	AMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive		1.3	2 Ze 36	us
	C _L = 15 pF [‡] See Note 6	TTL-level input step		0.3	1 118	

[‡]C_L includes probe and jig capacitance.

NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	900 mW	11.0 mW/°C	68°C
J (Glass-Mounted Chip)	900 mW	8.2 mW/°C	40°C
N	900 mW	9.2 mW/° C	52°C
Wasawaala	900 mW	8.0 mW/°C	37°C

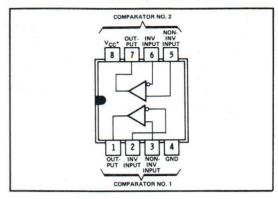
Also see Dissipation Derating Curves, Section 2.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

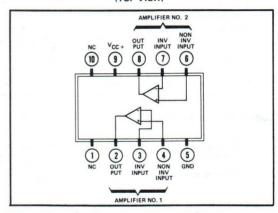
LINEAR INTEGRATED **CIRCUITS**

TYPES LM193, LM293, LM393 **DUAL DIFFERENTIAL COMPARATORS**

BULLETIN NO. DL-S 12411, JUNE 1976-REVISED OCTOBER 1979


- Single Supply or Dual Supplies
- Wide Range of Supply Voltage 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current ... 3 nA Typ (LM193)
- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS, and CMOS

description


379

These devices consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and pin 8 is at least 1.5 volts more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

JG OR P **DUAL-IN-LINE PACKAGE (TOP VIEW)**

U FLAT PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temper	rature range (unless otherwise noted)
0 1 1 1 1 1 1 1 1	

Supply voltage, VCC (see Note 1)	36 V
	±36 V
Input voltage range (either input)	
Output voltage	36 V
Output current	
Duration of output short-circuit to gr	ound (see Note 3) unlimited
Continuous total dissipation at (or be	low) 25°C free-air temperature (see Note 4): LM293JG,LM393JG 825 mW
	LM193JG, LM293P, LM393P 900 mW
	LM193U, LM293U, LM393U 675 mW
Operating free-air temperature range:	LM193 –55°C to 125°C
	LM293 –25°C to 85°C
	LM393 0°C to 70°C
Storage temperature range	65°C to 150°C
	from case for 60 seconds: JG or U package
Lead temperature 1/16 inch (1,6 mm)	from case for 10 seconds: P package
TES: 1. All voltage values, except different	ial voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- 4. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, LM193 chips are alloymounted; LM293 and LM393 chips are glass-mounted.

TYPES LM193, LM293, LM393 DUAL DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

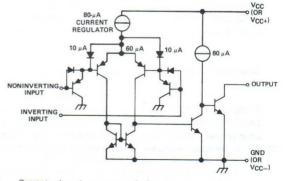
PARAMETER						LM193		LM293, LM393			UNIT
		TEST CONDITIONS		MIN	MIN TYP MAX MII		MIN	MIN TYP MAX		UNIT	
		V _{CC} = 5 V t	o 30 V,	25°C		1	5		1	5	
VIO	Input offset voltage	VIC = VICE	$V_0 = 1.4 V$	Full range			9			9	mV
				25°C		3	25	717	5	50	
110	Input offset current	V _O = 1.4 V		Full range			100	1		150	nA
				25°C		-25	-100		-25	-250	
IB	Input bias current	See Note 5		Full range			-300	F 27	1	-400	nΑ
				25°C	0 to			0 to	Sail		
Common-mode input	V2 V to 26 V	25 0	V _{CC} -1.5			V _{CC} -1.5			1 ,,		
VICR	voltage range	V _{CC} = 2 V to 36 V	Full range	0 to			0 to			1 "	
				Full range	V _{CC} -2			V _{CC} -2	mg	Table 10	
A	Large-signal differential	V _{CC} = 15 V,		25°C	50	200	17	50	200		V/mV
AVD	voltage amplification	R _L = 15 V to	Vcc	25 0	30	200		30	200		V/IIIV
Lavi	High-level output current	$V_{ID} = 1 V$	V _{OH} = 5 V	25°C		0.1			0.1		nΑ
ІОН	High-level output current	V _{ID} = 1 V,	V _{OH} = 30 V	Full range			1			-1	μА
V	Law lovel autout valtage		_ow-level output voltage $V_{ID} = -1 \text{ V}$, $I_{OL} = 4 \text{ mA}$	25°C		250	400		250	400	mV
VOL	Low-level output voltage	VID1 V,	10L - 4 IIIA	Full range			700			700	IIIV
IOL	Low-level output current	$V_{ID} = -1 V$,	$V_0 = 1.5 V$	25°C	6	16		6	16	a Landa	mA
laa	Supply current	No load	V _{CC} = 5 V	25°C		0.8	1		0.8	1	m A
ICC	Supply current	100 1000	V _{CC} = 30 V	Full range			2.5		-	2.5	mA

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive	1.3		μѕ	
	C _L = 15 pF [‡] See Note 6	TTL-level input step		0.3	All the Other	

[‡]C_L includes probe and jig capacitance.


NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

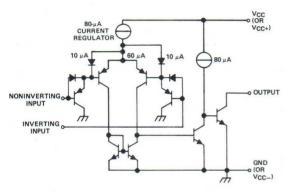
DISSIPATION DERATING TABLE

DAOKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	900 mW	8.4 mW/°C	43°C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	900 mW	8.0 mW/°C	37°C
U	675 mW	5.4 mW/°C	25° C

Also see Dissipation Derating Curves, Section 2.

schematic (each comparator)

Current values shown are nominal.


LINEAR INTEGRATED CIRCUITS

TYPE LM2901 QUADRUPLE DIFFERENTIAL COMPARATOR

BULLETIN NO, DL-S 12247, MARCH 1975-REVISED OCTOBER 1979

- Eliminates Need for Dual Supplies
- Wide Range of Supply Voltages
 ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 5 nA Typ Input Bias Current . . . -25 nA Typ

schematic (each comparator)

Current values shown are nominal,

description

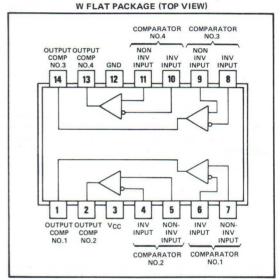
79

The LM2901 consists of four independent voltage comparators designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages, and the

low supply current drain is independent of the magnitude of the supply voltage. A unique characteristic of these comparators is that the common-mode input voltage range includes ground even when a single supply voltage is used.

The outputs can be connected to other open-collector outputs to achieve wired-AND relationships. Applications include limit comparators, simple analog-to-digital converters, wide-range VCO's, MOS clock timers, multivibrators, high-voltage digital logic gates, and pulse, square-wave, and time-delay generators. The LM2901 was designed to directly interface with CMOS—where the low power drain of the LM2901 is a large advantage over standard comparators.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


Supply voltage, VCC (see Note 1) · · · · · · · · · · · · · · · · · ·
Differential input voltage (see Note 2)
Input voltage range (either input) $\dots \dots \dots$
Output voltage
Output current
Duration of output short-circuit to ground (see Note 3)
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4)
Operating free-air temperature range
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J or W package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM2901 chips are glass-mounted.

 Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage

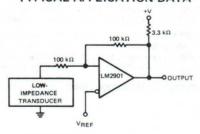
 . . . 1 mV Typ at 5 μA
 . . . 70 mV Typ at 1 mA
- Output Compatible with TTL, DTL, MOS, and CMOS JOR N DUAL-IN-LINE OR

TYPE LM2901 QUADRUPLE DIFFERENTIAL COMPARATOR

electrical characteristics at 25°C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	3	MIN	TYP	MAX	UNIT
	land office and the second	V _{CC} = 5 V to 30 V,		25°C		2	7	mV
V _{IO} Input offset voltage	$V_{IC} = V_{ICR}, V_{O} = 1.4V$		-40°C to 85°C			15	1 mv	
		4.7		25°C		5	50	- ^
110	Input offset current	$V_0 = 1.4 \text{ V}$		-40°C to 85°C			200	nA
	Residence and Review		8	25°C		-25	-250	
IB	Input bias current	See Note 5		-40°C to 85°C		T-WE	-500	nA
	Input common-mode	15.15	25°C		0 to V _{CC} -1.5		18.7.0	
VICR	voltage range	V _{CC} = 2 V to 36 V		-40°C to 85°C	0 to V _{CC} - 2			V
AVD	Large-signal differential voltage amplification	$V_{CC} = 15 \text{ V},$ $R_L = 15 \text{ k}\Omega \text{ to } 10^{-1}$	Vcc		25	100		V/mV
	III bila da	V _{ID} = 1 V	V _O = 5 V	25°C		0.1		nA
ЮН	High-level output current	V _{1D} = 1 V	V _O = 30 V	-40°C to 85°C			1	μА
	er trial and law		1 - 1 - 1	25°C	3		400	
VOL	Low-level output voltage	$V_{ID} = -1 V$, $I_{OL} = 4 \text{ mA}$		-40°C to 85°C	700		700	mV
IOL	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16	18	mA
	0	No lood	V _{CC} = 5 V	25°C		0.4	1	1 ^
ICC	Supply current	No load	V _{CC} = 30 V	-40°C to 85°C			2.5	mA

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.


switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Response time	R _L = 5.1 kΩ to 5 V	100-mV input step with 5-mV overdrive	1.5			μs
	C _L = 15 pF [‡] See Note 6	TTL-level input step	0.3		7	

[‡]C_L includes probe and jig capacitance.

NOTE 6: The typical value is for the interval between the input step function and the time when the output crosses 1.4 V.

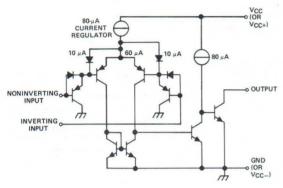
TYPICAL APPLICATION DATA

BASIC SINGLE-SUPPLY TRANSLATOR

THERMAL INFORMATION

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
J (Glass-Mounted Chip)	900 mW	8.2 mW/°C	40°C	
N	900 mW	9.2 mW/°C	52°C	
W	900 mW	8.0 mW/°C	37°C	


Also see Dissipation Derating Curves, Section 2.

TYPE LM2903 DUAL DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 12412, JUNE 1976-REVISED OCTOBER 1979

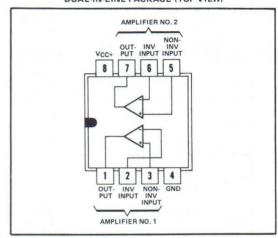
- Eliminates Need for Dual Supplies
- Wide Range of Supply Voltages
 ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 5 nA Typ Input Bias Current . . . –25 nA Typ

schematic (each comparator)

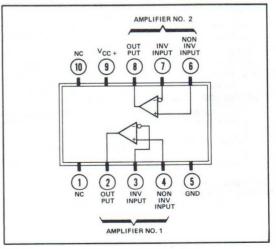
Current values shown are nominal

description

179


The LM2903 consists of two independent voltage comparators designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages and the low supply current drain is independent of the magnitude of the supply voltage. A unique characteristic of these comparators is that the common-mode input voltage range includes ground, even though operated from a single supply voltage. Applications include limit comparators, simple analog-to-digital converters, wide-range VCO's, MOS clock timers, multivibrators, high-voltage digital logic gates, and pulse, square-wave, and time-delay generators. The LM2903 was designed to directly interface with CMOS - where the low power drain of the LM2903 is a large advantage over standard comparators.

The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.


- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage

 1 mV Typ at 5 μA
 70 mV Typ at 1 mA
- Output Compatible with TTL, DTL, MOS, and CMOS

JG OR P
DUAL-IN-LINE PACKAGE (TOP VIEW)

U FLAT PACKAGE (TOP VIEW)

NC-No internal connection

TYPE LM2903 DUAL DIFFERENTIAL COMPARATOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	36 V
Differential input voltage (see Note 2)	±36 V
Input voltage range (either input)	
Output voltage	
Output current	20 mA
Duration of output short-circuit to ground (see Note 3)	unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4):	LM2903 JG/883B 900 mW
	LM2903 JG 825 mW
	P package 900 mW
	U package 675 mW
Operating free-air temperature range	40°C to 85°C
Storage temperature range	65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG or U package	
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground te	260°C

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, LM2903/883B chips are alloy-mounted; LM2903 chips are glass-mounted.

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

ş t	PARAMETER	TE	ST CONDITIONS	3	MIN	TYP	MAX	UNIT				
V	Input offeet valtage	V _{CC} = 5 V to 30		25°C		2	7	ma\/				
VIO	Input offset voltage	$V_{IC} = V_{ICR}$	$V_0 = 1.4V$	-40°C to 85°C			15	mV				
Local	1	V 4 4 V		25°C		5	50	- 0				
110	Input offset current	V _O = 1.4 V		-40°C to 85°C			200	nA				
L-	Input bios surrent	See Note 5		25°C		-25	-250	nA				
IB	Input bias current	See Note 5		-40°C to 85°C			-500	n A				
				25°C	0 to							
V/	Input common-mode	V2 V+- 2	CV	25 C	V _{CC} -1.5							
VICR	voltage range	$V_{CC} = 2 V \text{ to } 30$	6 V	1000 0500	0 to			1 '				
			-40°C to 85°C		VCC-2							
^	Large-signal differential	V _{CC} = 15 V,			05	100		11/-11				
AVD	voltage amplification	$R_L = 15 k\Omega$ to	Vcc		25	100		V/mV				
Leon	High-level output current	V _{ID} = 1 V	V _O = 5 V	25°C		0.1	П	nA				
ЮН	High-level output current	V _{1D} = 1 V	V _O = 30 V	-40°C to 85°C			1	μА				
1/	Law lavel autaut valtage	\/ 1\/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25°C			400					
VOL	Low-level output voltage	VID = -1 V	$V_{ID} = -1 V$, $I_{OL} = 4 \text{ mA}$ $-40^{\circ} \text{C to } 85^{\circ} \text{C}$		$V_{ID} = -1 V$, $I_{OL} = 4 \text{ mA}$ $-40^{\circ} \text{C to } 85^{\circ} \text{C}$		-40°C to 85°C				700	mV
IOL	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16	4	mA				
loo	Supply current	No load	V _{CC} = 5 V	25°C		0.4	1	m A				
Icc	Supply current	NO IOad	V _{CC} = 30 V	-40°C to 85°C			2.5	mA				

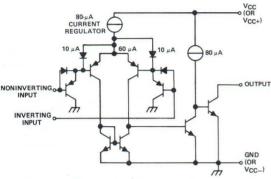
NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{ C}$

PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
Response time	$R_L = 15 k\Omega \text{ to 5 V},$	100-mV input step with 5-mV overdrive		1.5		μς
	C _L = 15 pF [‡] See Note 6	TTL-level input step		0.3		

 $^{\ddagger}C_{L}$ includes probe and jig capacitance.

NOTE 6: The typical value is for the interval between the input step function and the time when the output crosses 1.4 $\rm V_{\odot}$

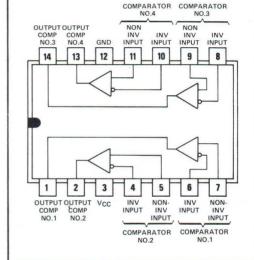

	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	900 mW	8.4 mW/°C	43° C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	900 mW	8.0 mW/°C	37°C
U	675 mW	5.4 mW/°C	25°C

TYPE LM3302 QUADRUPLE DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 12579, OCTOBER 1977-REVISED OCTOBER 1979

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage ... 2 to 28 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current ... 5 nA Tvp

schematic (each comparator)


description Current values shown are nominal.

> This device consists of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 28 volts and pin 3 is at least 1.5 volts more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

- Low Input Offset Voltage . . . 3 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±28 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS, and CMOS

DUAL-IN-LINE PACKAGE (TOP VIEW) COMPARATOR COMPARATOR NO.4 NON NON INV INV INV COME INV NO.4 GND INPUT INPUT INPUT INPUT

JOR N

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) Differential input voltage (see Note 2) Input voltage range (either input) Output voltage Output current Duration of output short-circuit to ground (see Note 3) Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4) -40° C to 85° C Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from the output to $V_{\mbox{CC}}$ can cause excessive heating and eventual destruction.
 - 4. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, LM3302 chips are glass-

TEXAS INSTRUMENTS

TYPE LM3302 QUADRUPLE DIFFERENTIAL COMPARATOR

electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

7	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT	
	A condition in the West War I	V _{CC} = 5 V to 28 V, V _O = 1.4 V,	25°C	- 17	3	20	mV	
VIO	Input offset voltage	VIC = VICR	-40°C to 85°C	Euc.v.A.St. B	NI IVI	40	mv	
		1	25°C		3	100	- 0	
110	Input offset current	V _O = 1.4 V	-40°C to 85°C			300	nA	
			25° C		-25	-500	- 0	
IB	Input bias current	See Note 5	-40°C to 85°C			-1000	nΑ	
	Common-mode input		25°C	0 to V _{CC} -1.5	Sign of			
VICR	voltage range	V _{CC} = 2 V to 28 V		0 to V _{CC} -2	- 1911	W - (0)/ - (0) +a	V	
AVD	Large-signal differential voltage amplification	V _{CC} = 15 V, R _L = 15 kΩ to V _{CC}	25° C	2	30		V/mV	
	1 100		25° C	/	0.1	918	nA	
IOH	High-level output current	$V_{ID} = 1 V$, $V_{OH} = 5 V$	-40°C to 85°C			1	μΑ	
zi.	11 0	25°C	25°C		200	500	.,,	
VOL	Low-level output voltage	tput voltage $V_{ID} = -1 \text{ V}$, $I_{OL} = 4 \text{ mA}$ $-40^{\circ}\text{C to }85^{\circ}$		70			mV	
IOL	Low-level output current	V _{ID} = -1 V, V _{OL} = 1.5 V	25° C	2	16		mA	
Icc	Supply current (four comparators)	No load	25° C		0.8	2	mA	

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS		MIN	TYP	MIN	UNIT
B	R _L = 5.1 kΩ to 5 V	100-mV input step with 5 mV overdrive		1.3	<u></u>	
Response time	C _L = 15 pF # See Note 6	TTL-level input step	10000	0.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	μs

[‡]CL includes probe and jig capacitance.

218

NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

DISSIPATION DERATING TABLE

DACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Glass-Mounted Chip)	900 mW	8.2 mW/°C	40°C
N	900 mW	9.2 mW/°C	52°C

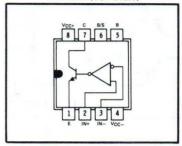
Also see Dissipation Derating Curves, Section 2.

TYPES TL111, TL311, TL311A JFET-INPUT DIFFERENTIAL COMPARATORS WITH STROBES

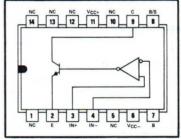
BULLETIN NO. DL-S 12737, NOVEMBER 1979

- Fast Response Times
- Strobe Capability
- Designed to Replace LM111 and LM311

description


The TL111, TL311, and TL311A are high-speed voltage comparators. These devices use an N-channel JFET high-impedance input structure that extends the operating range of the common-mode input voltage to include the value of the V_{CC}— supply. Designed for a wide variety of applications, the TL111, TL311, and TL311A can be operated over a wide range of supply voltage, including ± 15-volt supplies for operational amplifiers and single 5-volt supplies for logic systems. The uncommitted output transistor can drive loads referenced to ground, V_{CC+}, or V_{CC}—. Additionally, it is capable of driving loads that require switching up to 50 volts. Outputs can be wire-OR connected.

Offset balancing and strobe capability are available. If the strobe input is low (more negative than V_{IC} + 0.3 V), the output will be in the off state regardless of the differential input.


The TL111 is characterized for operation over the full military temperature range of -55°C to 125°C . The TL311 and TL311A are characterized for operation from 0°C to 70°C .

- Common-Mode Input Voltage Range Includes VCC—
- N-Channel JFET High-Impedance Input
- Can Operate From Single 5-V Supply

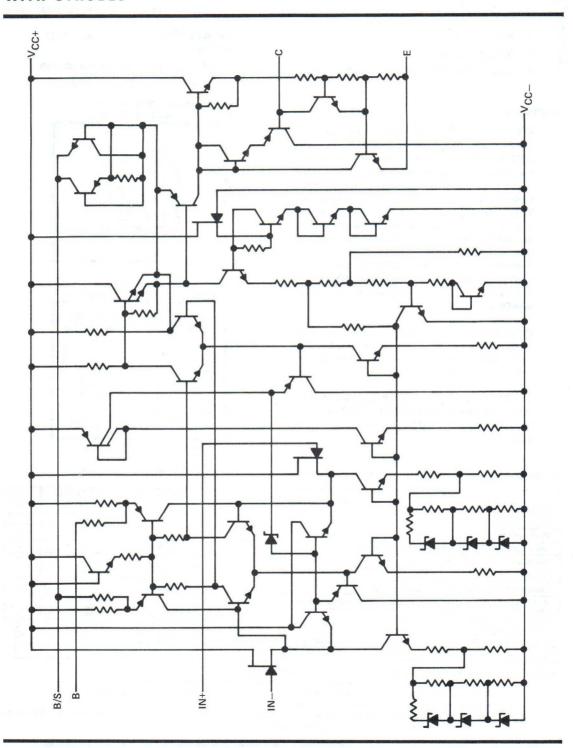
JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL111	TL311, TL311A	UNIT
Supply voltage, V _{CC+} (see Note 1)			V
	-18	-18	V
- T	±30	±30	V
Input voltage range (either input, see Notes 1 and 3)		V _{CC} ₋ to 15	V
Voltage from emitter output to VCC-		30	V
Voltage from collector output to V _{CC} _		40	V
Duration of output short-circuit (see Note 4)		10	s
e (see Note 5)	500	500	mW
	-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	°C
J or JG package	300	300	°C
N or P package		260	°C
		18 -18 ±30 V _{CC} - to 15 30 50 10 e (see Note 5) 500 -55 to 125 -65 to 150 J or JG package 300	18


NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The input voltage must never be more positive than V_{CC+} or 15 volts, whichever is less, or more negative than V_{CC-} .
- 4. The output may be shorted to ground or either power supply.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. In the J and JG packages, TL111 chips are alloy-mounted; TL311 and TL311A chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

ADVANCE INFORMATION

TYPES TL111, TL311, TL311A JFET-INPUT DIFFERENTIAL COMPARATORS WITH STROBES

TYPES TL111, TL311, TL311A JFET-INPUT DIFFERENTIAL COMPARATORS WITH STROBES

_
Ö
#
s otherwise noted
_
9
. ==
5
ē
ج
Ħ
0
SS
a
_
3
_
>
2
-
+1
ire, VCC± = ±
+1
C
O
>
9
=
モ
ē
O
0
Ξ
B
r temperature
.=
e-ai
ġ
9
-
-
0
ed
fied
cified fr
pecified 1
specified
t specified
at specified
s at specified
ics at specified
stics at specified
ristics at specified
eristics at specified
cteristics at specified
acteristics at specified
aracteristics at specified
haracteristics at specified
characteristics at specified
al characteristics at specified
cal characteristics at specified
rical characteristics at specified
strical characteristics at specified
ectrical characteristics at specified
electrical characteristics at specified

VIO Input: IIO Input: IIB Input: IIL(S) Low-le	randwelen Input offset voltage	1531 0					-	11311		=	TL311A		THEFT
	offset voltage				MIN TYP‡	‡ MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
	onset vortage	0.03/-0	S S S S S S S S S S S S S S S S S S S	25°C	0.5	5		2	10		2	7.5	1
		nS ≈ 50 Kaz,	o alon aac	Full range					13			10	A III
		3 14 3		25°C	2	50 100		20	100		20	100	pA
	Input offset current	o alon aac		Full range		20			4			4	nA
		Vo = 1 V to 14 V		25°C	100	0 250		100	250		100	250	bA
	input bias current	v +1 01 v 1 = 0 v		Full range		20			10			10	ηV
-	Low-level strobe current	$-V_{ID} \ge 10 \text{ mV}$, $V_{I}(S) = V_{IC} + 0.3 \text{ V}$	3) = VIC + 0.3 V	25°C	-3	3		-3			-3		mA
	Common-mode innut	$V_{CC-} = -18 \text{ V to 0 V}$,		VCC-		Vcc_			-DDA			
	Voltage range	$V_{CC+} = 5 \text{ V to } 18 \text{ V,}$ See Note 7		Full range	to VCC+-3 V		to VCC+-3 V			to VCC+-3V			>
AVD voltage	Large-signal differential voltage amplification	$V_0 = 5 \text{ V to } 35 \text{ V},$	RL = 1 kΩ	25°C	200			200			200		V/mV
17.41		Vi F V	V = C = V	25°C	0.2	2 10							nA
HOI HOI	High-level (collector)	VID = 5 mv,	v cs = HOv	Full range		0.5							μА
	output current	V _{ID} = 10 mV,	VOH = 35 V	25°C				0.2	50		0.2	20	nA
		0	VID = -5 mV	25°C	0.75	5 1.5						-	
7	(acttions of actorities) lovel we	10L = 50 MA	VID = -10 mV	25°C				0.75	1.5		0.75	1.5	
VOL output	output voltage	$V_{CC+} = 4.5 \text{ V},$ $V_{CC-} = 0 \text{ V}.$	V _{ID} = -6 mV	Full range	0.23	3 0.4					ī.		>
		10L = 8 mA	$V_{ID} = -10 \text{mV}$	Full range				0.23	0.4		0.23	0.4	
Supply curr	Supply current from VCC+, output low	V _{ID} = -10 mV,	No load	25°C	10	3 5		3	5		က	2	mA
Supply curr	Supply current from VCC-, output high	$V_{ID} = 10 \text{ mV},$	No load	25°C	ĵ	-2 -4		-2	4-		-2	4-	mA

Unless otherwise noted, all characteristics are measured with the balance and balance/strobe terminals open and the emitter output is at 0 volts.

Full range for TL111 is -55°C to 125°C, and for TL311 and TL311A is 0°C to 70°C. $^{\ddagger}AII$ typical values are at $T_A = 25^{\circ}C$.

NOTES: 6. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V with a pull-up resistor of 7.5 kΩ to V_{CC+}.. Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

7. For V_{ICR} , all voltages are with respect to a common ground (0 V).

TYPES TL111, TL311, TL311A JFET-INPUT DIFFERENTIAL COMPARATORS WITH STROBES

switching characteristics, VCC+ = 15 V, VCC- = -15 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Response time, low-to-high-level output	D = 500 0 to 5 V 0 = 5 = 5 Coo Note 9		115		ns
Response time, high-to-low-level output	$R_C = 500 \Omega$ to 5 V, $C_L = 5 pF$, See Note 8		165		ns

NOTE 8: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

TYPICAL CHARACTERISTICS

VOLTAGE TRANSFER CHARACTERISTICS

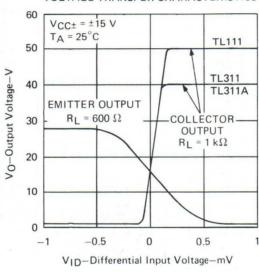
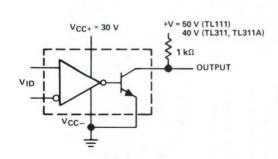
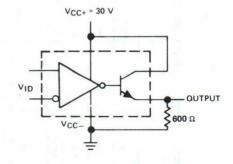
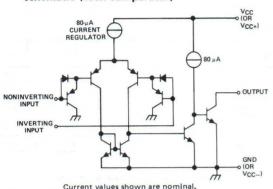




FIGURE 1

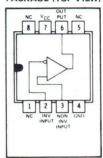
COLLECTOR OUTPUT TRANSFER CHARACTERISTIC
TEST CIRCUIT FOR FIGURE 1


EMITTER OUTPUT TRANSFER CHARACTERISTIC TEST CIRCUIT FOR FIGURE 1

TYPES TL331M, TL331I, TL331C DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 12516, APRIL 1977-REVISED OCTOBER 1979

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 . . . 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current ...3 nA Typ (TL331M)


schematic (each comparator)

Low Input Offset Voltage . . . 2 mV Typ

- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS, and CMOS

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

description

The TL331 is a voltage comparator that is designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and pin 7 is at least 1.5 volts more positive than the input common-mode voltage. Current drain is independent of the supply voltage.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)					36 V
Differential input voltage (see Note 2)					±36 V
Input voltage range (either input)					0.3 V to 36 V
Output voltage					36 V
Output current					20 mA
Duration of output short-circuit to ground (see Note 3)					
Continuous total dissipation at (or below) 25°C free-air temperature (see N	lote 4	.)	 	 	680 mW
Operating free-air temperature range: TL331M					55°C to 125°C
TL331I					
TL331C					0°C to 70°C
Storage temperature range					65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG packag	ge .				300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package					260°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction.
 - For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, TL331M chips are alloy-mounted: TL331L and TL331C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL331M, TL331I, TL331C DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

	DADAMETED	750	T CONDITION	ct	TL331	M, TL3	3311	TL	UNIT		
	PARAMETER	153	CONDITION	3.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	land offert values	V _{CC} = 5 V to	30 V,	25°C	17	2	5	1.0	2	5	mV
VIO	Input offset voltage	VIC = VICR,	V _O = 1.4V	Full range			9			9	mv
l. a	Input offset current	V 1 4 V		25°C		3	25		5	50	nA
110	input offset current	V _O = 1.4 V		Full range	7-		100			150	IIA
I	lanut bios surrent	See Note E		25°C		-25	-100		-25	-250	
IB	Input bias current	See Note 5		Full range			-300			-400	nA
				25° C	0 to			0 to			9
	Common-mode input	Vcc = 2 V to	26 1/	25 C	VCC-1.5			V _{CC} -1.5			.,
VICR	voltage range	VCC - 2 V IC	30 V		0 to			0 to			V
	voltage range			Full range	V _{CC} -2			V _{CC} -2			
AVD	Large-signal differential voltage amplification	V _{CC} = 15 V, R _L = 15 kΩ t	o Vcc	25° C		200			200		V/m\
1	Uliab Inval average average	V1V	V _{OH} = 5 V	25°C		0.1			0.1		nA
ІОН	High-level output current	V _{ID} = 1 V	V _{OH} = 30 V	Full range			1			1	μА
V	Law level autaut valeas	V 1 V	1	25°C		250	500		250	500	mV
VOL	Low-level output voltage	$V_{ID} = -1 V$,	IOL = 4 MA	Full range			700			700	mv
IOL	Low-level output current	$V_{ID} = -1 V$,	ID = -1 V, V _{OL} = 1.5 V 2		6	16	=	6	16		mA
Icc	Supply current	No load		25° C		0.5	0.8		0.5	0.8	mA

 $^{^\}dagger$ Full range (MIN to MAX) for TL331M is -55° C to 125° C, for the TL331I is -25° C to 85° C, and for the TL331C is 0° C to 70° C.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

switching characteristics, VCC = 5 V, TA = 25°C

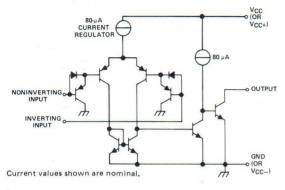
PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive		1.3		μs
	C _L = 15 pF, [‡] See Note 6	TTL-level input step		0.3		

[‡]C_L includes probe and jig capacitance.

NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

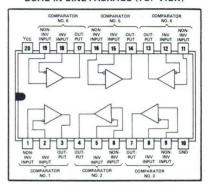
DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	680 mW	8.4 mW/°C	69° C
JG (Glass-Mounted Chip)	680 mW	6.6 mW/°C	47°C
P	680 mW	8.0 mW/°C	65°C


Also see Dissipation Derating Curves, Section 2.

TYPES TL336M, TL336I, TL336C HEX DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 12641, JUNE 1978


- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 . . . 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage . . . 1 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current
 ... 3 nA Typ (TL336M)

schematic (each comparator)

- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS, and CMOS

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

description

79

The TL336 is a hex voltage comparator that is designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and V_{CC} is at least 1.5 volts more positive than the input common-mode voltage. Current drain is independent of the supply voltage.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)						36 V
Differential input voltage (see Note 2)						±36 V
Input voltage range (either input)						-0.3 V to 36 V
Output voltage						36 V
Output current						20 mA
Duration of output short-circuit to ground (see Note 3)					,	unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Not	te 4)					680 mW
Operating free-air temperature range: TL336M						-55°C to 125°C
TL336I						-25° C to 85° C
TL336C						. 0°C to 70°C
Storage temperature range						-65° C to 150° C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package	T. (*))/, 1/					300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package						

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal,
- 3. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL336M chips are alloy-mounted; TL336I and TL336C chips are glass-mounted.

Copyright © 1978 by Texas Instruments Incorporated

TYPES TL336M, TL336I, TL336C HEX DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

			T COMPLETION	ot	TL33	6M, TL	3361	TL	336C		UNIT	
	PARAMETER	TES	T CONDITION	5'	MIN	TYP	MAX	MIN	TYP	MAX	UNI	
		V _{CC} = 5 V to	o 30 V,	25°C		2	5	See a see	2	5	mV	
VIO	Input offset voltage	VIC = VICE	$V_0 = 1.4V$	Full range			9			9	mv	
1	1	V 44V		25°C		3	25		5	50	nA	
110	Input offset current	V _O = 1.4 V		Full range			100		4	150	IIA	
	A STATE OF THE STA	C N 5		25°C		-25	-100	Bart of a	-25	-250	nA	
IB	Input bias current	See Note 5		Full range			-300		100	-400	nA	
			2		0 to			0 to				
	Common-mode input		Vcc = 2 V to 36 V		V _{CC} -1.5			VCC-1.5				
VICR	voltage range			0 36 V	F	0 to			0 to			V
				Full range	V _{CC} -2			VCC-2				
	Large-signal differential	VCC = 15 V,		25° C		200			200		1//	
AVD	voltage amplification	R _L = 15 kΩ	to VCC	25 C		200			200		V/mV	
·	III to be a second as a second	V1V	V _{OH} = 5 V	25°C		0.1			0.1		nA	
ЮН	High-level output current	V _{ID} = 1 V	V _{OH} = 30 V	Full range			1			1	μΑ	
		V - 4 V	1 - 4 - 4	25°C		250	500		250	500	mV	
VOL	Low-level output voltage	VID = -1 V,	IOL = 4 mA	Full range			700			700	mv	
IOL	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25° C	6	16		6	16	- Dis Tal.	mA	
Icc	Supply current (six comparators)	No load		25°C		1	3		1	3	m/	

 $^{^\}dagger$ Full range (MIN to MAX) for TL336M is -55° C to 125° C, for the TL336I is -85° C to 125° C, and for the TL336C is 0° C to 70° C.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive		1.3		μs
	C _L = 15 pF [‡] See Note 6	TTL-level input step		0.3	a light of	1000

[‡]C_L includes probe and jig capacitance.

NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

DISSIPATION DERATING TABLE

2401405	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	680 mW	11.0 mW/°C	88° C
J (Glass-Mounted Chip)	680 mW	8.2 mW/°C	67°C
N	680 mW	9.2 mW/°C	76° C

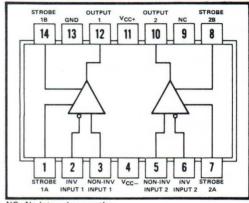
Also see Dissipation Derating Curves, Section 2.

TYPES TL506M, TL506C DUAL DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 11671, MARCH 1972 - REVISED JUNE 1976

- Each Comparator Identical to LM106 or LM306 with Common V_{CC+}, V_{CC-}, and Ground Connections
- Improved Gain and Accuracy

description


The TL506 is a dual high-speed voltage comparator, with each half having differential inputs, a low-impedance output with high-sink-current capability (100 mA), and two strobe inputs. This device detects low-level analog or digital signals and can drive digital logic or lamps and relays directly. Short-circuit protection and surge-current limiting is provided.

The circuit is similar to a TL810 with gated output. A low-level input at either strobe causes the output to remain high regardless of the differential input. When both strobe inputs are either open or at a high logic level, the output voltage is controlled by the differential input voltage. The circuit will operate with any negative supply voltage between -3 V and -12 V with little difference in performance.

The TL506M is characterized for operation over the full military temperature range of -55°C to 125°C ; the TL506C is characterized for operation from 0°C to 70°C .

- Fan-Out to 10 Series 54/74 TTL Loads
- Strobe Capability
- Short-Circuit and Surge Protection
- Fast Response Times

J OR N DUAL-IN-LINE PACKAGE OR W FLAT PACKAGE (TOP VIEW)

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)									×																	15 V
Supply voltage V _{CC} — (see Note 1)																										-15 V
Differential input voltage (see Note 2	2)																									±5 V
Input voltage (any input, see Notes 1																										
Strobe voltage range (see Note 1) .																										
Output voltage (see Note 1)																	·									24 V
Voltage from output to VCC																										30 V
Duration of output short-circuit (see	Note	4)																								10 s
Continuous total dissipation at (or be	elow)	25°	Cf	ree	-air	ter	npe	era	tur	e (s	see	No	te !	5):	E	ach	a	mp	lif	ier					6	00 mW
															T	ota	l p	ac	ka	qe					8	00 mW
Operating free-air temperature range:	TL	5061	1 C	irc	uits																	-5	5°	C	to	125°C
	TL	5060	C	ircu	its																		0	°C	to	70°C
Storage temperature range																										
Lead temperature 1/16 inch (1,6 mm) fro	m ca	ise	for	60	sec	one	ds:	Jo	or V	V pa	ack	age	,							 					300°C
Lead temperature 1/16 inch (1,6 mm) fro	m ca	ise	for	10	sec	one	ds:	N	pac	kag	ge									 					260°C

NOTES: 1. All voltage values, except differential voltages and the voltage from the output to V_{CC}—, are with respect to the network ground terminal

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 7 volts, whichever is less.
- 4. One output at a time may be shorted to ground or either power supply.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL506M chips are alloy-mounted; TL506C chips are glass-mounted.

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -3 \text{ V}$ to -12 V (unless otherwise noted)

		TEST CONDITIONS†			TL506M			UNIT		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V/ =	Input offset voltage	See Note 6	25°		0.5 §	2		1.6 §	5	mV
VIO	Input offset voltage	See Note 6	Full range			3			6.5	1111
۵۷۱O	Average temperature coefficient of input offset voltage	See Note 6	Full range		3	10		5	20	μV/°C
			25°C		0.7 \$	3		1.88	5	
110	Input offset current	See Note 6	MIN		2	7		1	7.5	μА
			MAX		0.4	3		0.5		
	Average temperature coefficient	2 N C	MIN to 25°C		15	75		24	100	nA/°C
αΠΟ	of input offset current	See Note 6	25°C to MAX		5	25		15	50	nA/
			25°C		7 \$	20		16 \$	25	^
IB	Input bias current	V _O = 0.5 V to 5 V	Full range			45			40	μА
IL(S)	Low-level strobe current	V(strobe) = 0.4 V	Full range		-1.7§	-3.3		-1.7\$	-3.3	mA
VIH(S)	High-level strobe voltage		Full range	2.5			2.5			V
VIL(S)	Low-level strobe voltage		Full range		NAME OF THE PARTY	0.9			0.9	V
VICR	Common-mode input voltage range	V _{CC} -= -7 V to -12 V	Full range	±5			±5			V
VID	Differential input voltage range		Full range	±5			±5			V
AVD	Large-signal differential voltage amplification	No load, V _O = 0.5 V to 5 V	25°C		40 000 \$			40 000	i .	
Voн	High-level output voltage	V _{ID} = 5 mV, I _{OH} = -400 μA	Full range	2.5		5.5	2.5		5.5	V
		VID = -5 mV, IOL = 100 mA	25°C		0.88	1.5		0.8\$	2	
VOL	Low-level output voltage	VID = -5 mV, IOL = 50 mA	Full range			1			1	V
		V _{1D} = -5 mV, I _{OL} = 16 mA	Full range			0.4			0.4	
1	With Invalidation of the Control of	V	25°C		0.02 \$	1		0.02	2	μА
ЮН	High-level output current	$V_{1D} = 5 \text{ mV}, V_{OH} = 8 \text{ V to } 24 \text{ V}$	Full range			100			100	μΑ
ICC+	Supply current from V _{CC+}	V _{ID} = -5 mV, See Note 7	Full range		13.9 \$	20		13.9 \$	20	mA
ICC-	Supply current from VCC-	See Note 7	Full range		3.2 §	7.2		3.2 \$	7.2	mA

[†]Unless otherwise noted, all characteristics are measured with the strobe open.

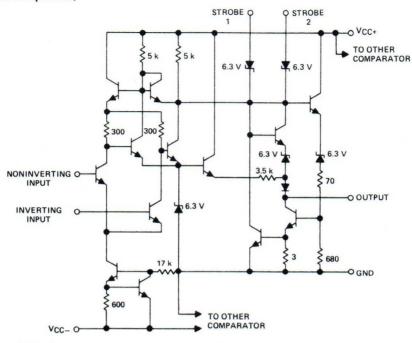
switching characteristics, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_A = 25^{\circ}\text{C}$

DADAMETER	TEST CONDITIONS†		TL506	N		UNIT		
PARAMETER	TEST CONDITIONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Response time, low-to-high-level output	R_L = 390 Ω to 5 V, C_L = 15 pF, See Note 8		28	40		28		ns

NOTE 8: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

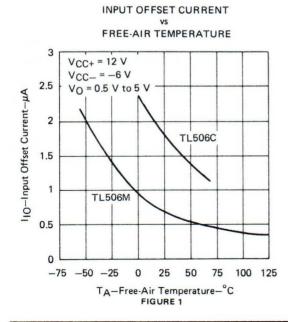
DISSIPATION DERATING TABLE

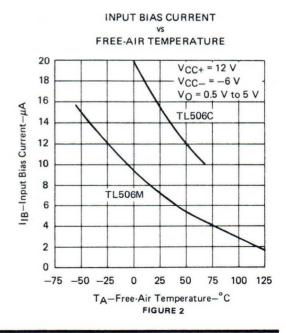
PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	600 mW	11.0 mW/°C	95° C
J (Glass-Mounted Chip)	600 mW	8.2 mW/°C	77° C
N	600 mW	9.2 mW/°C	85° C
w	600 mW	8.0 mW/°C	75°C


Also see Dissipation Derating Curves, Section 2.

^{\$} These typical values are at $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_A = 25^{\circ}\text{C}$. Full range (MIN to MAX) for TL506M is -55°C to 125°C and for the TL506C is 0°C to 70°C .

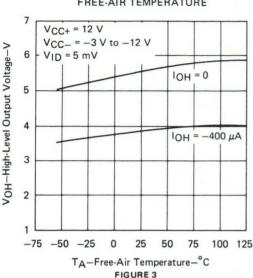
NOTES: 6. The offset voltages and offset currents given are the maximum values required to drive the output down to the low range (V_{OL}) or up to the high range (V_{OH}). Thus these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

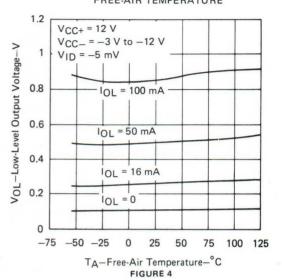

^{7.} Power supply currents are measured with the respective non-inverting inputs and inverting inputs of both comparators connected in parallel. The outputs are open.


schematic (each comparator)

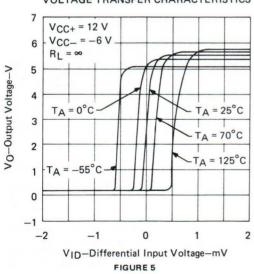
Resistor values are nominal in ohms.

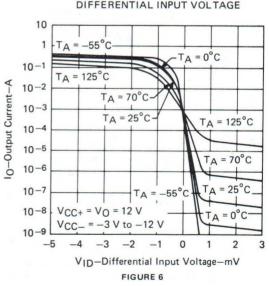
TYPICAL CHARACTERISTICS




TEXAS INSTRUMENTS

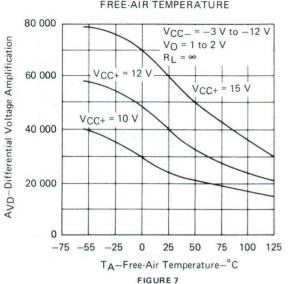
TYPICAL CHARACTERISTICS:



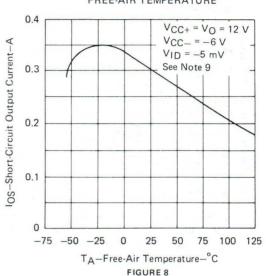

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

VOLTAGE TRANSFER CHARACTERISTICS

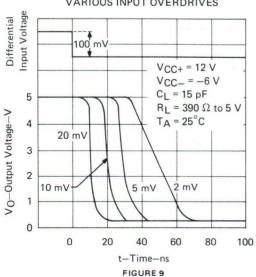
OUTPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE

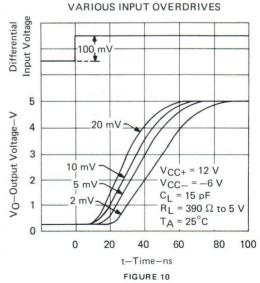


‡Data for temperatures below 0°C and above 70°C is applicable to TL506M circuits only.

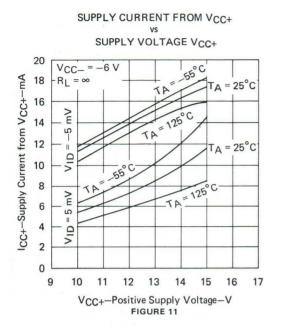

TYPICAL CHARACTERISTICS:

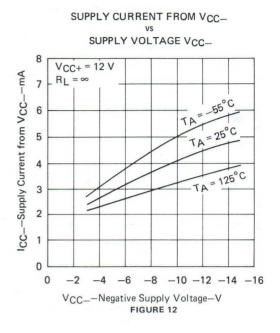
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

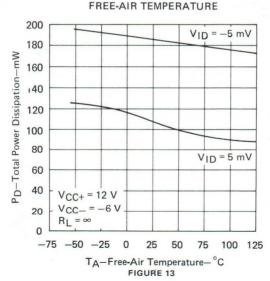

FREE-AIR TEMPERATURE


SHORT-CIRCUIT OUTPUT CURRENT FREE-AIR TEMPERATURE

OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES



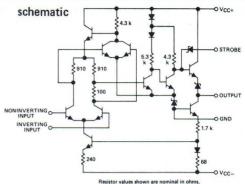

OUTPUT RESPONSE FOR


Data for temperatures below 0°C and above 70°C is applicable to TL506M circuits only. NOTE 9: This parameter was measured using a single 5-ms pulse.

TYPCIAL CHARACTERISTICS#

TOTAL POWER DISSIPATION

 \ddagger Data for temperatures below 0° C and above 70° C is applicable to TL506M circuits only.

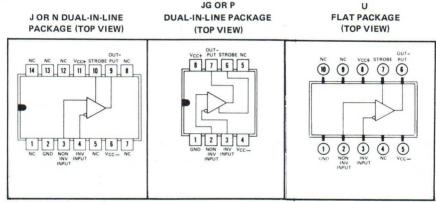

TYPES TL510M, TL510C DIFFERENTIAL COMPARATORS WITH STROBE

BULLETIN NO. DL-S 11452 MARCH 1971-REVISED OCTOBER 1979

- Low Offset Characteristics
- High Differential Voltage Amplification
- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits

description

The TL510 monolithic high-speed voltage comparator is an improved version of the TL710 with an extra stage added to increase voltage amplification and accuracy, and a strobe input for greater flexibility. Typical voltage amplification is 33,000. Since the output cannot be more positive than the strobe, a low-level input at the strobe will cause the output to


Resistor values shown are nominal in ohm:

go low regardless of the differential input. Component matching, inherent in integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are particularly useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector.

The TL510M is characterized for operation over the full military temperature range of -55° C to 125° C; the TL510C is characterized for operation from 0° C to 70° C.

terminal assignments

079

NC-No internal connection

absolute maximum	ratings over	operating	tree-air	temperature	range	(unfess	otherwise noted)	

	Supply voltage V _{CC+} (see Note 1)						- 100							**							. 1	4 V
	Supply voltage VCC_ (see Note 1)																					-7 V
	Differential input voltage (see Note 2)																				. ±	5 V
	Input voltage (either input, see Note 1)																				. ±	7 V
	Strobe Voltage (see Note 1)																					6 V
	Peak output current (t _w ≤1 s)														v						10	mA
	Continuous total power dissipation at (or l	pelov	v) 7	0°C	free	-air	tem	pera	atur	e (s	ee l	Vot	e 3)							300	mW
	Operating free-air temperature range: TL!	510N	Ci	rcuit	S											ï		-5	5°	Ct	o 12	5°C
	TL	510C	Ci	rcuit	ts														(o°C	to 7	0°C
	Storage temperature range																					
	Lead temperature 1/16 inch (1,6 mm) from	n cas	e fo	r 60	sec	ond	: J.	JG	or	Up	ack	age									30	0°C
	Lead temperature 1/16 inch (1,6 mm) from	n cas	e fo	r 10	sec	ond	: N	or F	pa	cka	qe			×							26	o°C
-																						

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- For operation of the TL510M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL510M chips are alloy-mounted; TL510C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

electrical characteristics at specified free-air temperature, V_{CC+} = 12 V, V_{CC-} = -6 V (unless otherwise noted)

	PARAMETER TEST		uonet		TL510M	2 10		TL510C	S. Land	UNIT
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	ONT
	Laurent officet violation	R _S ≤ 200 Ω,	25° C		0.6	2		1.6	3.5	mV
VIO	Input offset voltage	See Note 4	Full range			3			4.5	
	Average temperature coefficient	$R_S = 50 \Omega$,	MIN to 25°C		3	10		3	20	μV/°(
ανιο	of input offset voltage	See Note 4	25°C to MAX		3	10	170	3	20	μνι
	7		25°C		0.75	3	h _y	1.8	5	173
110	Input offset current	See Note 4	MIN	-	1.8	7			7.5	μА
10	Input officer current		MAX		0.25	3			7.5	
	Average temperature coefficient		MIN to 25°C		15	75		24	100	nA/°C
αΙΙΟ	of input offset current	See Note 4	25°C to MAX	. 1	5	25	169	15	50	nA/ (
			25°C		7	15		7	20	Turk
IB	Input bias current	See Note 4	MIN		12	25	ec. L	9	30	μА
I _{IH(S)}	High-level strobe current	V _(strobe) = 5 V, V _{ID} = -5 mV	25°C			± 100		1 -	± 100	μА
I _{IL(S)}	Low-level strobe current	V _(strobe) = -100 mV, V _{ID} = 5 mV	25°C	,	-1	-2.5		-1	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} -= -7 V	Full range	±5	de .	1.3	±5	99. 2	e Ma	V
VID	Differential input voltage range		Full range	±5			±5		121	V
		No load,	25°C	12.5	33		10	33		V/m
AVD		V _O = 0 to 2.5 V	Full range	10		-	8			V/m
V	High-level output voltage	V _{ID} = 5 mV, I _{OH} = 0	Full range		48	5		48	5	V
Vон	High-level output voltage	V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6 §		2.5	3.6 \$		
		V _{1D} = -5 mV, I _{OL} = 0	Full range	-1	-0.5 §	0‡	-1	-0.5 %	0‡	V
VOL	Low-level output voltage	V _(strobe) = 0.3 V, V _{ID} = 5 mV, I _{OL} = 0	Full range	-1		0‡	-1		o‡	v
			25°C	2	2.4		1.6	2.4		
IOL	Low-level output current	$V_{ID} = -5 \text{ mV},$	MIN	1	2.3		0.5	2.4	24	mA
OL		V _O = 0	MAX	0.5	2.3		0.5	2.4		
ro	Output resistance	VO = 1.4 V	25° C		200			200		Ω
_	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100 8	7.	70	100 \$		dB
ICC+	Supply current from V _{CC+}		Full range		5.5 §	9		5.5 8	9	mA
ICC-	Supply current from V _{CC} -	$V_{ID} = -5 \text{ mV},$	Full range		-3.5 \$	-7		-3.5 §	-7	mA
P _D	Total power dissipation	No load	Full range		908	150	1	908	150	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe open. Full range (MIN to MAX) for TL510M is -55°C to 125°C and for the TL510C is 0°C to 70°C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL510M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL510C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.6 \text{ V}$

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C

PARAMETER		TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT
Response time	R _L = ∞,	CL = 5 pF,	See Note 5		30	80	ns
Strobe release time	R _L = ∞,	CL = 5 pF,	See Note 6		5	25	ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage that rises above 1.4 V. The time interval is measured from the 50% point on the strobe voltage waveform to the instant when the overdriven output voltage crosses the 1.4-V level.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§] These typical values are at TA = 25° C.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113°C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
JG (Glass-Mounted Chip)	300 mW	6.6 mW/°C	105°C
N	300 mW	9.2 mW/°C	117°C
P	300 mW	8.0 mW/°C	112°C
U	300 mW	5.4 mW/°C	94°C

Also see Dissipation Derating Curves, Section 2.

TYPICAL CHARACTERISTICS

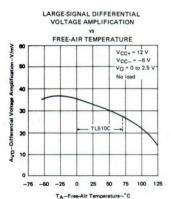


FIGURE 1

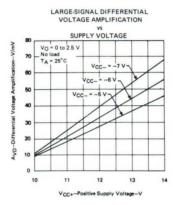


FIGURE 2

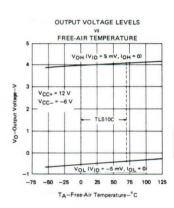


FIGURE 3

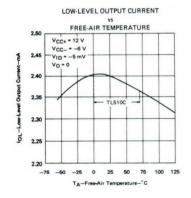


FIGURE 4

079

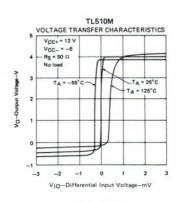


FIGURE 5

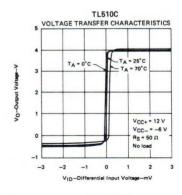


FIGURE 6

TYPICAL CHARACTERISTICS

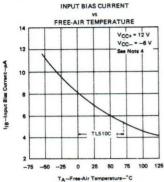


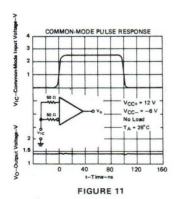

FIGURE 7

OUTPUT RESPONSE FOR

VARIOUS INPUT OVERDRIVES

Differential Input Voltage

/O-Output Voltage 3 10 mV 2



VCC+ = 12 V

VCC- = -6 V -CL = 5 pF RL = « TA = 25°C

60 t-Time-ns FIGURE 9

80

COMMON-MODE REJECTION RATIO

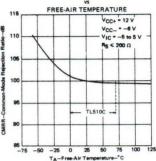


FIGURE 8

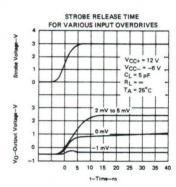
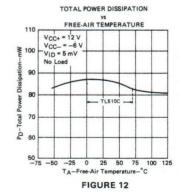
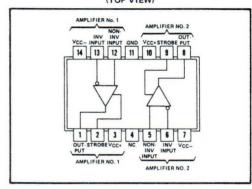
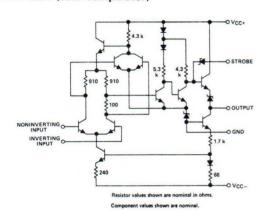



FIGURE 10.


NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL510M, VO = 1.8 V at $T_A = -55^{\circ}$ C, $V_O = 1.4$ V at $T_A = 25^{\circ}$ C, and $V_O = 1$ V at $T_A = 125^{\circ}$ C; for TL510C, $V_O = 1.5$ V at $T_A = 0^{\circ}$ C, $V_O = 1.4$ V at $V_O = 1.6$ V at V_O digital logic circuits these comparators are intended to drive.

TYPES TL514M, TL514C DUAL DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 11451, MARCH 1971-REVISED OCTOBER 1977


- Fast Response Times
- High Differential Voltage Amplification
- Low Offset Characteristics
- Outputs Compatible with Most TTL and DTL Circuits

J OR N DUAL-IN-LINE PACKAGE OR W FLAT PACKAGE (TOP VIEW)

NC-No internal connection

schematic (each comparator)

description

The TL514 is an improved version of the TL720 dual high-speed voltage comparator. When compared with the TL720, these circuits feature higher amplification (typically 33,000) due to an extra amplification stage, increased accuracy because of lower offset characteristics, and greater flexibility with the addition of a strobe to each comparator. Since the output cannot be more positive than the strobe, a low-level input at the strobe will cause the output to go low regardless of the differential input.

These circuits are especially useful in applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector. The TL514M is characterized for operation over the full military temperature range of -55° C to 125° C; the TL514C is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)	1
Supply voltage V _{CC} — (see Note 1)	1
Differential input voltage (see Note 2)	
Input voltage (any input, see Note 1)	1
Strobe voltage (see Note 1)	1
Peak output current (t _W ≤1 s)	
Continuous total dissipation at (or below) 70°C free-air temperature (See Note 3):	
each comparator	V
total package	V
Operating free-air temperature range: TL514M Circuits	
TL514C Circuits	
Storage temperature range	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J or W package	3
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package	

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. For operation of the TL514M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2. In the J package, TL514M chips are alloy-mounted; TL514C chips are glass-mounted.

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDI	rionet		TL514	Λ		TL514	C	
	FARAMETER	TEST CONDI	I IONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	R _S ≤ 200 Ω,	25° C		0.6	2		1.6	3.5	
VIO	imput offset voltage	See Note 4	Full range			3			4.5	mV
	Average temperature coefficient	$R_S = 50 \Omega$,	MIN to 25°C		3	10		3	20	0
ανιο	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	μV/°
			25°C		0.75	3		1.8	5	
110	Input offset current	See Note 4	MIN		1.8	7			7.5	μА
			MAX		0.25	3			7.5	
	Average temperature coefficient		MIN to 25°C		15	75		24	100	
αΠΟ	of input offset current	See Note 4	25°C to MAX		5	25		15	50	nA/°
			25°C		7	15		7	20	
IB	Input bias current	See Note 4	MIN		12	25		9	30	μА
I _{IL} (S)	High-level strobe current	V _(strobe) = 5 V, V _{ID} = -5 mV	25°C			±100			± 100	μА
I _{IH} (S)	Low-level strobe current	V _(strobe) = -100 mV, V _{ID} = 5 mV	25°C		-1	-2.5		-1	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} - = -7 V	Full range	±5			±5			V
VID	Differential input voltage range		Full range	±5			±5			V
^	Large-signal differential	No load,	25°C	12.5	33		10	33		
AVD	voltage amplification V _O =	VO = 0 to 2.5 V	Full range	10			8			V/m
Voн	High-level output voltage	V _{ID} = 5 mV I _{OH} = 0	Full range		48	5		4 \$	5	V
ΨОН	High-level output voltage	V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6 \$		2.5	3.6 \$		
		V _{ID} = -5 mV, I _{OL} = 0	Full range	-1	-0.5 §	0‡	-1	-0.5 §	0‡	V
VOL	Low-level output voltage	V _(strobe) = 0.3 V, V _{ID} = 5 mV, I _{OL} = 0	Full range	-1		0‡	-1		0‡	v
		V F-V	25° C	2	2.4		1.6	2.4		
OL	Low-level output current	$V_{ID} = -5 \text{ mV},$	MIN	1	2.3		0.5	2.4		mA
		V _O = 0	MAX	0.5	2.3		0.5	2.4		
o	Output resistance	V _O = 1.4 V	25° C		200	18000		200		25
	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100\$		70	100 \$		dB
CC+	Supply current from V _{CC+} ¶		Full range		5.5 8	9		5.58	9	mA
	Supply current from VCC-	$V_{ID} = -5 \text{ mV},$	Full range		-3.5 \$	-7	-	-3.5 §	-7	mA
PD	Total power dissipation ¶	No load	Full range		90 §	150		908	150	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe open, Full range (MIN to MAX) for TL514M is -55° C to 125° C and for the TL514C is 0° C to 70° C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL514M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL514C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.5 \text{ V}$

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C

PARAMETER		TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT
Response time	R _L = ∞,	CL = 5 pF,	See Note 5		30	80	ns
Strobe release time	R _L = ∞,	CL = 5 pF,	See Note 6		5	25	ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

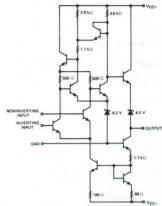
6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage that rises above 1.4 V. The time interval is measured from the 50% point on the strobe voltage waveform to the instant when the overdriven output voltage crosses the 1.4-V level.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§]These typical values are at TA = 25°C.

Suppy current and power dissipation limits apply for each comparator.

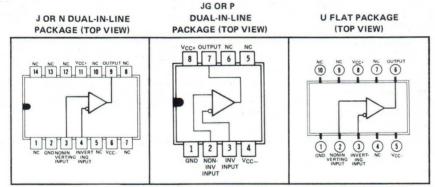
TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS


BULLETIN NO. DL-S 11441, FEBRUARY 1971-REVISED OCTOBER 1979

- Fast Response Times
- Low Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits

description

The TL710 is a monolithic high-speed comparator having differential inputs and a low-impedance output. Component matching, inherent in silicon integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The TL710M is characterized for operation over the full military temperature range of -55°C to 125°C ; the TL710C is characterized for operation from 0°C to 70°C .


schematic

Component values shown are nominal.

terminal assignments

1079

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL710M	TL710C	UNIT
Supply voltage V _{CC+} (see Note 1)		14	14	V
Supply voltage V _{CC} — (see Note 1)		-7	-7	V
Differential input voltage (see Note 2)		±5	±5	V
Input voltage (either input, see Note 1)		±7	±7	V
Peak output current (t _W ≤ 1 s)		10	10	mA
Continous total power dissipation at (or below) 70°C free-air temperature (see Note 3)		300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J, JG, or U package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N or P package		260	°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - For operation of the TL710M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL710M chips are alloy-mounted; TL710C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS†			1	FL710N	Λ		UNIT		
	PARAMETER	IES	I CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V	Input offset voltage	$R_S \leq 200 \Omega$	See Note 4	25°C		2	5		2	7.5	mV
VIO	input offset voltage	HS ≥ 200 12,	See Note 4	Full range			6			10	mv
αVIO	Average temperature coefficient of input offset voltage	R _S ≤ 200 Ω,	See Note 4	Full range	K.	5			7.5		μV/°C
1		See Note 4		25°C		1	10		1	15	
110	Input offset current	See Note 4		Full range			20			25	μΑ
1	Input bias current	See Note 4	See Note 4			25	75		25	100	^
IB	input bias current	See Note 4		Full range			150			150	μΑ
VICR	Common-mode input voltage range	V _{CC} -= -7 V		25°C	±5			±5	17.4		٧
VID	Differential input voltage range			25°C	±5			±5			V
	Large-signal differential		0. 11. 4	25°C	750	1500		700	1500		
AVD	voltage amplification	No load,	See Note 4	Full range	500			500			V/mV
VoH	High-level output voltage	V _{ID} = 15 mV,	IOH = -0.5 mA	25°C	2.5	3.2	4	2.5	3.2	4	V
VOL	Low-level output voltage	$V_{ID} = -15 \text{mV},$	IOL = 0	25°C	-1	-0.5	0‡	-1	-0.5	0‡	V
IOL	Low-level output current	$V_{ID} = -15 \text{mV},$	V _O = 0	25°C	1.6	2.5				- 111	mA
ro	Output resistance	V _O = 1.4 V		25°C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω		25°C	70	90		65	90		dB
ICC+	Supply current from V _{CC+}	$V_{ID} = -5 V \text{ to } $	V	25°C		5.4	10.1		5.4		mA
Icc-	Supply current from V _{CC} -	(-10 mV	for typ),	25°C		-3.8	-8.9		-3.8		mA
PD	Total power dissipation	No load		25°C		88	175		88		mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL710M, $V_O = 1.8 \text{ V}$ at $^{\circ}T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1.2 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1.2 \text{ V}$ at $T_A = 70^{\circ}\text{C}$. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

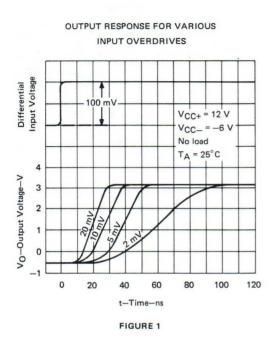
switching characteristics, VCC+ = 12 V, VCC- = -6 V, TA = 25°C

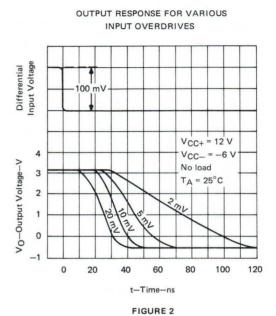
PARAMETER	TEST CONDITIONS	TL710M	TL710C	UNIT
FARAMETER	TEST CONDITIONS	TYP	TYP	UNIT
Response time	No load, See Note 5	40	40	ns

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113°C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
JG (Glass-Mounted Chip)	300 mW	6.6 mW/°C	105°C
N	300 mW	9.2 mW/°C	117°C
P	300 mW	8.0 mW/°C	112°C
U	300 mW	5.4 mW/°C	94°C


Also see Dissipation Derating Curves, Section 2.


[†]Full range for TL710M is -55°C to 125°C and for TL710C is 0°C to 70°C.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS

TYPICAL CHARACTERISTICS

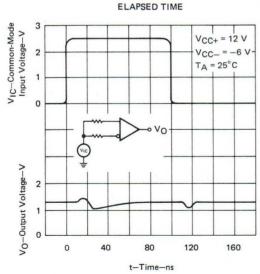
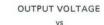
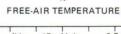




FIGURE 3

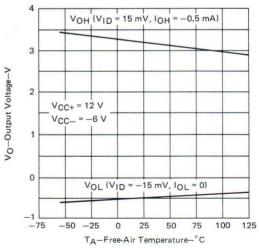
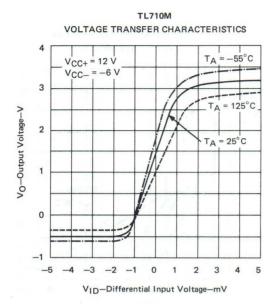



FIGURE 4

TYPICAL CHARACTERISTICS

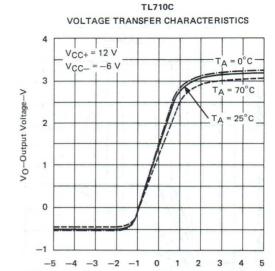


FIGURE 5

FIGURE 6

VID-Differential Input Voltage-mV

TOTAL POWER DISSIPATION

vs FREE-AIR TEMPERATURE

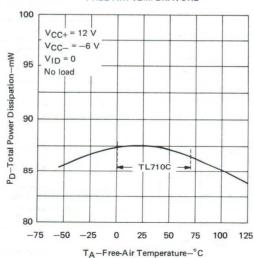
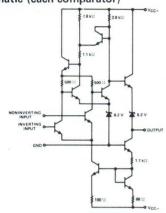
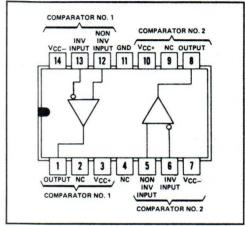



FIGURE 7

NOT RECOMMENDED FOR NEW DESIGN


FOR NEW DESIGN, USE TL820C

schematic (each comparator)

Component values shown are nominal.

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

description

The TL720 is two high-speed comparators in a single package, each electrically identical to the TL710 and having differential inputs and a low-impedance output. Component matching, inherent in silicon monolithic circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. This circuit is especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The TL720C is characterized for operation from 0°C to 70°C.

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)	14 V
Supply voltage V _{CC} — (see Note 1)	-7 V
Differential input voltage (see Note 2)	±5 V
Input voltage (any input, see Note 1)	±7 V
Peak output current, each comparator $(t_W \le 1 \text{ s})$	mA
Continuous total power dissipation: each comparator	mW
total package	mW
Operating free-air temperature range	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package	0°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package	o°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

1079

^{2.} Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

TYPE TL720C DUAL DIFFERENTIAL COMPARATOR

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
\/	Lauret officet voltage	D < 200 0 Can Name 2	25°C		2	7.5	
VIO	Input offset voltage	$R_S \le 200 \Omega$, See Note 3	0°C to 70°C			10	mV
αVIO	Average temperature coefficient of input offset voltage	$R_S \le 200 \Omega$, See Note 3	0°C to 70°C		7.5		μV/°C
Lin	Input offset current	See Note 3	25°C		1	15	
110	input oriset current	See Note 3	0°C to 70°C			25	μΑ
1	Input bias current	See Note 3	25°C		25	100	
IB	Input bias current	See Note 3	0°C to 70°C			150	μΑ
VICR	Common-mode input voltage range	V _{CC} -= -7 V	25°C	±5			V
VID	Differential input voltage range		25°C	±5			V
۸	Large-signal differential	No local Con Note 2	25°C	700	1500		
AVD	voltage amplification	No load, See Note 3	0°C to 70°C	500			1
Vон	High-level output voltage	V _{ID} = 15 mV, I _{OH} = -0.5 n	nA 25°C	2.5	3.2	4	V
VOL	Low-level output voltage	V _{ID} = -15 mV, I _{OL} = 0	25°C	-1	-0.5	0‡	V
ro	Output resistance	V _O = 1.4 V	25°C		200		· Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω	25°C	65	90		dB
ICC+	Supply current from V _{CC+} (each comparator)	V _{ID} = -5 V to 5 V	25°C		5.4		mA
ICC-	Supply current from V _{CC} — (each comparator)	(-10 mV for typ),	25°C		-3.8		mA
PD	Total power dissipation (each comparator)	No load	25°C		88		mW

NOTE 3:These characteristics are verified by measurements at the following temperatures and output voltage levels: $V_0 = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_0 = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_0 = 1.2 \text{ V}$ at $T_A = 70^{\circ}\text{C}$. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

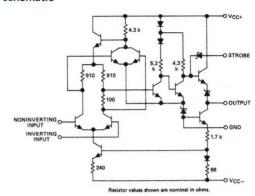
switching characteristics, VCC+ = 12 V, VCC- = -6 V, TA = 25°C

PARAMETER	TEST CONDITIONS	TYP	UNIT
Response time	No load, See Note 4	40	ns

NOTE 4: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS

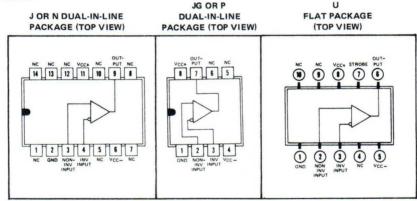

BULLETIN NO. DL-S 11449, MARCH 1971 - REVISED OCTOBER 1979

- Low Offset Characteristics
- High Differential Voltage Amplification
- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits

description

The TL810 is an improved version of the TL710 high-speed voltage comparator with an extra stage added to increase voltage amplification and accuracy. Typical amplification is 33,000. Component matching, inherent in monolithic integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are particularly useful for applica-

schematic



tions requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector.

The TL810M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL810C is characterized for operation from 0°C to 70°C.

terminal assignments

079

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1) .			(*)																					. 14 \	1
Supply voltage V _{CC} _ (see Note 1) .																									
Differential input voltage (see Note 2)																								. ±5\	1
Input voltage (either input, see Note 1																									
Peak output current (t _W ≤1 s)																								10 m	4
Continuous total power dissipation at																									
Operating free-air temperature range:	TL	-8	ION	1 C	irc	uits	;														-!	55°	C.	to 125°	C
	TI	8	100	Ci	ircu	uits																(o°C	to 70°	C
Storage temperature range																					-	65°	C.	to 150°	C
Lead temperature 1/16 inch (1,6 mm)																								300°	C
Lead temperature 1/16 inch (1,6 mm)	fro	om	cas	e f	or	10	sec	on	ds:	: 1	0 1	r F	p	ack	kag	e								260°	C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. For operation of the TL810M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TL810M chips are alloy-mounted; TL810C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	DADAMETER		n.m.ouet		TL810M			TL8100		
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	1	R _S ≤ 200 Ω,	25° C		0.6	2		1.6	3.5	
VIO	Input offset voltage	See Note 4	Full range			3			4.5	mV
	Average temperature coefficient	$R_S = 50 \Omega$,	MIN to 25°C		3	10		3	20	
ανιο	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	μV/°C
			25°C		0.75	3		1.8	5	
110	Input offset current	See Note 4	MIN		1.8	7			7.5	μА
			MAX		0.25	3			7.5	
	Average temperature coefficient	Con Nove 4	MIN to 25°C		15	75		24	100	nA/°C
αΙΙΟ	of input offset current	See Note 4	25°C to MAX		5	25		15	50	nA/ C
	i		25°C		7	15		7	20	
IB	Input bias current	See Note 4	MIN		12	25		9	30	μА
VICR	Common-mode input voltage range	V _{CC} -= -7 V	Full range	±5			±5			V
VID	Differential input voltage range		Full range	±5		-	±5			V
	Large-signal differential	No load,	25°C	12.5	33		10	33		
AVD	voltage amplification	V _O = 0 to 2.5 V	Full range	10			8			V/m\
V	High-level output voltage	V _{ID} = 5 mV I _{OH} = 0	Full range		48	5		48	5	V
Voн	nign-level output voitage	V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6 §		2.5	3.68	1117	1
VOL	Low-level output voltage	V _{ID} = -5 mV, I _{OL} = 0	Full range	-1	-0.5§	0‡	-1	-0.5 §	0‡	V
			25°C	2	2.4		1.6	2.4		
IOL	Low-level output current	$V_{ID} = -5 \text{ mV},$	MIN	1	2.3		0.5	2.4		mA
		V _O = 0	MAX	0.5	2.3		0.5	2.4		1
ro	Output resistance	V _O = 1.4 V	25° C		200			200		12
	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100§		70	100 §		dB
ICC+	Supply current from V _{CC+}		Full range		5.5 §	9		5.5 8	9	mA
ICC-	Supply current from VCC-	$V_{ID} = -5 \text{ mV},$	Full range		-3.5 §	-7		-3.5 §	-7	mA
PD	Total power dissipation	No load	Full range		908	150		908	150	mW

[†]Full range (MIN to MAX) for TL810M is -55°C to 125°C and for the TL810C is 0°C to 70°C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL810M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL810C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.2 \text{ V}$

switching characteristics, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

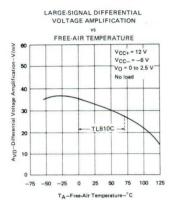
PARAMETER		TEST CONDITIO	INS	MIN	TYP	MAX	UNIT
Response time	R _L = ∞,	$C_L = 5 pF$,	See Note 5	2001	30	80	ns

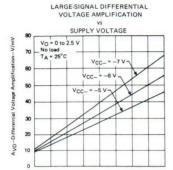
NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§] These typical values are at TA = 25° C.

TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS


DISSIPATION DERATING TABLE


DACKACE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113°C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
JG (Glass-Mounted Chip)	300 mW	6.6 mW/°C	105° C
N	300 mW	9.2 mW/°C	117°C
P	300 mW	8.0 mW/°C	112°C
U	300 mW	5.4 mW/°C	94°C

Also see Dissipation Derating Curves, Section 2.

10

TYPICAL CHARACTERISTICS

V_{CC+}-Positive Supply Voltage-V

FIGURE 2

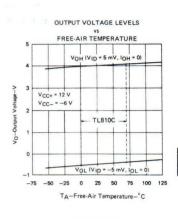
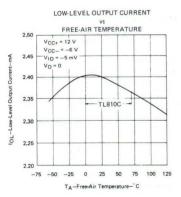
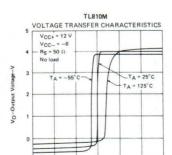




FIGURE 3

FIGURE 1

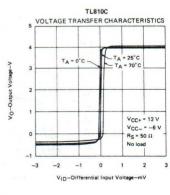
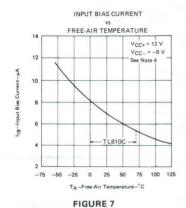


FIGURE 4

079


FIGURE 5

V_{ID}-Differential Input Voltage-mV

FIGURE 6

TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS

TYPICAL CHARACTERISTICS

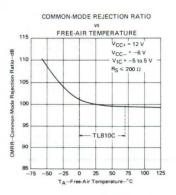


FIGURE 8

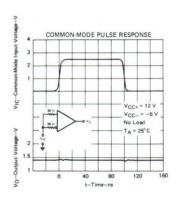
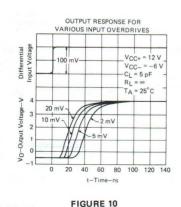



FIGURE 9

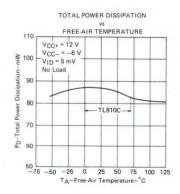
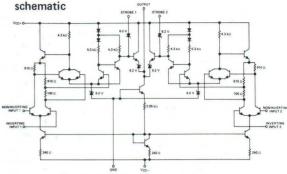


FIGURE 11

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL810M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL810C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.4 \text{ V}$ at $V_O = 1.2 \text{ V}$

TYPES TL811M, TL811C DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

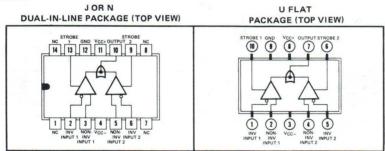

BULLETIN NO. DL-S 11464, MARCH 1971 - REVISED OCTOBER 1979

- **Fast Response Times**
- Improved Voltage Amplification and Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits

description

The TL811 is an improved version of the TL711 highspeed dual-channel voltage comparator. Voltage amplification is higher (typically 17,500) due to an extra stage, increasing the comparator accuracy. The output pulse width may be "stretched" by varying the capacitive loading.

Each channel has differential inputs, a strobe input, and an output in common with the other channel. When either strobe is taken low, it inhibits the associated channel. If both strobes are simultaneously low, the output will be low regardless of the conditions applied to the differential inputs.



Component values shown are nominal.

These dual-channel voltage comparators are particularly attractive for applications requiring an amplitude-discriminating sense amplifier with an adjustable threshold voltage.

The TL811M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL811C is characterized for operation from 0°C to 70°C.

terminal assignments

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1) .	٠.											**												14 V
Supply voltage V _{CC} _ (see Note 1) .					×																			-7 V
Differential input voltage (see Note 2))						¥																	±5 V
Input voltage (any input, see Note 1)																	0.00							±7 V
Strobe Voltage (see Note 1)					,																			. 6 V
Peak output current (t _W ≤1 s)																								50 mA
Continuous total power dissipation at																								
Operating free-air temperature range:																								125°C
	T	L8	11	CC	Circ	cuit	S														(0°(Ct	to 70°C
Storage temperature range																								
Lead temperature 1/16 inch (1,6 mm)																								
Lead temperature 1/16 inch (1,6 mm)	fr	on	1 C	ase	fo	r 1() se	ecc	onc	s:	N	pad	cka	age					 	 				260°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. For operation of the TL811M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J package, the TL811M chips are alloy-mounted; TL811C chips are glass-mounted,

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL811M. TL811C

DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

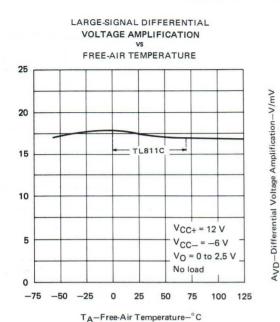
	BARAMETER	TEST COMPLET	ougt	1	TL811N	/	844	TL811	C	UNIT
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		R _S ≤ 200 Ω,	25° C		1	3.5		1	5	A ma
VIO	Input offset voltage	V _{IC} = 0, See Note 4	Full range		-	4.5		1. 15	6	mV
		R _S ≤ 200 Ω,	25°C		1	5		1	7.5	ies@fi
		See Note 4	Full range		- 1	6	A	3/2 3	10	
αVIO	Average temperature coefficient of input offset voltage	$R_S \le 200 \Omega$, $V_{ C} = 0$, See Note 4	Full range	1	5	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5	23 g	μV/°C
	1	S N 4	25° C		0.5	3		0.5	5	
10	Input offset current	See Note 4	Full range		121	5	ar and	17 2517	10	μА
1000	Lama birananan	C N 4	25°C		7	20		7	30	5 100
IB	Input bias current	See Note 4	Full range	1 1	7	30		2	50	μА
IIL(S)	Low-level strobe current	V _(strobe) = -100 mV	25°C	197	-1.2	-2.5		-1.2	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} -= -7 V	25° C	±5			±5	1 1 4	ido en	V
VID	Differential input voltage range	Res Prince	25°C	±5			±5		and early	V
e Jelje	Large-signal differential	V _O = 0 to 2.5 V,	25°C	12.5	17.5	n. 10	10	17.5	de la	1
AVD	voltage amplification	No load	Full range	8			5			V/mV
V	High-level output voltage	V _{ID} = 10 mV, I _{OH} = 0	25° C		4	5	- K-73F	4	5	V
Vон	nigh-level output vortage	V _{ID} = 10 mV, I _{OH} = -5 mA	25° C	2.5	3.6		2.5	3.6	E + 1.72+	V
	Total	V _{ID} = -10 mV, I _{OL} = 0	25° C	-1	-0.4	0‡	-1	-0.4	0‡	FF 6 61
VOL	Low-level output voltage	V _{ID} = 10 mV, V _(strobe) = 0.3 V, I _{OL} = 0	25° C	-1	Part of	0‡	-1	Hall to	0‡	V
IOL	Low-level output current	$V_{1D} = -10 \text{ mV},$ $V_{0} = 0$	25° C	0.5	0.8		0.5	0.8		mA
ro	Output resistance	V _O = 1.4 V	25° C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω	25° C	70	90	- 1	65	90	4	dB
ICC+	Supply current from V _{CC+}	V _{ID} = -5 to 5 V	25°C		6.5			6.5		mA
Icc-	Supply current from V _{CC} -	(-10 mV for typ)	25°C		-2.7		-	-2.7	1	mA
PD	Total power dissipation	No load, See Note 5	25° C		94	150		94	200	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe of the channel under test open, the strobe of the other channel is grounded. Full range for TL811M is -55° C to 125° C and for the TL811C is 0° C to 70° C.

switching characteristics, VCC+ = 12 V, VCC- = -6 V, TA = 25°C

PARAMETER	TEST COMPLETIONS	hâs,	TL811N	/	ori o Gu	TL8110	3 14 Pr	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Response time	R _L = ∞, C _L = 5 pF, See Note 6		33	80	- gane	33	NA COL	ns
Strobe release time	R _L = ∞, C _L = 5 pF, See Note 7	12.7	5	25	vine e	5	desiration	ns

NOTES: 6. The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.


7. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage that rises above 1.4 V. The time interval is measured from the 50% point on the strobe voltage waveform to the instant when the overdriven output voltage crosses the 1.4-V level.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

NOTES: 4. These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL811M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL811C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1.2 \text{ V}$ at 70°C . These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

^{5.} The strobes are alternately grounded.

TYPICAL CHARACTERISTICS

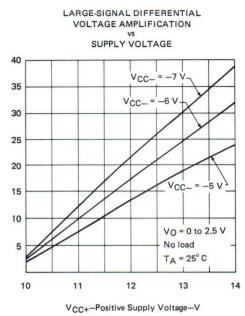


FIGURE 1

FIGURE 2

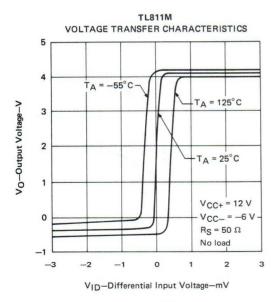


FIGURE 3

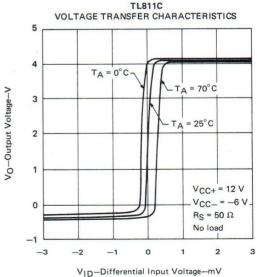
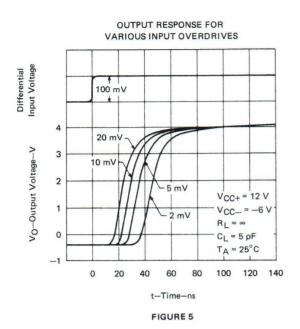
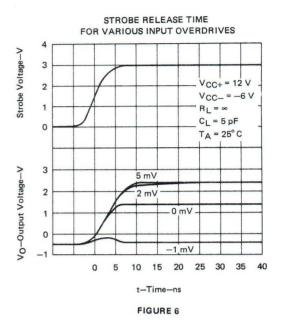
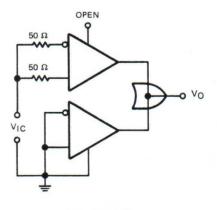




FIGURE 4

TYPES TL811M, TL811C **DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES**

TYPICAL CHARACTERISTICS


COMMON-MODE PULSE RESPONSE V_{IC}-Common-Mode 3 Input Voltage-V 2 1 0 V_{CC+} = 12 V

VCC- = -6 V

No load $T_A = 25^{\circ} C$

120

t-Time-ns FIGURE 7

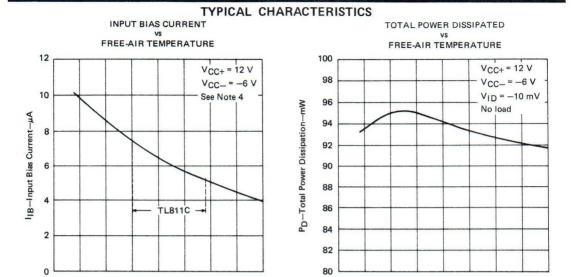
80

40

TEST CIRCUIT FOR FIGURE 7

Vo-Output Voltage-V

2


0

100

125

75

TYPES TL811M, TL811C DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

NOTE 4. These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL811M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL811C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1.2 \text{ V}$ at $T_O = 1.2 \text{$

-75 -50

-25

0 25 50

TA-Free-Air Temperature-°C

FIGURE 9

DISSIPATION DERATING TABLE

DAOKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113°C
N	300 mW	9.2 mW/°C	117°C
U	300 mW	5.4 mW/°C	94°C

Also see Dissipation Derating Curves, Section 2.

-75 -50

-25

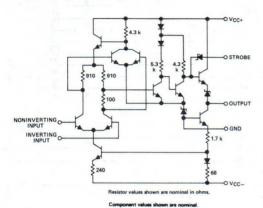
0

25 50

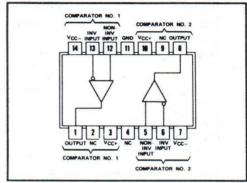
TA-Free-Air Temperature-°C

FIGURE 8

75 100 125


LINEAR INTEGRATED CIRCUITS

TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATORS


BULLETIN NO. DL-S 11450, MARCH 1971-REVISED OCTOBER 1977

- Fast Response Times
- High Differential Voltage Amplification
- Low Offset Characteristics
- Outputs Compatible with Most TTL and DTL Circuits

schematic (each comparator)

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

description

The TL820 is an improved version of the TL720 dual high-speed voltage comparator. Each comparator has differential inputs and a low-impedance output. When compared with the TL720, these circuits feature high amplification (typically 33,000) due to an extra amplification stage and increased accuracy because of lower offset characteristics. They are particularly useful in applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector. The TL820M is characterized for operation over the full military temperature range of -55° C to 125° C; the TL820C is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)																											. 14 V
Supply voltage V _{CC} — (see Note 1)																											7 V
Differential input voltage (see Note 2)																										. ±5 V
Input voltage (any input, see Note 1)															•												. ±7 V
Peak output current (t _W ≤1 s) .																											10 mA
Continuous total power dissipation at	1 (0	r b	elo	w)	70	o°C	fr	ee.	air	te	mp	er	atu	re:	ea	ach	C	om	npa	ara	tor	۲.					300 mW
100000000000000000000000000000000000000				,							•																600 mW
Operating free-air temperature range:	TI		201	N C	Circ	cuit	ts																	· -!	55°	C	to 125°C
Operating free-air temperature range:	TI	_82	200	M C	Circ	uit	ts																	-! -!	55°	o°c	to 125°C C to 70°C
	TI	_82	200	M C	Circ	uit	ts																	-! -!	55°	o°c	to 125°C C to 70°C to 150°C
Operating free-air temperature range:	TI TI	.82	20N 200	M C	Circ	uit	ts s	ecc		s:	J p	ac	kag	e									 	-! -!	55° 65°	°C °C ·C	to 125°C c to 70°C to 150°C 300°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal,
- For operation of the TL820M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL820M chips are alloy-mounted: TL820C chips are glass-mounted.

TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	DAD 444555		numi culat		TL820M			TL820C		UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	1	R _S < 200 Ω,	25°C		0.6	2		1.6	3.5	mV
VIO	Input offset voltage	See Note 4	Full range			3			4.5	1110
	Average temperature coefficient	$R_S = 50 \Omega$,	MIN to 25°C		3	10		3	20	μV/°
αVIO	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	407
			25°C		0.75	3		1.8	5	
10	Input offset current	See Note 4	MIN		1.8	7			7.5	μΑ
			MAX		0.25	3	A	1	7.5	
	Average temperature coefficient	0	MIN to 25°C		15	75		24	100	nA/°
αΙΙΟ	of input offset current	See Note 4	25°C to MAX		5	25		15	50	nA/
			25°C		7	15		7	20	
IB	Input bias current	See Note 4	MIN		12	25		9	30	μА
VICR	Common-mode input voltage range	V _{CC} - = -7 V	Full range	±5			±5			٧
VID	Differential input voltage range		Full range	±5			±5			V
	Large-signal differential	No load,	25°C	12.5	33		10	33		V/m
AVD	voltage amplification	Vo = 0 to 2.5 V	Full range	10			8			7/11
.,	W. b. l. at a second	V _{ID} = 5 mV I _{OH} = 0	Full range		49	5		48	5	V
Vон	High-level output voltage	V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6 §		2.5	3.6 §		
VOL	Low-level output voltage	V _{ID} = -5 mV, I _{OL} = 0	Full range	-1	-0.5§	0‡	-1	-0.5 §	0‡	V
			25°C	2	2.4		1.6	2.4		
OL	Low-level output current	$V_{ID} = -5 \text{ mV},$	MIN	1	2.3	1 1920	0.5	2.4		mA
OL		V _O = 0	MAX	0.5	2.3	1 11	0.5	2.4		
ro	Output resistance	VO = 1.4 V	25°C		200			200		Ω
	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100§	11 169	70	100 §	z - 1 :	dB
Icc+	Supply current from V _{CC+} (each comparator)		Full range		5.5 §	9		5.5 §	9	m/
Icc-	Supply current from V _{CC} (each comparator)	V _{ID} = -5 mV, No load	Full range		-3.5§	-7		-3.5 §	-7	m.A
PD	Total power dissipation (each comparator)		Full range		908	150		90§	150	mV

[†]Full range (MIN to MAX) for TL820M is -55°C to 125°C and for the TL820C is 0°C to 70°C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL820M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL820C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 70^{\circ}\text{C}$. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

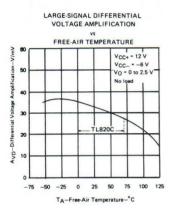
switching characteristics, VCC+ = 12 V, VCC- = -6 V, TA = 25°C

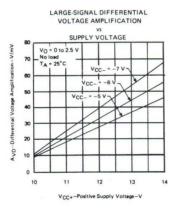
PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Response time	$R_L = \infty$, $C_L = 5 pF$, See Note	5 30 80	ns

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§] These typical values are at TA = 25° C.


TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATORS


DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	600 mW	11.0 mW/°C	95°C
J (Glass-Mounted Chip)	600 mW	8.2 mW/°C	77° C
N	600 mW	9.2 mW/°C	85° C

Also see Dissipation Derating Curves, Section 2.

TYPICAL CHARACTERISTICS

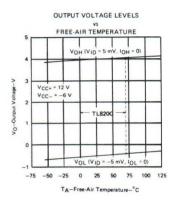
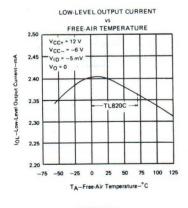
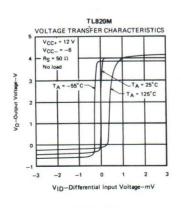




FIGURE 1

FIGURE 2

FIGURE 3

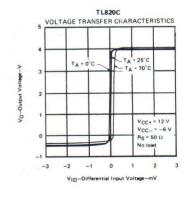


FIGURE 4

FIGURE 5

FIGURE 6

TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATOR

TYPICAL CHARACTERISTICS

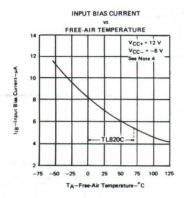


FIGURE 7

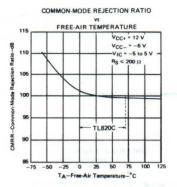


FIGURE 8

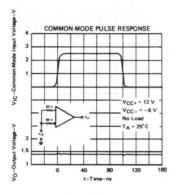


FIGURE 9

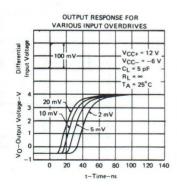


FIGURE 10

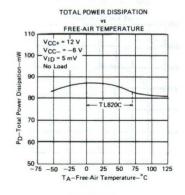
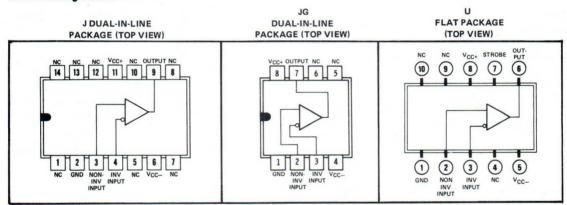


FIGURE 11

107

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL820M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for TL820C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.2 \text{ V}$


- Fast Response Times
- Low Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits
- Designed to be Interchangeable with Fairchild μA710

description

The uA710 is a monolithic high-speed comparator having differential inputs and a low-impedance output. Component matching, inherent in silicon integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. This circuit is especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The uA710M is characterized for operation over the full military temperature range of -55°C to 125°C.

Schematic 2.8 MD 3.9 KD NONINVERTING SOO D 1.7 KD GNO O Component values shown are nominal.

terminal assignments

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage VCC+ (see Note 1) .																	14 V
Supply voltage VCC_ (see Note 1) .																	-7 V
Differential input voltage (see Note 2)																	±5 V
Input voltage (either input, see Note 1))																±7 V
Peak output current (t _W ≤ 1 s)																•	10 mA
Continuous total power dissipation at																	
Operating free-air temperature range													— E	55°	C ·	to	125°C
Storage temperature range			 										-6	35°	C	to	150°C
Lead temperature 1/16 inch (1,6 mm)																	

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- For operation above 25°C free-air temperature, refer to the Dissipation Derating Table. In the J and JG packages, uA710M chips are alloy-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPE uA710M DIFFERENTIAL COMPARATOR

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	PARAMETER	TI	ST CONDITIONS†		MIN	TYP	MAX	UNIT
.,		D < 000 0	0 1	25°C		0.6	2	
VIO	Input offset voltage	$R_S \leq 200 \Omega$,	See Note 4	Full range			3	mV
αVIO	Average temperature coefficient of input offset voltage	R _S ≤ 50 Ω,	See Note 4	Full range		3	10	μV/°(
				25°C		0.75	3	
10	Input offset current	See Note 4		Full range			7	μА
	Average temperature coefficient	0 11 1		-55°C to 25°C		5	25	. 10
αΙΙΟ	of input offset current	See Note 4		25°C to 125°C		15	75	nA/°(
i man	I and the same and	0 11 - 4		25°C		13	20	
IB	Input bias current	See Note 4		Full range			45	μА
VICR	Common-mode input voltage range	V _{CC} -=-7 V		25° C	±5			V
VID	Differential input voltage range			25° C	±5			V
Δ	Large-signal differential	No. local	Con Note 4	25°C	1250	1700		
AVD	voltage amplification	No load,	See Note 4	Full range	1000			1
Vон	High-level output voltage	V _{ID} = 5 mV,	I _{OH} = -5 mA	25°C	2.5	3.2	4	V
VOL	Low-level output voltage	$V_{ID} = -5 \text{ mV},$	I _{OL} = 0	25°C	-1	-0.5	5‡	V
				25°C	2	2.5		
IOL	Low-level output current	$V_{ID} = -5 \text{ mV},$	$V_0 = 0$	−55°C	1	2,3		mA
				125° C	0.5	1.7		
ro	Output resistance	V _O = 1.4 V		25°C		200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω		25°C	80	100		dB
ICC+	Supply current from V _{CC+}	V _{ID} = -5 V to 5 \	/	25°C		5.2	9	mA
Icc-	Supply current from V _{CC} -	(-10 mV for	typ),	25° C		-4.6	- 7	mA
PD	Total power dissipation	No load		25°C		90	150	mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: $V_O = 1.8 \text{ V}$ at $V_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $V_A = 125^{\circ}\text{C}$. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

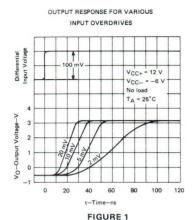
switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C

PARAMETER	TEST C	ONDITIONS	TYP	UNIT
Response time	No load,	See Note 5	40	ns

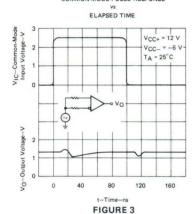
NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

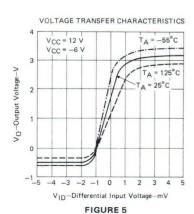
DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C
JG (Alloy-Mounted Chip)	300 mW	8.4 mW/°C	114°C
U	300 mW	5.4 mW/°C	94°C


Also see Dissipation Derating Curves, Section 2.

[†]Full range for uA710M is -55°C to 125°C.


[‡]The algebraic convention where the more-positive (less-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.


TYPE uA710M DIFFERENTIAL COMPARATOR

TYPICAL CHARACTERISTICS

COMMON-MODE PULSE RESPONSE

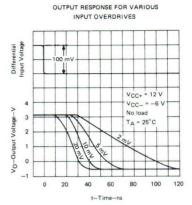


FIGURE 2

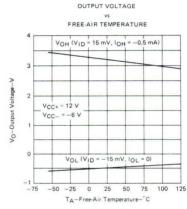
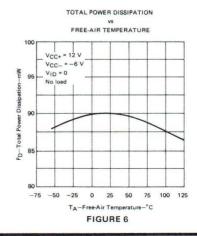
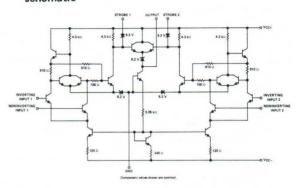



FIGURE 4

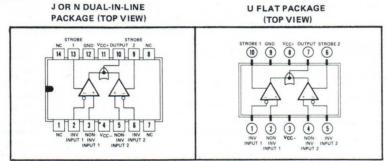
Texas Instruments


BULLETIN NO. DL-S 11442, FEBRUARY 1971 - REVISED OCTOBER 1979

- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits
- Low Offset Characteristics
- Designed to be Interchangeable with Fairchild μA711 and μA711C

description

The uA711 is a high-speed dual-channel comparator with differential inputs and a low-impedance output. Component matching, inherent with silicon monolithic circuit fabrication techniques, produces a comparator circuit with low-drift and low-offset characteristics. An independent strobe input is provided for each of the two channels, which when taken low, inhibits the associated channel. If both strobes are simultaneously low, the output will be low regardless of the conditions applied to the differential inputs. The comparator output pulse width may be "stretched" by varying the capacitive loading. These dual comparators are particularly useful for applications requiring an amplitude-


schematic

discriminating sense amplifier with an adjustable threshold voltage. The uA711M is characterized for operation over the full military temperature range of -55° C to 125° C; the uA711C is characterized for operation from 0° C to 70° C.

terminal assignments

079

NC-No Internal Connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	uA711M	uA711C	UNIT
Supply voltage V _{CC+} (see Note 1)	14	14	V
Supply voltage V _{CC} — (see Note 1)	-7	-7	V
Differential input voltage (see Note 2)	±5	±5	٧
Input voltage (any input, see Note 1)	±7	±7	V
Strobe voltage (see Note 1)	6	6	V
Peak output current (t _W ≤ 1 s)	50	50	mA
Continuous total power dissipation at (or below) 70°C free-air temperature (see Note 3	300	300	mW
Operating free-air temperature range	-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds J or U package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds N package		260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- For operation of uA711M above 70°C free-air temperature, refer to Dissipation Derating Table. In the J package, uA711M chips are alloy-mounted; uA711C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES uA711M, uA711C

DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

	DADAMETER		ST CONDITIONS†			uA711N	И		A711	С	UNIT
	PARAMETER	I E	ST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$R_S \leq 200 \Omega$,	V _{IC} = 0,	25°C		1	3.5		1	5	
	land office and the second	See Note 4		Full range			4.5			6	mV
VIO	Input offset voltage	$R_S \leq 200 \Omega$,		25°C		1	5		1	7.5	mv
		See Note 4		Full range	7 4		6			10	
αVIO	Average temperature coefficient of input offset voltage	$R_S \le 200 \Omega$, See Note 4	V _{IC} = 0,	Full range		5			5	3 1	μV/°C
		C N 4		25°C	infr.	0.5	10		0.5	15	
110	Input offset current	See Note 4		Full range		1	20			25	μА
1	Int bing augment	See Note 4		25°C	15	25	75		25	100	μА
IB	Input bias current	See Note 4		Full range			150			150	μΑ
IL(S)	Low-level strobe current	V _(strobe) = 0,	V _{ID} = 10 mV	25°C		-1.2	-2.5		-1.2	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} - = -7 V		25°C	± 5			±5			V
V _{ID}	Differential input voltage range			25°C	±5			±5			V
	Large-signal differential	No load,		25°C	750	1500		700	1500		
AVD	voltage amplification	V _O = 0 to 2.5 V		Full range	500			500	3.3		
\/ - · ·	High-level output voltage	$V_{ID} = 10 \text{ mV},$	I _{OH} = 0	25°C		4.5	5		4.5	5	V
VOH	High-level output voltage	$V_{ID} = 10 \text{ mV},$	I _{OH} = -5 mA	25°C	2.5	3.5		2.5	3.5		V
		$V_{ID} = -10 \text{ mV},$	IOL = 0	25°C	-1	-0.5	0‡	-1	-0.5	0‡	
VOL	Low-level output voltage	$V_{ID} = 10 \text{ mV},$ $I_{OL} = 0$	$V_{(strobe)} = 0.3 V,$	25°C	-1		0‡	-1		0‡	V
IOL	Low-level output current	$V_{ID} = -10 \text{ mV},$	V _O = 0	25°C	0.5	0.8		0.5	0.8		mA
ro	Output resistance	V _O = 1.4 V		25°C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω		25°C	70	90		65	90		dB
ICC+	Supply current from V _{CC+}	$V_{1D} = -5 \text{ V to 5}^{1}$	V(-10 mV for typ),	25°C		9	101		9		mA
Icc-	Supply current from V _{CC} -	Strobes alternate		25°C		-4			-4		mA
PD	Total power dissipation	No load	0 (0)	25°C		130	200		130	230	mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for uA711M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for uA711C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.2 \text{ V}$

switching characteristics, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER TEST CONDITION	TECT COMPLETIONS		A711	И		С			
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Response time	No load,	See Note 5		40	80		40		ns
Strobe release time	No load,	See Note 6		7	25		7		ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

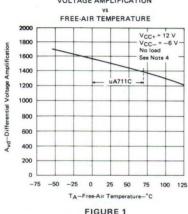
6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage that rises above 1.4 V. The time interval is measured from the 50% point on the strobe voltage waveform to the instant when the overdriven output voltage crosses the 1.4-V level.

[†]Unless otherwise noted, all characteristics are measured with the strobe of the channel under test open. The strobe of the other channel is grounded, Full range for uA711M is -55° C to 125° C and for the uA711C is 0° C to 70° C.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

TYPES uA711M, uA711C DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

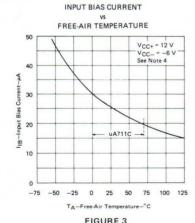
TYPICAL CHARACTERISTICS

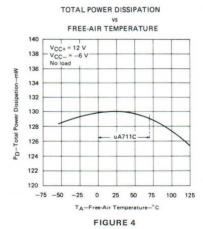

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
J (Alloy-Mounted Chip)	300 mW	11.0 mW/°C	123°C	
J (Glass-Mounted Chip)	300 mW	8.2 mW/°C	113°C	
N	300 mW	9.2 mW/°C	117°C	
U	300 mW	5.4 mW/°C	94°C	

Also see Dissipation Derating, Section 2.

TYPICAL CHARACTERISTICS

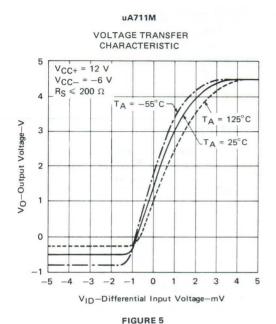

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

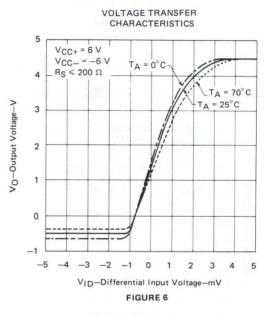


LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION SUPPLY VOLTAGE V_O = 1.4 V T_A = 25°C No load Vcc. 2000 = -6 VCC-A_{vd}-Differential Voltage 1500 VCC-= -5 V 1000 500 0 10 11 12 13 V_{CC+}-Positive Supply Voltage-V

10

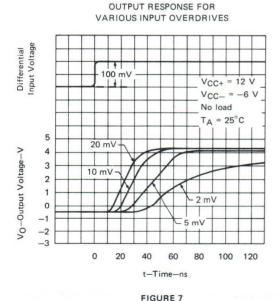
FIGURE 2





NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for uA711M, $V_O = 1.8 \text{ V}$ at $T_A = -55^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, and $V_O = 1 \text{ V}$ at $T_A = 125^{\circ}\text{C}$; for uA711C, $V_O = 1.5 \text{ V}$ at $T_A = 0^{\circ}\text{C}$, $V_O = 1.4 \text{ V}$ at $V_O = 1.4 \text{ V}$


TYPES uA711M, uA711C **DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES**


TYPICAL CHARACTERISTICS

uA711C

STROBE RELEASE TIME FOR VARIOUS INPUT OVERDRIVES

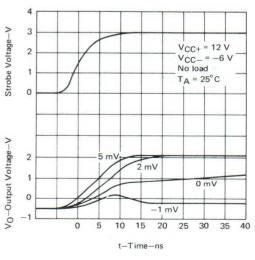


FIGURE 8

Special Functions

SELECTION GUIDE

SPECIAL FUNCTIONS

PA	AGE
Timers	
SE555 : General-purpose timers adjustable from 1 microsecond to 1 second	281
	281
	291
	291
uA2240 : Programmable timer and 8-bit counter specially designed for delays greater than 1 second	401
Amplifiers	
Ser TON (See A RECORD CONTROL	277
	325
	393
Voltage-Level Detectors	
·	339
12400 . To love logarithmic contents in the content in the cont	341
TL487 : 5-level linear converter in the 9 or JG package	343
TL489 : 5-level logarithmic converter in the P or JG package	345
TL499 : 10-level linear converter in the J or N package	349
TL490 : 10-level linear converter in the J or N package	353
12-07 · To total middle control of middle contro	
Analog-to-Digital Converter Components	
ADC0808: Successive-approximation converter	270
ADC0809: Successive-approximation converter	270
ADC0816: Successive-approximation converter	272
ADC0817: Successive-approximation converter with 8-bit resolution	272
TL500 : Dual-slope-converter analog processor with 14-bit resolution	357
TL501 : Dual-slope-converter analog processor with 13-bit resolution	357
TL502 : Dual-slope-converter digital processor with 4½-digit capability, seven-segment-display outputs	357
TL503 : Dual-slope-converter digital processor with 4½-digit capability, BCD outputs	357
TL505 : Dual-slope-converter analog processor with 10-bit resolution	369
TL507 : Pulse-width modulator with 7-bit resolution	377
Zero-Crossing Detector	
TL440	319
5 11 5 1W	
Doubly-Balanced Mixer	
TL442	333
Precision Level Detector	
TL560	381
Overvoltage Sensing Circuits	
MC3423	279
MC3523	279
	_, 0
3-Channel Stepper-Motor Controller	
TL376	315

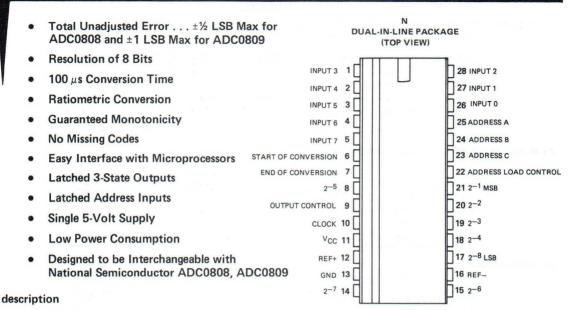
SPECIAL FUNCTIONS

Analog Switches With 30-mA Capability (Bi-MOS)

DEVICE	FUNCTION	Z _{sw} (TYP)	ANALOG RANGE	SUPPLIES	PAGE
TL182	Twin SPST	100 Ω	±10 V	±15, +5	303
TL185	Twin DPST	150 Ω	±10 V	±15, +5	306
TL188	Dual Complementary SPST	100 Ω	±10 V	±15, +5	309
TL191	Twin Dual Complementary SPST	150 Ω	±10 V	±15, +5	312

Analog Switches With 10-mA Capability (P-MOS)

DEVICE	FUNCTION	Z _{sw} (TYP)	ANALOG RANGE	SUPPLIES	PAGE
TL601	SPDT	200 Ω	±10 V	+10, -20	387
TL604	Complementary SPST	200 Ω	±10 V	+10, -20	387
TL607	SPDT	200 Ω	±10 V	+10, -20	387
TL610	SPST	100 Ω	±10 V	+10, -20	387


Hall-Effect Devices

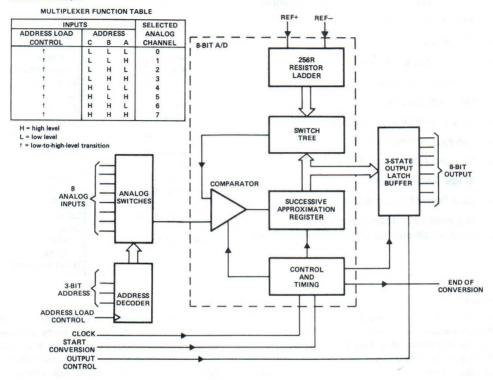
DEVICE	DESCRIPTION	ON	OFF	HYSTERESIS	PAGE
TL170	General purpose switch	>+350 G	<-350 G	200 G	293
TL172	Normally-off switch	>+600 G	<+100 G	230 G	295
TL175	Latch	>+350 G	<-350 G	400 G	299
TL176	Normally-off switch	>+500 G <+100 G		75 G	301
	(Automotive Temp, Range)				
TL173	Linear sensor	1,5 mV/G Sensitivity			297

LINEAR INTEGRATED CIRCUITS

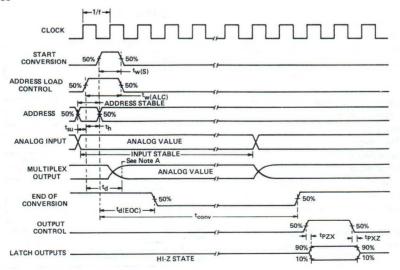
TYPES ADCOROR, ADCOROR DATA ACQUISITION SYSTEMS

JANUARY 1980

The ADC0808 and ADC0809 are monolithic CMOS devices with an 8-channel multiplexer, an 8-bit analog-to-digital (A/D) converter, and microprocessor-compatible control logic. The 8-channel multiplexer can be controlled by a microprocessor through a 3-bit address decoder with address load to select any one of eight single-ended analog switches connected directly to the comparator. The 8-bit A/D converter uses the successive-approximation conversion technique featuring a high-impedance chopper-stabilized comparator, a 256R end-compensated voltage divider with analog switch tree, and a successive-approximation register (SAR).


Each device features an overall error of ±1 LSB maximum at 25°C including resolution (quantization) error. The comparison and converting methods used eliminate the possibility of missing codes, nonmonotonicity, and the need for zero or full-scale adjustment. Also featured are latched 3-state outputs from the SAR and latched inputs to the multiplexer address decoder. The single 5-volt supply and low power requirements make the ADC0808 and ADC0809 especially useful for a wide variety of applications. Ratiometric conversion is made possible by access to the reference voltage input terminals.

The ADC0808 and ADC0809 are characterized for operation from -40°C to 85°C.


TYPES ADCOROR, ADCOROR DATA ACQUISITION SYSTEMS

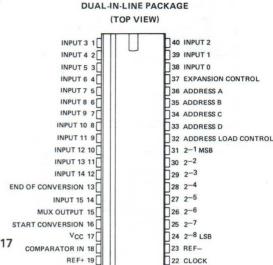
functional block diagram

functional block diagram

operating sequence

NOTE A: Instant at which output is within 1/2 LSB of final value.

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265


LINEAR INTEGRATED CIRCUITS

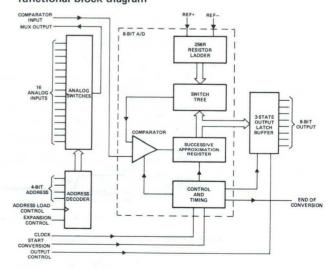
TYPES ADCO816, ADCO817 DATA ACQUISITION SYSTEMS

BULLETIN NO. DL-S 12672, DECEMBER 1979

21 OUTPUT CONTROL

- Total Unadjusted Error . . . ± ½ LSB Max for ADC0816 and ± 1 LSB Max for ADC0817
- Resolution of 8 Bits
- 100 μs Conversion Time
- Ratiometric Conversion
- Guaranteed Monotonicity
- No Missing Codes
- Easy Interface with Microprocessors
- Latched 3-State Outputs
- Latched Address Inputs
- Single 5-Volt Supply
- Low Power Consumption
- Designed to be Interchangeable with National Semiconductor ADC0816, ADC0817

description


The ADC0816 and ADC0817 are monolithic CMOS devices with a 16-channel multiplexer, an 8-bit analog-to-digital (A/D) converter, and microprocessor-compatible control logic. The 16-channel multiplexer can be controlled by a microprocessor through a 4-bit address decoder with address load and expansion control logic, to select any one of 16 single-ended analog switches. The 8-bit A/D converter uses the successive-approximation conversion technique featuring a high-impedance chopper-stabilized comparator, a 256R end-compensated voltage divider with analog switch tree, and a successive-approximation register (SAR).

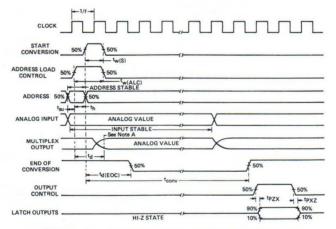
Each device features an overall error of ±1 LSB maximum at 25°C including resolution (quantization) error. The comparison and converting methods used eliminate the possibility of missing codes. monotonicity, and the need for zero or full-scale adjustment. Also featured are latched 3-state outputs from the SAR and latched inputs to the multiplexer address decoder. The single 5-volt supply and low power requirements make the ADC0816 and ADC0817 especially useful for a wide variety of applications. Ratiometric conversion is made possible by access to the reference voltage input terminals.

The ADC0816 and ADC0817 are characterized for operation from -40° C to 85° C.

functional block diagram

GND 20

Copyright © 1979 by Texas Instruments Incorporated


MULTIPLEXER FUNCTION TABLE

	SELECTED					
ADDRESS LOAD	EXPANSION	N ADDRESS				ANALOG
CONTROL	CONTROL	D C B		A	CHANNEL	
†	Н	L	L	L	L	0
1	н	L	L	L	H	1
1	Н	L	L	Н	L	2
↑	Н	L	L	Н	Н	3
↑	Н	L	H	L	L	4
↑	н	L	Н	L	H	5
↑	Н	L	Н	Н	L	6
↑	н	L	Н	H	Н	7
1	н	Н	L	L	L	8
↑	н	Н	L	L	H	9
↑	н	Н	L	H	L	10
1	н	Н	L	Н	H	11
↑	н	Н	H	L	L	12
↑	н	Н	Н	L	Н	13
1	н	Н	Н	H	L	14
1	н	Н	Н	Н	Н	15
X	L	×	×	X	X	All channels OF

H = high level, L = low level, X = irrelevant, $\uparrow = low-to-high-level transition$

operating sequence

279

NOTE A: Instant at which output is within 1/2 LSB of final value.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	6.5 V
Input voltage: control inputs	0.3 V to 15 V
all other inputs	
Continuous total dissipation	
Operating free-air temperature range	
Storage temperature range	65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	

NOTE 1: All voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	6	V
Voltage at top of 256R ladder, V _{ref+}	.21	Vcc	V _{CC} +0.1	V
Voltage at bottom of 256R ladder, V _{ref} _		0	-0.1	V
Voltage across 256R ladder (see Note 2)	0.512	5.12	5.25	V
Start pulse width, t _W (S)	200			ns
Address load control pulse width, tw(ALC)	200			ns
Address setup time, t _{SU}	50			ns
Address hold time, th	50			ns
Clock frequency, fclock	10	640	1200	kHz
Operating free-air temperature, TA	-40		85	°C

NOTE 2: For proper operation, the voltage across the ladder must be centered on $\frac{V_{CC}}{2}$ ±0.1 V.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 4.75 V to 5.25 V (unless otherwise noted)

total device

PARAMETER		TEST CONDITIONS	MIN TYPT MA	X UNIT	
VIH	High-level input voltage		V _{CC} = 5 V	V _{CC} -1.5	V
VIL	Low-level input voltage		V _{CC} = 5 V	1	.5 V
Vон	VOH High-level output voltage		ΙΟ = -360 μΑ	V _{CC} -0.4	V
.,	I am land antend male as	Data outputs	I _O = 1.6 mA	0.4	45 V
VOL	VOL Low-level output voltage	End of conversion	I _O = 1.2 mA	0.4	15
	Off-state (high-impedance-	state)	V _O = 5 V		3
loz	OZ output current		V _O = 0	-	-3 μA
I Input current at maximum control input voltage		V _I = 15 V	5.412	1 μΑ	
IL	Low-level control input cu	rrent	V _I = 0	_	-1 μA
	Comparator input current	3 - 1	$V_{ref+} = V_{CC}$, $V_{ref-} = 0$, $f_{clock} = 640 \text{ kHz}$, See Note 3	±0,5	±2 μΑ
Icc	Supply current		f _{clock} = 500 kHz	0,3	1 mA
C.	Innut consistence	Analog inputs		5 7	.5
Ci	Input capacitance	Control inputs	198 #* To	10	pF
Co	Output capacitance, data o	utputs	3 155	5 7	.5 pF
	Ladder resistance from pin	19 to pin 23		1 4.5	kΩ

analog multiplexer

PARAMETER		TES	TEST CONDITIONS			MAX	UNIT
ron Channel on-state resistance	D - 1010	T _A = 25°C		1.5	3	1.0	
	R _L = 10 kΩ	$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$			6	kΩ	
	Difference in on-state resistance between any two channels	$R_L = 10 \text{ k}\Omega$	A 118 1		75		Ω
1-11	loff Channel off-state current	V _{CC} = 5 V,	V ₁ = 5 V	A Part I	10	200	nA
'011		$T_A = 25^{\circ} C$	V ₁ = 0		-10	-200	T IIA

[†]Typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

NOTE 3: Comparator input current is the bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence.

operating characteristics over recommended operating free-air temperature range, V_{CC} = V_{REF+} = 5 V, V_{REF-} = 0 V, analog input voltage = comparator input voltage (unless otherwise noted)

		TEST CONDITIONS			ADC08	16	ADC0817			UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
ksvs	Supply voltage sensitivity	$V_{CC} = V_{ref+} = 4.75 \text{ V}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C},$			0.05	0.15		0.05	0.15	%/V
	Linearity error (see Note 5)				±0.25	±0.5		±0.5	±1	LSB
	Zero error (see Note 6)				±0.25	±0.5		±0.25	±0.5	LSB
	Full-scale error (see Note 7)				±0.25	±0.5		±0.25	±0.5	LSB
	Total unadjusted	T _A = 25°C			±0.25	±0.5		±0.5	±1	LSB
	error (see Note 8)	$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$				±0.75				LOD
	Resolution (quantization) error (see Note 9)					±0.5			±0.5	LSB
,	Overall error	T _A = 25°C			±0.75	±1		±1	±1.5	1.00
	(see Note 10)	$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$				±1.25				LSB
^t d	Delay time, address load control to analog multiplexer output	$R_S + R_{on} \le 5 k\Omega$, Pin 15 connected to p			1	2.5		1	2.5	μs
tPZX	Output enable time	C _L = 50 pF,	See Note 11		125	250		125	250	ns
tpxz	Output disable time	C _L = 10 pF, See Note 11	R _L = 10 kΩ,		125	250		125	250	ns
tconv	Conversion time	f _{clock} = 640 kHz,	See Note 11	90	100	114	90	100	114	μs
^t d(EOC)	Delay time, end of conversion output	i i		1		8	1		8	Clock

[†] Typical values for all except supply voltage sensitivity at $V_{CC} = 5 \text{ V}$, and all are at $T_A = 25^{\circ} \text{C}$.

NOTES: 4. Supply voltage sensitivity relates to the ability of an analog-to-digital converter to maintain accuracy as the supply voltage varies.

The supply and V_{ref+} are varied together and the change in accuracy is measured with respect to full-scale.

- 5. Linearity error is the maximum deviation from a straight line through the end points of the A/D transfer characteristic.
- 6. Zero error is the difference between the output of an ideal converter and the actual A/D converter for zero input voltage.
- 7. Full-scale error is the difference between the output of an ideal converter and the actual A/D converter for full-scale input
- 8. Total unadjusted error is the maximum sum of linearity error, zero error, and full-scale error.
- 9. Resolution error is the $\pm\%$ LSB uncertainty caused by the converter's finite resolution.
- Overall error describes the difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, included are resolution and all other errors,
- 11. Refer to the operating sequence diagram.

PRINCIPLES OF OPERATION

The ADC0816 and ADC0817 each consists of an analog-signal multiplexer, an 8-bit successive-approximation converter, and related control and output circuitry.

multiplexer

The analog multiplexer selects 1 of 16 single-ended input channels as determined by the address decoder. Address load control loads the address code into the decoder on a low-to-high transition, and expansion control enables the output of the analog multiplexer. The analog signal output and comparator input pins allow additional conditioning (prescaling, sample and hold, amplification, etc.) of the selected signal before conversion.

converter

The 8-bit analog-to-digital converter is the primary operating unit in the ADC0816 and ADC0817. It is partitioned into three major sections: the 256R resistor ladder and switch tree (see Figure 1), the successive approximation register (SAR), and the comparator. Output from the converter is parallel binary positive logic with three-state control. The 256R resistor ladder and switch tree exhibits inherent monotonicity with no missing digital codes. This is particularly important in closed-loop feedback control systems, as a nonmonotonic relationship can cause oscillations that could be catastrophic for the system. The bottom resistor and the top resistor of the ladder are not the same value as the other resistors in the circuit. The difference in these resistors causes the output characteristic to be symmetrical with respect to the zero and full-scale points of the transfer curve. The first output transition corresponds to an analog signal equal to ½ LSB and each succeeding output transition equals 1 LSB up to full-scale. The 256R resistor ladder does not cause load variations on the reference voltage. The SAR performs eight iterations to approximate the input voltage.

The comparator is chopper stabilized. It is this stabilization that reduces temperature sensitivity, input offset error, and long-term dc drift.

The SAR is reset on the low-to-high transition of the start conversion (SC) pulse. The conversion is begun on the high-to-low transition of the SC pulse. A conversion in process will be interrupted by receipt of a new SC pulse. Continuous conversion may be accomplished by connecting the end-of-conversion output to the SC input. If used in this mode, and external start pulse should be applied after power up. The end-of-conversion output will go low between one and eight clock pulses after the low-to-high transition of the SC pulse.

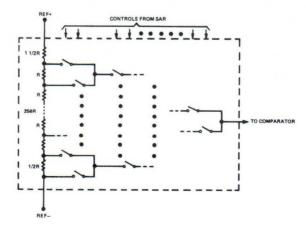
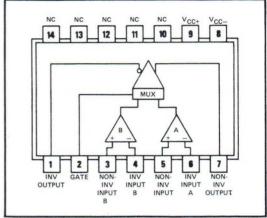


FIGURE 1-256R RESISTOR LADDER AND SWITCH TREE

LINEAR INTEGRATED CIRCUITS


TYPES MC1545, MC1445 GATE-CONTROLLED 2-CHANNEL-INPUT VIDEO AMPLIFIER

BULLETIN NO. DL-S 12742, JANUARY 1980

- Differential Inputs and Outputs
- Channel Select Time . . . 20 ns Typ
- Bandwidth Typically 50 MHz

- 16-dB Minimum Gain
- Common-Mode Rejection Typically 85 dB
- Broadband Noise Typically 25 μV

MC1545...J DUAL-IN-LINE OR
W FLAT PACKAGE
MC1445...J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

NC - No internal connection

description

The MC1545 and MC1445 are general-purpose, gated, dual-channel wideband amplifiers designed for use in video-signal mixing and switching. Channel selection is accomplished by control of the voltage level at the gate. A high logic level selects channel A; a low logic level selects channel B. The unselected channel will have a gain of one or less.

The MC1545 is characterized for operation over the full military operating temperature range of -55° C to 125° C. The MC1445 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MC1545	MC1445	UNIT
Supply voltage V _{CC+} (see Note 1)	voltage V _{CC+} (see Note 1)		+12	V
Supply voltage V _{CC} — (see Note 1)	-12	-12	V	
Differential input voltage (see Note 2)	±5	±5	٧	
Output current	±25	±25	mA	
Continuous total dissipation at (or below) 25°C free-air temperatu	re (see Note 3)	675	675	mW
Operating free-air temperature range		-55 to 125	0 to 75	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J or W package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N package	260	260	°C

NOTES: 1. Voltage values, except differential input voltage, are with respect to the midpoint of V_{CC+} and V_{CC-} .

- 2. Differential input voltages are measured at a noninverting input terminal with respect to the appropriate inverting input terminal.
- 3. For operation above 25°C free-air temperature, refer to the Dissipation Derating Table. In the J package, MC1545 chips are alloy-mounted; MC1445 chips are glass-mounted.

TYPES MC1545, MC1445 GATE-CONTROLLED 2-CHANNEL-INPUT VIDEO AMPLIFIER

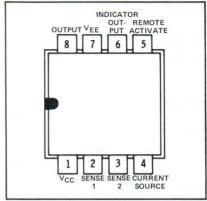
DISSIPATION DERATING TABLE

POWER	DERATING	ABOVE
RATING	FACTOR	TA
675 mW	11.0 mW/°C	89° C
675 mW	8.2 mW/°C	68° C
675 mW	9.2 mW/°C	77° C
675 mW	8.0 mW/°C	66° C
	675 mW 675 mW 675 mW	RATING FACTOR 675 mW 11.0 mW/°C 675 mW 8.2 mW/°C 675 mW 9.2 mW/°C

Also see Dissipation Derating Curves in Section 2.

electrical characteristics at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25° C

PARAMETER		TEST CO.	NDITIONS		MC154	15	l l	MC1445	5	
	PARAMETER	TEST COI	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	רואט
Avs	Large-signal-single-ended voltage amplification	f = 125 kHz,	V _i = 20 mV	16	19	21	16	19.5	23	dB
BW	Bandwidth	V _i = 20 mV		40	50			50	1	MHz
VIO	Input offset voltage				1	5			7.5	mV
110	Input offset current				2			2		μΑ
IB	Input bias current				15	25		15	30	μΑ
VICR	Common-mode voltage range				±2.5			±2.5	1-2-2	V
VOPP	Maximum peak-to-peak output voltage swing	f = 50 kHz,	R _L = 1 kΩ	1.5	2.5		1.5	2.5		V
Zi	Input impedance	f = 50 kHz		4	10		3	10		kΩ
CMRR	Common-mode rejection ratio	f = 50 kHz			85			85		dB
Vn	Broadband equivalent input noise voltage	BW = 5 Hz to 10 M Rs = 50 Ω	Hz,		25	-	(e)	25		μV
V _{TH}	High-level gate threshold voltage	A _{VS(A)} ≥ 16 dB,	Avs(B) ≤ 0 dB		1.5	2.2		1.3	3	V
VTL	Low-level gate threshold voltage	AVS(B) ≥ 16 dB,	A _{VS(A)} ≤ 0 dB	0.4	0.7		0.2	0.4		V
lini.	High-level gate current	V ₁ = 5 V				2			4	μА
IIL	Low-level gate current	V ₁ = 0 V			ji.	2.5			4	mA
^t PLH	Propagation delay time, low-to-high-level output	$\Delta V_{\parallel} = 20 \text{ mV},$	50% to 50%		6.5	10		6.5		ns
tPHL	Propagation delay time, high-to-low-level output	ΔV _I = 20 mV,	50% to 50%		6.3	10		6.3		ns
^t TLH	Transition time, low-to-high-level	$\Delta V_{\parallel} = 20 \text{ mV},$	10% to 90%		6.5	15		6.5		ns
^t THL	Transition time, high-to-low-level	$\Delta V_1 = 20 \text{ mV},$	10% to 90%		7	15		7		ns
I _{CC+}	Supply current from V _{CC+}	No load,	No signal		7	11		7	15	mA
ICC-	Supply current from V _{CC} -	No load,	No signal		-7	-11		-7	-15	mA
PD	Power Dissipation	No load,	No signal		70	110		70	150	mW

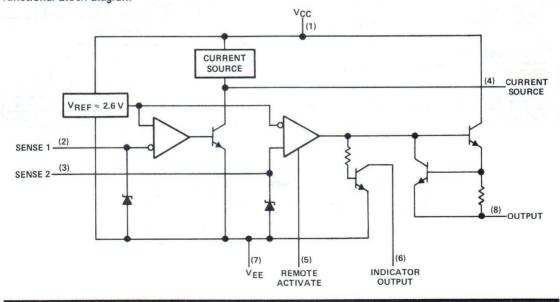

LINEAR INTEGRATED CIRCUITS

TYPES MC3523, MC3423 OVERVOLTAGE-SENSING CIRCUITS

BULLETIN NO. DL-S 12611, APRIL 1978

- Commercial and Military Temperature Ranges Available
- Separate Outputs for "Crowbar" and Logic Circuitry
- Programmable Time Delay to Eliminate Noise Triggering
- TTL-Level Activation Isolated from Voltage-Sensing Inputs
- 2.6-Volt Internal Voltage Reference with Temperature Coefficient Typically 0.08%/°C

MC3523 JG MC3423 JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)


description

079

These overvoltage-sensing circuits are designed to protect sensitive electronic circuitry by monitoring the supply rail and triggering an external "crowbar" SCR in the event of a voltage transient or loss of regulation. The protective mechanism may be activated by an overvoltage condition at the Sense 2 input or by application of a TTL high level to the remote activate terminal. Separate outputs are available to trigger the crowbar circuit and to provide a logic pulse to indicator or power supply control circuitry. The Sense 2 input provides a direct control of the output circuitry. The Sense 1 input controls an internal current source that may be utilized to implement a delayed trigger by connecting its output to an external capacitor and the Sense 2 input. This protects against false triggering due to noise at the Sense 1 input.

The MC3523 is characterized for operation over the full military temperature range of -55° C to 125° C. The MC3423 is characterized for operation from 0° C to 70° C.

functional block diagram

Copyright © 1978 by Texas Instruments Incorporated

TYPES MC3523, MC3423 OVERVOLTAGE-SENSING CIRCUITS

absolute maximum ratings

Supply voltage, VCC (see Note 1)
Sense 1 voltage
Sense 2 voltage
Remote activate input voltage
Output current, IO
Continuous dissipation at (or below) 25°C free-air temperature (see Note 2):MC3523JG 825 mV
MC3423JG 1000 mV
P package 1000 mV
Operating free-air temperature range: MC3423
MC3523
Storage temperature range

NOTES: 1. Voltage values are measured with respect to the VEE terminal.

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, VCC	4.5	40	V
High-level input voltage, remote activate input	. 2		V
Low-level input voltage, remote activate input		0.5	V

electrical characteristics over operating free-air temperature range, V_{CC} = 5 V to 36 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage		Remote activate at 2 V, I _O = 100 mA	V _{CC} – 2.2 V	V _{CC} – 1.8 V	371	V
Indicator low-level output voltage		Remote activate 2 V, I _O = 1.6 mA		0.1	0.4	V
Threshold voltage at either sense input		T _A = 25°C	2.45	2.6	2.75	V
Temperature coefficient at input threshold	old voltage			0.06		%/°C
Source current (pin 4)		Sense 1 at 3 V, Pin 4 at 1.3 V	0.1	0.22	0.3	mA
High-level input current, remote activate	input	$V_{CC} = 5 \text{ V}, \qquad V_1 = 2 \text{ V}$		5	40	μΑ
Low-level input current, remote activate	input	V _{CC} = 5 V, V _I = 0.8 V		-120	-180	μΑ
CI	MC3423			6	10	
Supply current	MC3523	Outputs open		5	7	mA
Propagation delay time, remote activate	input to output	T _A = 25°C		0.5		μs
Output current rate of rise		T _A = 25°C		400	-	mA/μs

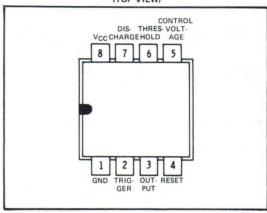
DISSIPATION DERATING TABLE

DAGKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	1050 mW	8.4 mW/°C	25°C
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	1000 mW	8 mW/°C	25°C

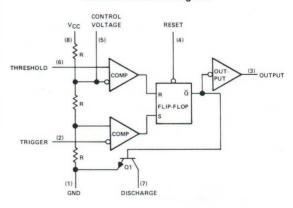
Also see Dissipation Derating Curves, Section 2.

For operation above 25°C free-air temperature, refer to the Dissipation Derating Table. In the JG package, MC3523 chips are alloy-mounted; MC3423 chips are glass-mounted.

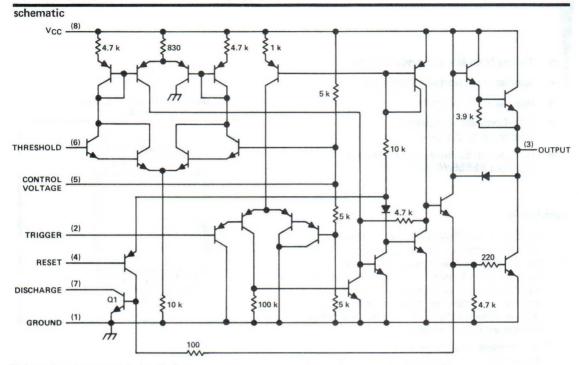
- Timing from Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL-Compatible Output Can Sink or Source up to 200 mA
- Designed to be Interchangeable with Signetics SE555/NE555


description

The SE555 and NE555 are monolithic timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle may be independently controlled with two external resistors and a single external capacitor.


The threshold and trigger levels are normally two-thirds and one-third, respectively, of V_{CC}. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. When the threshold input rises above the threshold level, the flip-flop is reset and the output goes low. The reset input can override all other inputs and can be used to initiate a new timing cycle. When the reset input goes low, the flip-flop is reset and the output goes low. When the output is low, a low-impedance path is provided between the discharge terminal and ground.

The output circuit is capable of sinking or sourcing current up to 200 milliamperes. Operation is specified for supplies of 5 to 15 volts. With a 5-volt supply, output levels are compatible with TTL inputs.


JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

functional block diagram

Copyright © 1979 by Texas Instruments Incorporated

Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)									. 18	3 V
Input voltage (control voltage, reset, threshold, trigger)									. V	CC
Output current										nA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note	2)									
Operating free-air temperature range: SE555					,				to 125	
NE555							()°C	to 70)°C
Storage temperature range						-6	35°	C 1	to 150)°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG package	¥		,						300)°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package									260)°C

NOTES: 1. All voltage values are with respect to network ground terminal.

For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, SE555 chips are alloy-mounted, NE555 chips are glass-mounted.

recommended operating conditions

282

		SE555			NE555			
	MIN	NOM	MAX	MIN	NOM	NOM MAX		
Supply voltage, VCC	4.5		18	4.5		16	V	
Input voltage, V _I (control voltage, reset, threshold, trigger)			Vcc			VCC	V	
Output Current, IO			±200	Į.		±200	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

electrical characteristics at 25°C free-air temperature, VCC = 5 V to 15 V (unless otherwise noted)

	TEAT	CAUDITIONS		SE555						
PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Threshold voltage level as a percentage of supply voltage				66.7			66.7		%	
Threshold current (see Note 3)				0.1	0.25		0.1	0.25	μΑ	
Trigger voltage level	V _{CC} = 15 V		4.8	5	5.2		5		V	
Trigger vortage level	V _{CC} = 5 V		1.45	1.67	1.9		1.67		٧	
Trigger current				0.5			0.5		μΑ	
Reset voltage level			0.4	0.7	1	0.4	0.7	1	٧	
Reset current				0.1			0.1		mA	
Control voltage	V _{CC} = 15 V		9.6	10	10.4	9	10	11	V	
(open-circuit)	V _{CC} = 5 V		2.9	3.3	3.8	2.6	3.3	4	V	
		I _{OL} = 10 mA		0.1	0.15		0.1	0.25		
	V _{CC} = 15 V	I _{OL} = 50 mA	7	0.4	0.5		0.4	0.75		
_ow-level output voltage	AGG - 12 A	I _{OL} = 100 mA		2	2.2		2	2.5	V	
Low-level output voltage		I _{OL} = 200 mA		2.5			2.5			
	V _{CC} = 5 V	IOL = 5 mA					0.25	0.35		
	VCC = 3 V	I _{OL} = 8 mA		0.1	0.25					
	V _{CC} = 15 V	$I_{OH} = -100 \text{ mA}$	13	13.3		12.75	13.3			
High-level output voltage	VCC - 13 V	$I_{OH} = -200 \text{ mA}$		12.5			12.5		V	
	V _{CC} = 5 V	I _{OH} = -100 mA	3	3.3		2.75	3.3			
Complete	Output low,	V _{CC} = 15 V		10	12		10	15		
	No load	V _{CC} = 5 V		3	5		3	6	mA	
Supply current	Output high,	V _{CC} = 15 V		9	11		9	14	1 IIIA	
	No load	V _{CC} = 5 V		2	4		2	5		

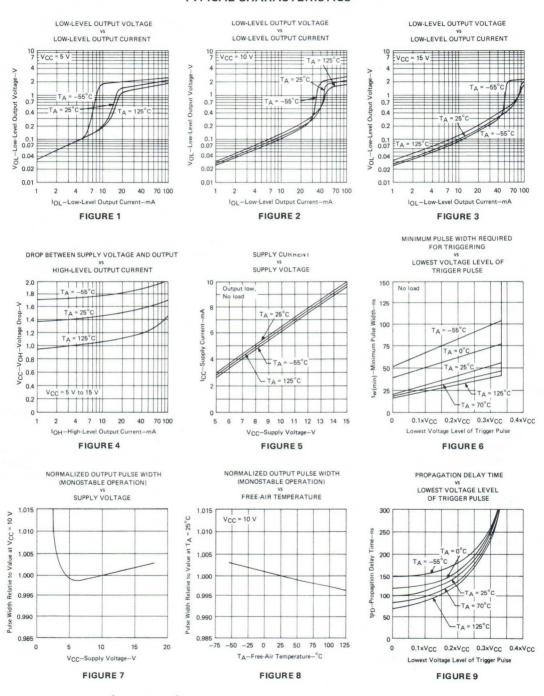
NOTE 3: This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 13. For example when $V_{CC} = 5$ V the maximum value is $R = R_A + R_B \approx 20$ M Ω .

operating characteristics, VCC = 5 V and 15 V

PARAMETER	TEST COMP.	TEST CONDITIONS†			SE555 NE555		SE555		NE555		UNIT
PARAMETER	LEST COND	I I IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
Initial error of timing interval	$R_A = 1 k\Omega \text{ to } 100 k\Omega$	T _A = 25°C		0.5	2		1		%		
Temperature coefficient of timing interval	$R_B = 0$ to $100 \text{ k}\Omega$,	T _A = MIN to MAX		30	100		50		ppm/°(
Supply voltage sensitivity of timing interval	C = 0.1 μF	T _A = 25°C		0.05	0.2		0.1		%/V		
Output pulse rise time	0 - 15 - 5	T _A = 25°C		100			100		ns		
Output pulse fall time	$C_L = 15 pF$,	1 A - 25 C		100			100		ns		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

DISSIPATION DERATING TABLE


PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Alloy-Mounted Chip)	600 mW	8.4 mW/°C	79° C
JG (Glass-Mounted Chip)	600 mW	6.6 mW/°C	59°C
P	600 mW	8.0 mW/°C	75° C

Also see Dissipation Derating Curves, Section 2.

FIGURE 1

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS†

[†]Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only.

TYPICAL APPLICATION DATA

monostable operation

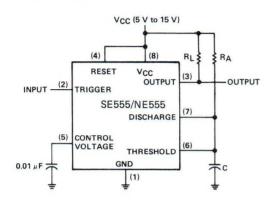


FIGURE 10-CIRCUIT FOR MONOSTABLE OPERATION

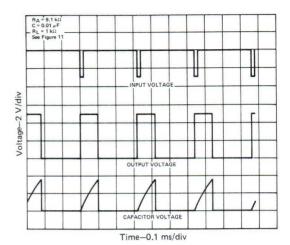


FIGURE 11-TYPICAL MONOSTABLE WAVEFORMS

For monostable operation, the SE555/NE555 may be connected as shown in Figure 10. If the output is low, application of a negative-going pulse to the trigger input sets the flip-flop (\overline{Q} goes low), drives the output high, and turns off Q1. Capacitor C is then charged through R_A until the voltage across the capacitor reaches the threshold voltage of the threshold input. If the trigger input has returned to a high level, the output of the threshold comparator will reset the flip-flop (\overline{Q} goes high), drive the output low, and discharge C through Q1.

Monostable operation is initiated when the trigger input voltage falls below the trigger threshold. Once initiated, the sequence will complete only if the trigger input is high at the end of the timing interval. Because of the threshold level and

saturation voltage of Q1, the output pulse width is approximately $t_{W}=1.1\ R_{\Delta}C.$ Figure 12 is a plot of the time constant for various values of R_{Δ} and C. The threshold levels and charge rates are both directly proportional to the supply voltage, $V_{CC}.$ The timing interval is therefore independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to the reset and trigger terminals during the timing interval will discharge C and re-initiate the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. When the reset input is not used, it should be connected to VCC to prevent false triggering.

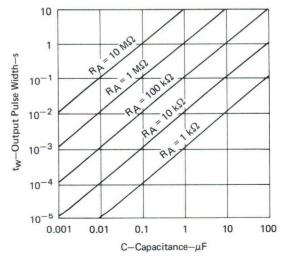
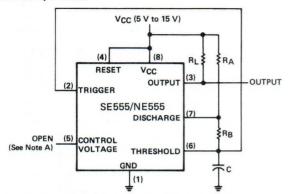



FIGURE 12-OUTPUT PULSE WIDTH vs CAPACITANCE

TEXAS INSTRUMENTS

astable operation

TYPICAL APPLICATION DATA

NOTE A: Decoupling the control voltage input (pin 5) to ground with a capacitor may improve operation.

This should be evaluated for individual applications.

FIGURE 13-CIRCUIT FOR ASTABLE OPERATION

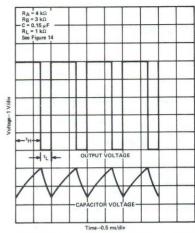


FIGURE 14-TYPICAL ASTABLE WAVEFORMS

Addition of a second resistor, R_B , to the circuit of Figure 10, as shown in Figure 13, and connection of the trigger input to the threshold input will cause the SE555/NE555 to self-trigger and run as a multivibrator. The capacitor C will charge through R_A and R_B then discharge through R_B only. The duty cycle may be controlled, therefore, by the values of R_A and R_B .

This astable connection results in capacitor C charging and discharging between the threshold-voltage level ($\approx 0.67 \cdot V_{CC}$) and the trigger-voltage level ($\approx 0.33 \cdot V_{CC}$). As in the monostable circuit, charge and discharge times (and therefore the frequency and duty cycle) are independent of the supply voltage.

Figure 14 shows typical waveforms generated during a stable operation. The output high-level duration t_H and low-level duration t_I may be found by:

$$t_H = 0.693 (R_A + R_B) C$$

$$t_L = 0.693 (R_B) C$$

Other useful relationships are shown below.

period =
$$t_H + t_L = 0.693 (R_A + 2R_B) C$$

frequency
$$\approx \frac{1.44}{(R_A + 2R_B) C}$$

Output driver duty cycle =
$$\frac{t_L}{t_H + t_I} = \frac{R_B}{R_A + 2R_B}$$

Output waveform duty cycle =
$$\frac{t_H}{t_H + t_L} = 1 - \frac{R_B}{R_A + 2R_B}$$

$$Low-to-high\ ratio = \frac{t_L}{t_H} = \frac{R_B}{R_A + R_B}$$

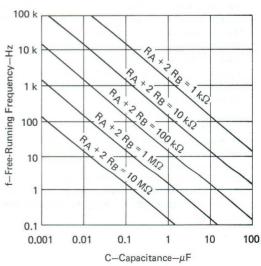
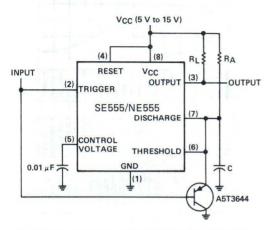



FIGURE 15-FREE-RUNNING FREQUENCY

D

TYPICAL APPLICATION DATA

missing-pulse detector

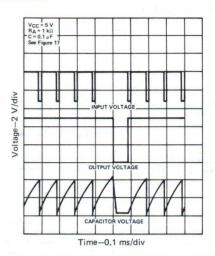


FIGURE 16-CIRCUIT FOR MISSING-PULSE DETECTOR

FIGURE 17-MISSING-PULSE DETECTOR WAVEFORMS

The circuit shown in Figure 16 may be utilized to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is continuously retriggered by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train will permit the timing interval to be completed, thereby generating an output pulse as illustrated in Figure 17.

frequency divider

By adjusting the length of the timing cycle, the basic circuit of Figure 10 can be made to operate as a frequency divider. Figure 18 illustrates a divide-by-3 circuit that makes use of the fact that retriggering cannot occur during the timing cycle.

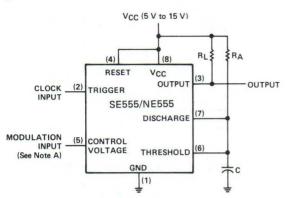
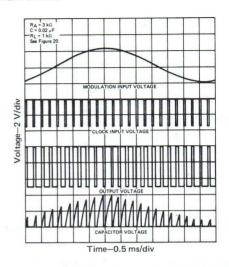



FIGURE 18-DIVIDE-BY-THREE CIRCUIT WAVEFORMS


TYPES SE555, NE555 PRECISION TIMERS

TYPICAL APPLICATION DATA

pulse-width modulation

NOTE A: The modulating signal may be direct or capacitively coupled to the control voltage terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the SE555/NE555 should be considered.

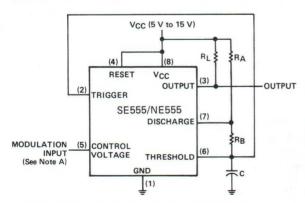
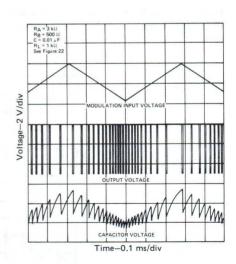


FIGURE 19-CIRCUIT FOR PULSE-WIDTH MODULATION


FIGURE 20-PULSE-WIDTH-MODULATION WAVEFORMS

The operation of the timer may be modified by modulating the internal threshold and trigger voltages. This is accomplished by applying an external voltage (or current) to the control voltage pin. Figure 19 is a circuit for pulse-width modulation. The monostable circuit is triggered by a continuous input pulse train and the threshold voltage is modulated by a control signal. The resultant effect is a modulation of the output pulse width, as shown in Figure 20. A sine-wave modulation signal is illustrated, but any wave-shape could be used.

pulse-position modulation

NOTE A: The modulating signal may be direct or capacitively coupled to the control voltage terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the SE555/NE555 should be considered.

FIGURE 21-CIRCUIT FOR PULSE-POSITION MODULATION

FIGURE 22-PULSE POSITION-MODULATION WAVEFORMS

The SE555/NE555 may be used as a pulse-position modulator as shown in Figure 21. In this application, the threshold voltage, and thereby the time delay, of a free-running oscillator is modulated. Figure 22 shows such a circuit, with a triangular-wave modulation signal, however, any modulating wave-shape could be used.

TEXAS INSTRUMENTS

TYPES SE555, NE555 PRECISION TIMERS

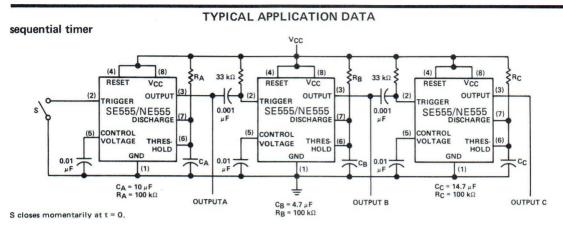


FIGURE 23-SEQUENTIAL TIMER CIRCUIT

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications such as test equipment require activation of test signals in sequence. SE555/NE555 circuits may be connected to provide such sequential control. The timers may be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 23 illustrates a sequencer circuit with possible applications in many systems and Figure 24 shows the output waveforms.

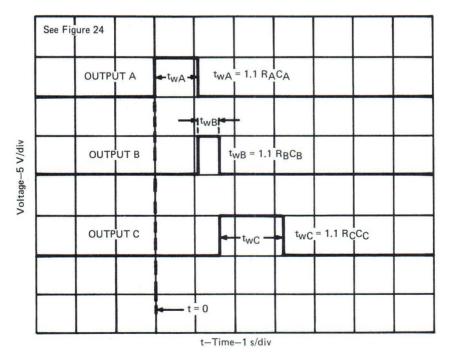
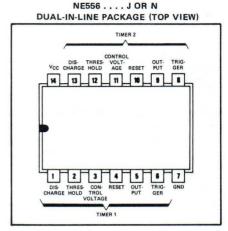
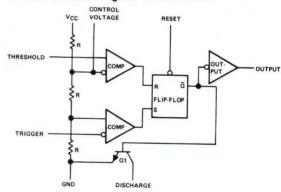


FIGURE 24-SEQUENTIAL TIMER WAVEFORMS


TYPES SE556, NE556 DUAL PRECISION TIMERS

BULLETIN NO. DL-S 12609, APRIL 1978

- Two Precision Timing Circuits per Package
- Astable or Monostable Operation
- TTL-Compatible Output Can Sink or Source up to 150 mA
- Active Pull-up and Pull-Down
- Designed to be Interchangeable with Signetics SE556/NE556


APPLICATIONS

Precision Timer from
Microseconds to Hours
Sequential Timer
Pulse-Shaping Circuit
Pulse Generator
Missing-Pulse Detector
Tone-Burst Generator
Pulse-Width Modulator
Time-Delay Circuit
Frequency Divider
Pulse-Position Modulator
Appliance Timer
Touch-Tone Encoder
Industrial Controls

SE556 J

functional block diagram of each timer

description

The SE556 and NE556 provide two monolithic, independent timing circuits of the SE555/NE555 type in each package. These circuits can be operated in the astable or the monostable mode with external resistor-capacitor timing control. The basic timing provided by the RC time constant may be actively controlled by modulating the bias of the control voltage input.

The SE556 is characterized for operation over the full military temperature range of -55° C to 125° C. The NE556 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage (control voltage, reset, threshold, trigger)
Output current
Continuous total dissipation at (or below) 70°C free-air temperature (see Note 2)
Operating free-air temperature range: SE556
NE556
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation of the SE556 above 77°C free-air temperature, derate linearly at the rate of 8.2 mW/°C.

Copyright © 1978 by Texas Instruments Incorporated

TYPES SE556, NE556 DUAL PRECISION TIMERS

recommended operating conditions

		SE556			NE556		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5		18	4.5		16	V
Input voltage, V _I (control voltage, reset, threshold, trigger)			Vcc			Vcc	V
Output Current, IO			±200			±200	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics at 25°C free-air temperature, VCC = 5 V to 15 V (unless otherwise noted)

	7507.0	ONDITIONS		SE556			NE556		UNIT
PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Threshold voltage level as a percentage of supply voltage				66.7			66.7		%
Threshold current (see Note 3)				30	100		30	100	nA
Trigger voltage level	V _{CC} = 15 V V _{CC} = 5 V		4.8 1.45	5 1.67	5.2 1.9		1,67		V
Trigger current				0.5			0.5		μА
Reset voltage level			0.4	0.7	1	0.4	0.7	1	V
Reset current				0.1			0.1	10	mA
Control voltage (open-circuit)	V _{CC} = 15 V V _{CC} = 5 V		9.6	10 3.3	10.4	9 2.6	10 3.3	11	V
Low-level output voltage	V _{CC} = 15 V	I _{OL} = 10 mA I _{OL} = 50 mA I _{OL} = 100 mA I _{OL} = 200 mA I _{OL} = 5 mA		0.1 0.4 2 2.5	0.15 0.5 2.25	7	0.1 0.4 2 2.5 0.25	0.25 0.75 2.75	V
High-level output voltage	V _{CC} = 15 V V _{CC} = 5 V	I _{OL} = 8 mA I _{OH} = -100 mA I _{OH} = -200 mA I _{OH} = -100 mA	13	0.1 13.3 12.5 3.3	0.25	12.75	13.3 12.5 3.3		V
Supply current	Output low, No load	V _{CC} = 15 V V _{CC} = 5 V		10 3	11 5		10 3	14 6	mA
(average per timer)	Output high, No load	V _{CC} = 15 V V _{CC} = 5 V		9	10		9	13 5	1 1114

NOTE 3: This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 13 on page 286. For example, when V_{CC} = 5 V the maximum value is $R = R_A + R_B \approx 20 \text{ M}\Omega$.

monostable[†] operating characteristics, VCC = 5 V and 15 V

		TEST		SE556			UNIT		
PARAMET	ER	CONDITIONS‡	MIN	TYP	MAX	MIN	TYP	MAX	JUNIT
Initial error of	Each timer	T _A = 25°C		0.5	1.5		1		%
timing interval §	Timer 1 - Timer 2	1 A = 25 C		±0.05	±0.1		±0.1	±0.2	7 ~
Temperature coefficient	Each timer	TA = MIN to		30	100		50		ppm/°C
of timing interval	Timer 1 — Timer 2	MAX		±10			±10		Тррпі/ С
Supply voltage sensitivity	Each timer	T _A = 25°C		0.05	0.2		0.1		%/V
of timing interval	Timer 1 - Timer 2	1 A = 25 C		±0.1	±0.2		±0.2	±0.5	70/
Output pulse rise time		C _L = 15 pF,		100			100		ns
Output pulse fall time		$T_A = 25^{\circ}C$		100			100		ns

[†]Values specified are for a device in a monostable circuit similar to Figure 10 on Page 285, with component values as follow: $R_A = 2 k\Omega$, $C = 0.1 \mu F$.

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[§]Timing interval error is defined as the difference between the measured value and the nominal value computed by the formula: tw = 1.1 RAC.

TYPE TL170C SILICON HALL-EFFECT SWITCH

LP SILECT[†] PACKAGE

Vcc

GROUND

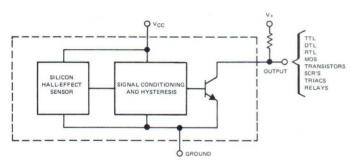
OUTPUT

TOP VIEW

[]

1

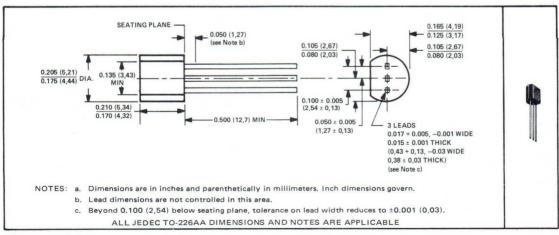
BULLETIN NO. DL-S 12588, DECEMBER 1977-REVISED FEBRUARY 1979


- Magnetic-Field-Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Solid-State Technology
- Open-Collector Output

description

The TL170C is a low-cost magnetically-operated electronic switch that utilizes the Hall Effect to sense steady-state magnetic fields. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL170C is characterized for operation over the temperature range of 0° C to 70° C.


FUNCTIONAL BLOCK DIAGRAM

FUNCTION TABLE ($\Gamma_A = 25^{\circ}C$
FLUX DENSITY	OUTPUT
≤ - 25 mT	Off
-25 mT < B < 25 mT	Undefined
≥ 25 mT	On

mechanical data

The LP Silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

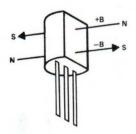
[†]Trademark of Texas Instruments Incorporated

79

Copyright © 1979 by Texas Instruments Incorporated

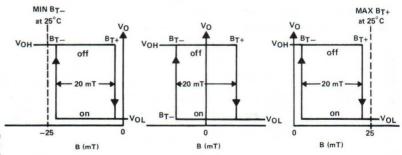
TYPE TL170C SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


Supply voltage, VCC (see Note 1)	7 V
Output voltage	30 V
Output current	20 mA
Operating free-air temperature range	0°C to 70°C
Storage temperature range	65°C to 150°C
Magnetic flux density	

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics at specified free-air temperature, VCC = 5 V ± 5% (unless otherwise noted)


	PARAMETER	TE	ST CONDITIONS	3	MIN	TYP	MAX	UNIT
	Threshold of positive-going			25°C			25	mT§
B _{T+}	magnetic flux density†			0°C to 70°C			35	mis
	Threshold of negative-going			25°C	-25¶			mT§
B _T _	magnetic flux density†			0°C to 70°C	−35¶			mis
BT+-BT-	Hysteresis			0°C to 70°C		20		mT§
ГОН	High-level output current	V _{OH} = 20 V		0°C to 70°C			100	μΑ
VOL	Low-level output voltage	V _{CC} = 4.75 V,	IOL = 16 mA	0°C to 70°C			0.4	V
Les	Superior superior	V	Output low	0°C to 70°C			6	
Icc	Supply current	V _{CC} = 5.25 V	Output high	70010700			4	mA

[†]Threshold values are those levels of magnetic flux density at which the output changes state. For the TL170C, a level more positive than B_{T+} causes the output to go to a low level and a level more negative than B_{T+} causes the output to go to a high level. See Figures 1 and 2.

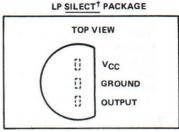
The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

FIGURE 1-DEFINITION OF MAGNETIC FLUX POLARITY

The positive-going threshold (B_{T+}) may be a negative or positive B level at which a positive-going (decreasing negative or increasing positive) flux density results in the TL170 output turn-on. The negative-going threshold is a positive or negative B level at which a negative-going (decreasing positive or increasing negative) flux density results in the TL170 turning off.

FIGURE 2-REPRESENTATIVE CURVES OF VO vs B

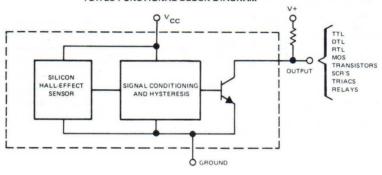
[§] The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.


The algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for flux-density threshold levels only.

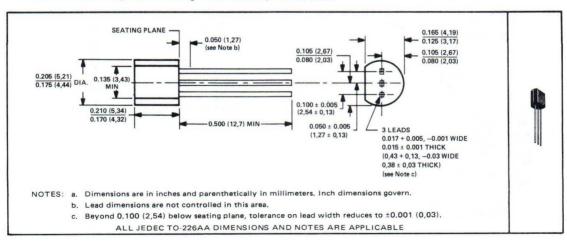
TYPE TL172C NORMALLY OFF SILICON HALL-EFFECT SWITCH

BULLETIN NO. DL-S 12643, AUGUST 1977-REVISED FEBRUARY 1979

- Magnetic-Field-Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Solid-State Technology
- Open-Collector Output
- Normally Off Switch


description

The TL172C is a low-cost magnetically operated normally off electronic switch that utilizes the Hall Effect to sense the presence of a magnetic field. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. A magnetic field of sufficient strength in the positive direction will cause the TL172C output to be in a low-impedance state. Otherwise the output will present a high impedance. The output of this circuitry can be directly connected to many different types of electronic components.


The TL172C is characterized for operation over the temperature range of 0°C to 70°C.

TL172C FUNCTIONAL BLOCK DIAGRAM

mechanical data

The LP Silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

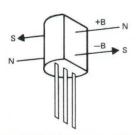
[†]Trademark Registered U. S. Patent Office.

279

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL172C NORMALLY OFF SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


Supply voltage, V	CC	(s	ee	No	ote	1)		,														,		,		. 7	V
Output voltage																												
Output current																ě										2	20 n	ıA
Operating free-air	ter	np	era	atu	re	ra	nge	9							٠	ě	٠							()°C	to	70	°C
Storage temperatu	ıre	rai	nge	9																	ě		-6	35°	C	to	150	°C
Magnetic flux den																											imit	

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over rated operating free-air temperature range, V_{CC} = 5 V \pm 5% (unless otherwise noted)

	PARAMETER	TEST COM	NDITIONS	MIN	TYP	MAX	UNIT
B _{T+}	Threshold of positive-going Magnetic flux density [†]					60	mT§
B _T —	Threshold of negative-going magnetic flux density †			10			mT§
B _{T+} -B _{T-}	Hysteresis				23		mT§
ТОН	High-level output current	V _{OH} = 20 V				100	μΑ
VOL	Low-level output voltage	V _{CC} = 4.75 V,	I _{OL} = 16 mA			0.4	V
Icc	Supply current	V _{CC} = 5.25 V				6	mA

[†]Threshold values are those levels of magnetic flux density at which the output changes state. For the TL172C, a level more positive than B_{T+} causes the output to go to a low level, and a level more negative than B_{T+} causes the output to go to a high level. See Figures 1 and 2.

The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

FIGURE 1-DEFINITION OF MAGNETIC FLUX POLARITY

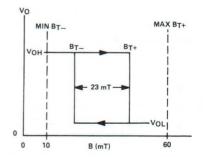
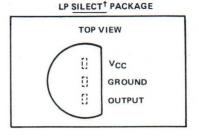


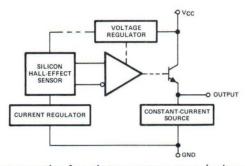
FIGURE 2-REPRESENTATIVE CURVE OF VO VS B


[§] The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.

TYPES TL1731, TL173C LINEAR HALL-EFFECT SENSORS

BULLETIN NO. DL-S 12678, MARCH 1979 - REVISED OCTOBER 1979

- Output Voltage Linear with Applied Magnetic Field
- Sensitivity Constant Over Wide Operating Temperature Range
- Solid-State Technology
- Three-Terminal Device
- Senses Static or Dynamic Magnetic Fields


description

The TL173I and TL173C are low-cost magnetic-field sensors designed to provide a linear output voltage proportional to the magnetic field they sense. These monolithic circuits incorporate a hall element as the primary sensor along with a voltage reference and a precision amplifier. Temperature stabilization and internal trimming circuitry yields a device that features high overall sensitivity accuracy with less than 5% error over its operating temperature range.

The TL173I is characterized for operation from -20°C to 85°C . The TL173C is characterized for operation from 0°C to 70°C .

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, VCC (see Note 1)	
	Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	
1	Operating free-air temperature range: TL173I	C
	TL173C 0°C to 70°C	C
9	Storage temperature range	C
	Magnetic flux density unlimite	

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate linearly at the rate of 6.2 mW/°C.

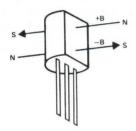
recommended operating conditions

			TL1731			TL1730		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		10.8	12	13.2	10.8	12	13.2	V
Magnetic flux density, B				±50			±50	mT
a seems assumed to a	Sink			0.5			0.5	^
Output current, IO	Source			-2			-2	mA
Operating free-air temperature, TA		-20		85	0		70	°C

[†]Trademark of Texas Instruments Incorporated.

1079

Copyright © 1979 by Texas Instruments Incorporated


TYPES TL1731, TL173C LINEAR HALL-EFFECT SENSORS

electrical characteristics over full range of recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
Vo	Output voltage	$I_0 = -2 \text{ mA to } 0.5 \text{ mA},$	5.8	6	6.2	V
ksvs	Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC})	B = 0 mT %, T _A = 25°C		18		mV/V
S	Magnetic sensitivity (ΔV _O /ΔB)	B = -50 to 50 mT §, T _A = 25°C	13.5	15	16.5	V/T§
ΔS	Magnetic sensitivity change with temperature	$\Delta T_A = 25^{\circ} C$ to MIN or MAX	1	11 1 1	±5	%
Icc	Supply current	B = 0 mT \$, I _O = 0		8	12	mA
fmax	Maximum operating frequency			100		kHz

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten, e.g., 50 millitesla = 500 gauss.

The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

FIGURE 1-DEFINITION OF MAGNETIC FLUX POLARITY

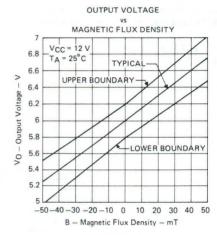


FIGURE 2

TYPICAL APPLICATION DATA

The circuit in Figure 3 may be used to set the output voltage at zero field strength to exactly 6 V (using R1), and to set the sensitivity to exactly —15 V/T (using R2), as depicted in Figure 4.

COMPENSATED OUTPUT VOLTAGE

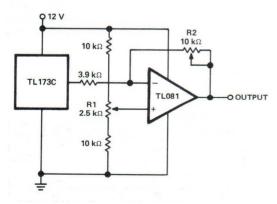
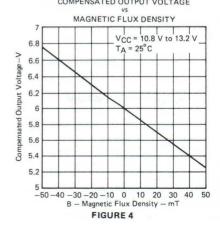



FIGURE 3-COMPENSATION CIRCUIT

TEXAS INSTRUMENTS

 $[\]ddagger$ Typical values are at $V_{CC} = 12 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

TYPE TL175C SILICON HALL-EFFECT LATCH

BULLETIN NO. DL-S 12732, DECEMBER 1979 LP SILECT[†] PACKAGE

TOP VIEW

Vcc

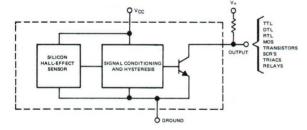
GROUND

OUTPUT

0

- Magnetic-Field-Sensing Hall-Effect Input
- On-Off Hysteresis Assures Latched Output
- Small Size

components.

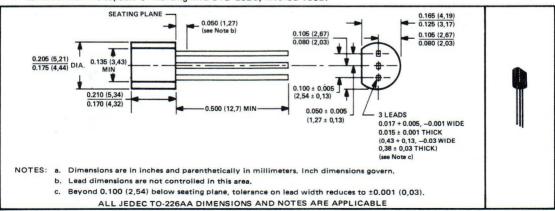

- Solid-state Technology
- Open-Collector Output

description

The TL175C is a low-cost magnetically operated electronic switch that utilizes the Hall-Effect to sense the presence and the direction of a magnetic field. The built-in hysteresis of the switching thresholds is designed to provide a latched switch function. This means that the switch will retain its existing state when the magnetic field is removed and will change state only when the magnetic field is reversed and increased beyond the trigger threshold. This latching feature eliminates the need for external circuitry to record the occurrence of an intermittent fault condition. Additionally, the TL175C will always power-up in the latched-off state in the presence of zero magnetic field. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic

The TL175C is characterized for operation over the temperature range of -40°C to 125°C.

FUNCTIONAL BLOCK DIAGRAM


FUNCTION TABLE (TA = 25°C, See Figure 2)

FLUX DENSITY	ОИТРИТ
≤ -35 mT	High (off)
-5 mT < B < 5 mT	Latched in Previous State*
≥ 35 mT	Low

During power-up the output will always assume the off state.

mechanical data

The LP Silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

[†]Trademark of Texas Instruments Incorporated

Copyright © 1979 by Texas Instruments Incorporated

ADVANCE INFORMATION

ge without notice

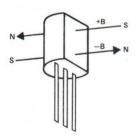
TYPE TL175C SILICON HALL-EFFECT LATCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 			 				 				 						18	V
Output voltage		 			 		 		 				 						30	V
Output current		 			 				 										20 n	nA
Operating free-air temperature range	е	 	 		 				 						-	-40)°C	to	125	°C
Storage temperature range		 			 				 				 		-	-65	5°C	to	150	°C
Magnetic flux density		 	 		 				 			 						ur	limit	ted

NOTE 1: Voltage values are with respect to network ground terminal.

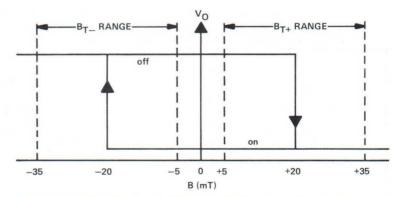
recommended operating conditions


			MIN	NOM	MAX	UNIT
		$T_A = -40^{\circ} \text{C to } 125^{\circ} \text{C}$	10		16.5	
VCC	Supply voltage	$T_A = 0^{\circ} C \text{ to } 125^{\circ} C$	8.1		16.5	V

electrical characteristics over rated operating free-air temperature range, V_{CC} = 10.8 V to 13.2 V (unless otherwise noted)

	PARAMETER	TEST CONE	DITIONS	MIN	TYP	MAX	UNIT
B _{T+}	Threshold of positive-going magnetic flux density †			5		35	mT§
B _T _	Threshold of negative-going magnetic flux density †			-35¶		-5 ¶	mT§
B _{T+} -B _{T-}	Hysteresis				40		mT§
ГОН	High-level output current	V _{OH} = 20 V				100	μА
VOL	Low-level output voltage	I _{OL} = 16 mA				0.4	V
			Output low			7	^
Icc	Supply current		Output high			7	mA

 $^{^{\}dagger}$ Threshold values are those levels of magnetic flux density at which the output changes state. For the TL175C, a level more positive than B_{T+} causes the output to go to a low level and a level more negative than B_{T-} causes the output to go to a high level. See Figures 1 and 2.


[¶] The algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for flux-density threshold levels only.

The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

FIGURE 1-DEFINITION OF MAGNETIC FLUX POLARITY

300

The positive-going threshold (B_{T+}) is the positive B level at which a positive-going flux density results in the TL175 output going low. The negative-going threshold (B_{T-}) is the negative B level at which a negative-going flux density results in the TL175 going high.

FIGURE 2-REPRESENTATIVE CURVES OF VO vs B

[§] The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.

TYPE TI176C NORMALLY OFF SILICON HALL-EFFECT SWITCH

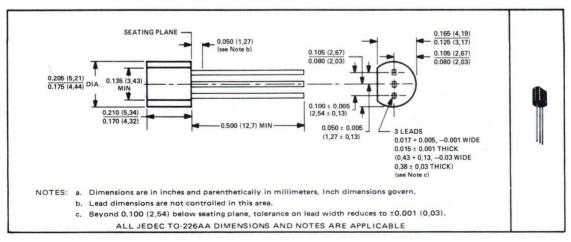
BULLETIN NO. DL-S 12729, OCTOBER 1979

LP SILECT[†] PACKAGE

- Magnetic-Field-Sensing Hall-Effect Input
- **On-Off Hysteresis**
- **Small Size**
- Solid-State Technology
- **Open-Collector Output**
- Normally Off Switch

description

TOP VIEW VCC [] GROUND 0 OUTPUT


The TL176C is a low-cost magnetically operated normally off electronic switch that utilizes the Hall Effect to sense the presence of a magnetic field. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. A magnetic field of sufficient strength in the positive direction will cause the TL176C output to be in a low-impedance state. Otherwise the output will present a high impedance. The output of this circuitry can be directly connected to many different types of electronic components.

The TL176C is characterized for operation over the temperature range of -40°C to 150°C.

FUNCTIONAL BLOCK DIAGRAM VH v_{cc} 9 DTL RTL MOS TRANSISTORS OUTPUT SCR'S SILICON TRIACS SIGNAL CONDITIONING HALL-EFFECT RELAYS SENSOR AND HYSTERESIS GROUND

mechanical data

The LP Silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

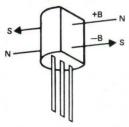
[†]Trademark of Texas Instruments Incorporated

379

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL176C NORMALLY OFF SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


Supply voltage, VCC (s	see Not	e 1)											·				٠				. 3	30 V
Output voltage																		٠. :			. 3	30 V
Output current																20					20	mA
Operating free-air temp	erature	ran	ge		,													-4	0°(C to	o 15	o°C
Storage temperature ra	nge .																	-6	5°(Cto	o 15	o°C
Magnetic flux density						,	ï							·						u	nlim	iited

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over rated operating free-air temperature range, V_{CC} = 4.5 V to 24 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
B _{T+}	Threshold of positive-going magnetic flux density †	н				50	mT§
B _T _	Threshold of negative-going magnetic flux density †			10			mT§
BT+-BT-	Hysteresis				7.5		mT §
Тон	High-level output current	V _{OH} = 20 V				100	μΑ
VOL	Low-level output voltage	V _{CC} = 4.75 V,	I _{OL} = 16 mA			0.4	V
1cc	Supply current	V _{CC} = 24 V				10	mA

[†]Threshold values are those levels of magnetic flux density at which the output changes state. For the TL176C, a level more positive than B_{T+} causes the output to go to a low level, and a level more negative than B_{T-} causes the output to go to a high level. See Figures 1 and 2.

The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

FIGURE 1-DEFINITION OF MAGNETIC FLUX POLARITY

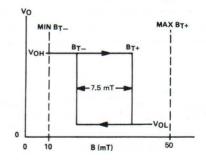


FIGURE 2-REPRESENTATIVE CURVE OF VO vs B

The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter.

Values expressed in milliteslas may be converted to gauss by multiplying by ten.

TYPES TL182M, TL182I, TL182C TWIN SPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 12416, JUNE 1976

- Functionally Interchangeable with Siliconix DG182 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

description

The TL182 is a twin, monolithic, high-speed SPST analog switch constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and output JFET switch.

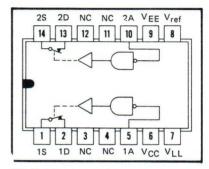
The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation $V_{th} = V_{ref} + 1.4 \text{ V}$. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by $V_{th} = V_{ref} + 1.4 \text{ V}$.

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS can have ionimplanted JFETs, p-channel MOS-FETs, plus the usual bipolar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

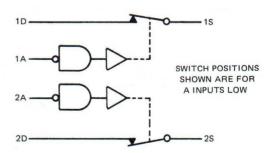
For the TL182, a low level at the input turns the switch on.

The TL182M is characterized for operation over the full military temperature range of -55°C to 125°C, the TL182I is characterized for operation from -25°C to 85°C, and the TL182C from 0°C to 70°C.

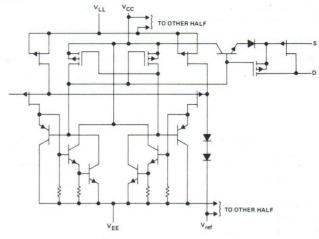

FUNCTION TABLE

INPUT A	SWITCH S
L	ON (CLOSED)
н	OFF (OPEN)

79


- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)


NC-No internal connection
Switch positions shown are A inputs low.

functional diagram

TYPES TL182M, TL182I, TL182C TWIN SPST BI-MOS ANALOG SWITCHES

schematic (each channel)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage to either drain, V _C	C - V _{EE} 36 V
Positive supply voltage to either drain, V _{CC} - V _D	33 V
Drain to negative supply voltage, VD - VEE	
Drain to source voltage, V _D - V _S	±22 V
Logic supply to negative supply voltage, V _{LL} - V _{EE}	
Logic supply to logic input voltage, $V_{LL} - V_1$	
Logic supply to reference voltage, V _{LL} – V _{ref}	
Logic input to reference voltage, V _I – V _{ref}	
Reference to negative supply voltage, V _{ref} – V _{FF}	
Reference to logic input voltage, V _{ref} – V ₁	
Current (any terminal)	
Continuous dissipation at (or below) 25°C free-air temperatu	re (see Note 1):
	TL182MJ 1375 mW
	TL182IJ, TL182CJ 1025 mW
	N package
Operating free-air temperature range: TL182M	
	0°C to 70°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 secon	
Lead temperature 1/16 inch (1.6 mm) from case for 10 secon	
, , , , , , , , , , , , , , , , , , , ,	

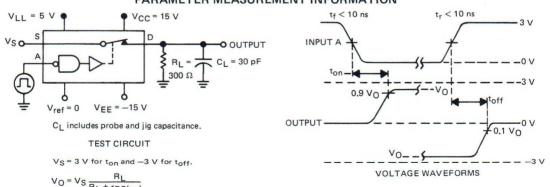
NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Table. In the J package, TL182M chips are alloy-mounted; TL182I and TL182C chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25° C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

TYPES TL182M, TL1821, TL182C TWIN SPST BI-MOS ANALOG SWITCHES


electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	TL182M MIN MAX	TL182I MIN MAX	TL182C MIN MAX	UNIT
VIH	High-level control input voltage		TA = MIN to MAX	V _{ref} +2	V _{ref} +2	V _{ref} +2	V
VIL	Low-level control input voltage		TA = MIN to MAX	V _{ref} +0.8	V _{ref} +0.8	V _{ref} +0.8	V
Чн	High-level control input current	V. = 5 V	T _A = 25°C	10	10	20	μΑ
чн	riigii-level control input current	V1-5 V	TA = MAX	20	20	20	μΛ
IIL	Low-level control input current	V ₁ = 0 V	TA = MIN to MAX	-250	-250	-250	μΑ
		V _{CC} = 15 V,	$T_A = 25^{\circ}C$		5	5	
	Off state designation	VD - 10 V, VEE = -15 V	TA = MAX	100	100	100	
ID(off)	Off-state drain current	$V_D = 10 \text{ V}, V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V}, V_{CC} = 10 \text$	T _A = 25°C		5	5	nA
				100	100	100	
		V _D = -10 V, V _S = 10 V, V _I = 2 V	T _A = 25°C		5	5	
	Off-state source current	V _{EE} = -15 V	TA = MAX	100	100	100	nA
S(off)	Off-state source current	$V_S = 10 \text{ V},$ $V_{CC} = 10 \text{ V},$	T _A = 25°C		5	5	nA.
	N III	V _{EE} = -20 V	$T_A = MAX$	100	100	100	
lar vilar v	On-state channel	$V_D = -10 \text{ V}, V_S = -10 \text{ V},$	$T_A = 25^{\circ}C$		-10	-10	nA
ID(on)+IS(on)	leakage current	V _I = 0.8 V	TA = MAX	-200	-200	-200	IIA
	Drain-to-source on-state	V _D = -10 V, I _S = 1 mA,	$T_A = MIN \text{ to } 25^{\circ}C$	75	100	100	Ω
rDS(on)	resistance	V _I = 0.8 V	$T_A = MAX$	100	150	150	32
Icc	Supply current from VCC		*	1.5	1.5	1.5	
IEE	Supply current from VEE	Both control inputs at 0 V	T - 25°C	-5	-5	-5	mA
ILL	Supply current from V _{LL}	Both control inputs at 0 V	1A-25 C	4.5	4.5	4.5	1
Iref	Reference current			-2	-2	-2	
Icc	Supply current from VCC			1.5	1.5	1.5	
IEE	Supply current from VEE	Both control inputs at 5 V	T = 25°C	-5	-5	-5	mA
ILL	Supply current from V _{LL}	Both control liputs at 5 V	, IA 25 C	4.5	4.5		1
Iref	Reference current			-2	-2	-2	

switching characteristics, VCC = 10 V, VEE = -20 V, VLL = 5 V, Vref = 0 V, TA = 25°C

	PARAMETER	TEST CONDIT	ONS	TL182M	TL1821	TL 182C	UNIT
	Anameten	TEST CONDITI	ONS	TYP	TYP	TYP	7 OIVI I
ton	Turn-on time	D = 200 O O = 20 = F	0 51	175	175	175	
toff	Turn-off time	$R_L = 300 \Omega$, $C_L = 30 pF$,	See Figure 1	350	350	350	ns

PARAMETER MEASUREMENT INFORMATION

 V_{O} is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

FIGURE 1

TEXAS INSTRUMENTS

TYPES TL185M, TL185I, TL185C TWIN DPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 12417, JUNE 1976

- Functionally Interchangeable with Siliconix DG185 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

description

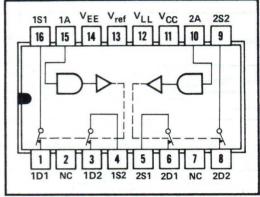
The TL185 is a twin, monolithic, high-speed DPST analog switch constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and two output JFET switches.

The threshold of the input buffer is determined by the voltage applied to the reference input $(V_{ref}).$ The input threshold is related to the reference input by the equation $V_{th} = V_{ref} + 1.4 \ V.$ Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by $V_{th} = V_{ref} + 1.4 \ V.$

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS can have ionimplanted JFETs, p-channel MOS-FETs, plus the usual bipolar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

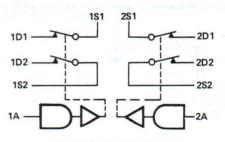
For the TL185, a high level at the input turns the switches on.


The TL185M is characterized for operation over the full military temperature range of -55°C to 125°C, the TL185I is characterized for operation from -25°C to 85°C, and the TL185C from 0°C to 70°C.

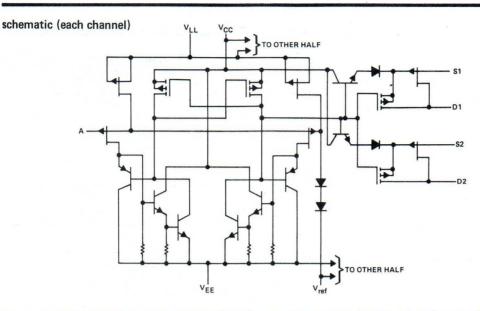
FUNCTION TABLE (EACH HALF)

INPUT	SWITCHES
A	S1 AND S2
L	OFF (OPEN)
H	ON (CLOSED)

- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility


J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection


Switch positions shown are for A inputs high.

functional diagram

SWITCH POSITIONS SHOWN ARE FOR A INPUTS HIGH

TYPES TL185M, TL185I, TL185C TWIN DPST BI-MOS ANALOG SWITCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, VCC — VEE
Positive supply voltage to either drain, $V_{CC} - V_D$
Drain to negative supply voltage, V_D-V_{EE}
Drain to source voltage, V_D-V_S
Logic supply to negative supply voltage, V _{LL} – V _{EE}
Logic supply to logic input voltage, $V_{11} - V_1 \dots \dots$
Logic supply to reference voltage, VII - Vref
Logic input to reference voltage, VI - Vref
Reference to negative supply voltage, V _{ref} – V _{EE}
Reference to logic input voltage, V _{ref} – V _I
Current (any terminal)
Continuous dissipation at (or below) 25°C free-air temperature (see Note 1):
TL185MJ
TL185IJ, TL185CJ 1025 mW
N package
Operating free-air temperature range: TL185M
TL185I
TL185C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
0-

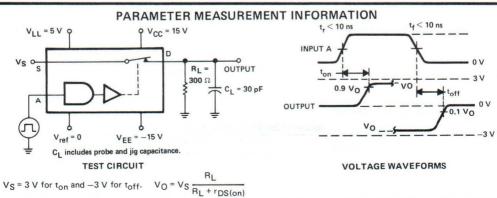
NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Table. In the J package, TL185M chips are alloy-mounted TL185I and TL185C chips are glass-mounted.

DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25°C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/° C	25° C
N	1150 mW	9.2 mW/° C	25°C

Also see Dissipation Derating Curves, Section 2.

79


TYPES TL185M, TL185I, TL185C TWIN DPST BI-MOS ANALOG SWITCHES

electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

	PARAMETER TEST CONDITIONS		TL185M	TL 1851	TL185C	UNIT			
	PARAMETER		TEST CONDI	TONS	MIN MAX	MIN MAX	MIN MAX	ONT	
VIH	High-level control input voltage			TA = MIN to MAX	V _{ref} +2	V _{ref} +2	V _{ref} +2	V	
VIL	Low-level control input voltage			$T_A = MIN \text{ to MAX}$	V _{ref} +0.8	V _{ref} +0.8	V _{ref} +0.8	V	
¹ ін	High-level control input current	V 5 V		$T_A = 25^{\circ}C$	10	10	20	μΑ	
чн	High-level control input current	V -5 V		TA = MAX	20	20	20	μΑ	
IIL	Low-level control input current	V _I = 0 V		$T_A = MIN \text{ to } MAX$	-250	-250	-250	μΑ	
		V _D = 10 V,	V _{CC} = 15 V,			5	5		
ID(off)	Off-state drain current	Vo = -10 V	$V_{EE} = -15 \text{ V}$ $V_{CC} = 10 \text{ V}$	TA = MAX	100	100	100	nA	
'D(011)	OTT-state drain current	$V_1 = 0.8 \text{ V}$	V _{CC} = 10 V,	$T_A = 25^{\circ}C$		5	5] "	
			VEE = -20 V	TA = MAX	100	100	100		
		V= = 10 V	V _{CC} = 15 V,	$T_A = 25^{\circ}C$		5	5		
Lacore	f) Off-state source current	V _S = 10 V,	VEE = -15 V	TA = MAX	100	100	100	nA	
IS(off)			V _{CC} = 10 V,	$T_A = 25^{\circ}C$		5	5	I IIA	
		V ₁ = 0.8 V	VEE = -20 V	TA = MAX	100	100	100		
1	On-state channel	$V_{D} = -10 \text{ V}$	$V_{S} = -10 V$	T _A = 25°C		-10	-10		
ID(on)+IS(on)	leakage current	V4 = 2 V		TA = MAX	-200	-200	-200	nA	
F ==1 \	Drain-to-source on-state	$V_D = -10 \text{ V}$, I _S = 1 mA,	$T_A = MIN \text{ to } 25^{\circ}\text{C}$	125	150	150		
rDS(on)	resistance	V1 = 2 V		TA = MAX	250	300	300	Ω	
ICC	Supply current from V _{CC}				1.5	1,5	1.5		
IEE	Supply current from VEE	Both control inputs at 0 V, T _A = 25°C		-5	-5	-5			
ILL	Supply current from V _{LL}	Both control	inputs at 0 v,	1 A - 25 C	4.5	4.5	4.5	mA	
I _{ref}	Reference current				-2	-2	-2		
Icc	Supply current from V _{CC}	1.5		1.5	1.5				
IEE	EE Supply current from VEE Both control inputs at 5 V,		T - 25°C	-5	-5	-5			
ILL	Supply current from V _{LL}	Both control	inputs at 5 V,	A = 25 C	4.5	4.5	4.5	mA	
Iref	Reference current				-2	-2	-2		

switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_A = 25° C

	PARAMETER	TEST CONDIT	TEST CONDITIONS				UNIT
ton	Turn-on time	B = 200 C C = 20 = E	Can Figure 1	175	175	175	
toff	Turn-off time	$R_L = 300 \Omega$, $C_L = 30 pF$,	See Figure 1	350	350	350	ns

 V_O is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 12418, JUNE 1976 - REVISED OCTOBER 1979

- Functionally Interchangeable with Siliconix DG188 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

description

The TL188 is a monolithic, high-speed dual complementary SPST switch constructed using BI-MOS technology. It consists of a JFET-input buffer, level translator, and two output JFET switches that can easily be connected in SPDT configuration.

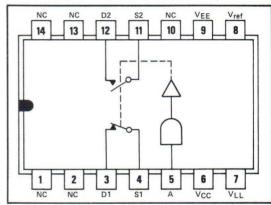
The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation $V_{th} = V_{ref} + 1.4 \text{ V}$. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with biploar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by $V_{th} = V_{ref} + 1.4 \text{ V}$.

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

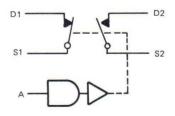
BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS can have ionimplanted JFETs, p-channel MOS-FETs, plus the usual bipolar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL188, a high level at the input turns switch S1 on and S2 off.

The TL188M is characterized for operation over the full military temperature range of -55° C to 125° C, the TL188I is characterized for operation from -25° C to 85° C, and the TL188C from 0° C to 70° C.


FUNCTION TABLE

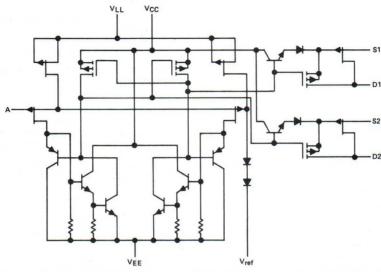
INPUT	SWIT	CHES
A	S1	S2
L	OFF (OPEN)	ON (CLOSED)
н	ON (CLOSED)	OFF (OPEN)


379

- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

functional diagram



SWITCH POSITIONS SHOWN ARE FOR INPUT A HIGH

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, V _{CC} -V _{FF}	6 V
Positive supply voltage to either drain, V _{CC} – V _D	3 V
Drain to negative supply voltage, V _D – V _{EE}	3 V
	2 V
Logic supply to negative supply voltage, $V_{11} - V_{FF}$	6 V
Logic supply to logic input voltage, $V_{\parallel \parallel} = V_{\parallel}$	3 V
Logic supply to reference voltage, V L V ref	3 V
Logic input to reference voltage, $V_1 - V_{ref}$	3 V
Reference to negative supply voltage, V _{ref} – V _{FF}	7 V
Reference to logic input voltage, V _{ref} - V ₁	2 V
Current (any terminal)	mA
Continuous dissipation at (or below) 25°C free-air temperature (see Note 1):	
TL188MJ	mW

Continuous dissipation at (or below) 25°C free-air temperature (see Note 1):		
TL188MJ		. 1375 mW
TL188IJ, TL188CJ		. 1025 mW
N package		. 1150 mW
Operating free-air temperature range: TL188M	–55	°C to 125°C
TL188I		
TL188C	–	0°C to 70°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package		
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package		260°C

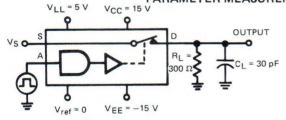
NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Table. In the J package, TL188M chips are alloy-mounted; TL188I and TL188C chips are glass-mounted.

DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25°C
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25° C

Also see Dissipation Derating Curves, Section 2.

TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES


electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

11 11	PARAMETER		TEST CONDITIONS			188M	TL1881	TL188C	UNIT
	PANAMETER					MAX	MIN MAX	MIN MAX	ONT
VIH	High-level control input voltage			TA = MIN to MAX	Vref	2	V _{ref} +2	V _{ref} +2	V
VIL	Low-level control input voltage			TA = MIN to MAX	Vr	ef-0.8	V _{ref} -0.8	V _{ref} -0.8	V
1	High-level control input current	V. = F V		$T_A = 25^{\circ}C$		10	10	10	μА
TIH	High-level control input current	V - 5 V		TA = MAX		20	20	20	μΑ
TIL	Low-level control input current			TA = MIN to MAX		-250	-250	-250	μΑ
*		V _D = 10 V,	V _{CC} = 15 V,	T _A = 25°C			5	5	
		$V_S = -10 V$	VEE = -15 V	TA = MAX		100	100	100	- 0
ID(off)	Off-state drain current	V _{IH} = 2 V,	V _{CC} = 10 V,	T _A = 25°C			5	5	nA
		V _{IL} = 0.8 V	V _{EE} = -20 V	TA = MAX		100	100	100	1
		$V_D = -10 V$	V _{CC} = 15 V,	T _A = 25°C			5	5	
T	f) Off-state source current	V _S = 10 V,	V _{EE} = -15 V	TA = MAX		100	100	100	nA
IS(off)		V _{IH} = 2 V,	V _{CC} = 10 V,	T _A = 25°C			5	5	
		V _{1L} = 0.8 V	VEE = -20 V	TA = MAX		100	100	100	
feet allers a	On-state channel	$V_D = -10 V$	$V_S = -10 V$,	$T_A = 25^{\circ}C$			-10	-10	nA
ID(on)+IS(on)	leakage current	V _{IH} = 2 V,	V _{IL} = 0.8 V	TA = MAX		-200	-200	-200	"
	Drain-to-source on-state	$V_D = -10 V$	Is = 1 mA,	$T_A = MIN \text{ to } 25^{\circ}C$		75	100	100	Ω
rDS(on)	resistance	V _{IH} = 2 V,	V _{IL} = 0.8 V	TA = MAX		150	150	150	20
Icc	Supply current from VCC	1 11				1.5	1.5	1.5	
IEE	Supply current from VEE	1	:	T - 25°C		-5	-5	-5	mA
ILL	Supply current from V _{LL}	Both control inputs at 0 V,		1 A = 25 C		4.5	4.5	4.5	mA
Iref	Reference current	1				-2	-2	-2	
Icc	Supply current from VCC					1.5	1,5	1.5	
IEE	Supply current from VEE	Both control	inputs at 5 V,	T - 25°C		-5	-5	-5	mA
ILL	Supply current from V _{LL}	Both control	inputs at 5 V,	1 A - 25 C		4.5	4.5	4.5	11114
Iref	Reference current					-2	-2	-2	

switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_{A} = 25° C

	PARAMETER	TEST CONDIT	IONS	TL188M	TL 1881	TL 188C	UNIT
	FANAMETER	TEST CONDIT	TEST CONDITIONS			TYP	Civi
ton	Turn-on time	B - 200 C C - 20 - E	Can Firma 1	175	175	175	
toff	Turn-off time	$R_L = 300 \Omega$, $C_L = 30 pF$,	See Figure 1	350	350	350	ns

PARAMETER MEASUREMENT INFORMATION

C_L includes probe and jig capacitance.

TEST CIRCUIT

 $V_S = 3 V$ for t_{on} and -3 V for t_{off} .

$$V_O = V_S \frac{R_L}{R_L + r_{DS(on)}}$$

 $\begin{array}{c} t_{f} < 10 \text{ ns} \\ \hline \\ t_{r} < 10 \text{ ns} \\ \hline \\ 0.9 \text{ V}_{O} \\ \hline \\ 0.1 \text{ V}_{O} \\ \hline \\ 0.1 \text{ V}_{O} \\ \hline \\ 0.2 \text{ V}_{O} \\ \hline \\ 0.1 \text{ V}_{$

Input A: Solid for testing S1, dashed for testing S2.

VOLTAGE WAVEFORMS

 V_O is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 12419, JUNE 1976-REVISED OCTOBER 1979

- Functionally Interchangeable with Siliconix DG191 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

description

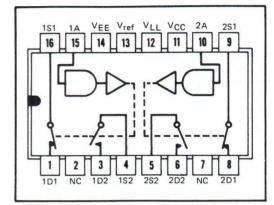
Each TL191 consists of two monolithic, high-speed dual complementary SPST analog switches constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and two output JFET switches that can easily be connected in SPDT configuration.

The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation $V_{th} = V_{ref} + 1.4 \text{ V}$. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by $V_{th} = V_{ref} + 1.4 \text{ V}$.

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

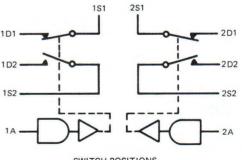
BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS can have ionimplanted JFETs, p-channel MOS-FETs, plus the usual bipolar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL191, a high level at the input turns switches S1 on and S2 off.


The TL191 is characterized for operation over the full military temperature range of -55°C to 125°C, the TL191I is characterized for operation from -25°C to 85°C, and the TL191 from 0°C to 70°C.

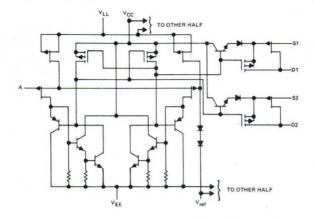
FUNCTION TABLE (EACH HALF)

INPUT	SWITC	HES
A	S1	S2
L	OFF (OPEN)	ON (CLOSED)
н	ON (CLOSED)	OFF (OPEN)


- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ± 10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility

J or N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
Switch positions shown are for A inputs high.


functional diagram

SWITCH POSITIONS SHOWN ARE FOR A INPUTS HIGH

TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, VCC - VEE
Positive supply voltage to either drain, V _{CC} – V _D
Drain to negative supply voltage, VD - VEE
Drain to source voltage, $V_D - V_S$
Logic supply to negative supply voltage, VII - VFE
Logic supply to logic input voltage, V _{LL} – V _I
Logic supply to reference voltage, V _{LL} - V _{ref}
Logic input to reference voltage, V _I - V _{ref}
Reference to negative supply voltage, V _{ref} – V _{EE}
Reference to logic input voltage, $V_{ref} - V_1$ 2 V
Current (any terminal)
Continuous dissipation at (or below) 25°C free-air temperature (see Note 1):
TL191MJ
TL191IJ, TL191CJ 1025 mW
N package 1150 mW
Operating free-air temperature range: TL191M
TL191I
TL191C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package
Lead temperature 1/10 mon (1/5 mm) from case for 10 seconds. To package

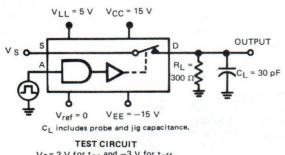
NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Table. In the J package, TL191M chips are alloy-mounted; TL191I and TL191C chips are glass-mounted.

DISSIPATION DERATING TABLE

DAOYAGE	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
J (Alloy-Mounted Chip)	1375 mW	11.0 mW/°C	25°C	
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C	
N	1150 mW	9.2 mW/° C	25°C	

Also see Dissipation Derating Curves, Section 2.

TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES


electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	TL191M	TL191I MIN MAX	TL191C	UNIT
VIH	High-level control input voltage		TA = MIN to MAX		V _{ref} +2	V _{ref} +2	V
VIL	Low-level control input voltage		TA = MIN to MAX		V _{ref} +0.8	V _{ref} +0.8	V
I _I H	High-level control input current	V _I = 5 V	$T_A = 25^{\circ}C$ $T_A = MAX$	10 20	10 20		μА
IIL	Low-level control input current	V _I = 0 V	T _A = MIN to MAX	-250	-250	-250	μА
-		V _D = 10 V, V _{CC} = 15 V	$T_{A} = 25^{\circ}C$		5	5	
	0"	$V_S = -10 \text{ V}, V_{EE} = -15$	V TA = MAX	100	100	100	- ^
D(off)	Off-state drain current	V _{IH} = 2 V, V _{CC} = 10 V	$T_{A} = 25^{\circ}C$		5	5	nA
		$V_{1L} = 0.8 \text{ V } V_{EE} = -20$	V TA = MAX	100	100	100	
	Off-state source current	$V_D = -10 \text{ V, } V_{CC} = 15 \text{ V}$	$T_{A} = 25^{\circ}C$		5	5	
		$V_S = 10 \text{ V}, V_{EE} = -15$	V TA = MAX	100	100	100	
S(off)		VIH = 2 V, VCC = 10 V			5	5	nA
		$V_{1L} = 0.8 \text{ V } V_{EE} = -20$	V TA = MAX	100	100	100	
	On-state channel	$V_D = -10 \text{ V}, V_S = -10 \text{ V}$	$T_A = 25^{\circ}C$		-10	-10	
ID(on)+IS(on)	leakage current	VIH = 2 V, VIL = 0.8 V	TA = MAX	-200	-200	-200	nA
	Drain-to-source on-state	$V_D = -10 \text{ V, Is} = 1 \text{ mA}$		125	150	150	_
rDS(on)	resistance	V _{IH} = 2 V, V _{IL} = 0.8 V	TA = MAX	250	300	300	Ω
Icc	Supply current from VCC	0		1.5	1.5	1.5	
IEE	Supply current from VEE	Both control inputs at 0 \	V T -05°0	-5	-5	-5	mA
ILL	Supply current from V _{LL}	Both control inputs at 0 V	, IД = 25 C	4.5	4.5	4.5	mA
Iref	Reference current			-2	-2	-2	
Icc	Supply current from VCC			1.5	1.5	1.5	
IEE .	Supply current from VEE	Dath control inputs at E \	/ T = 25°C	-5	-5	-5	^
ILL	Supply current from V _{LL}	Both control inputs at 5 \	, тд = 25 С	4.5	4.5	4.5	mA
Iref	Reference current			-2	-2	-2	

switching characteristics, $V_{CC} = 10 \text{ V}$, $V_{EE} = -20 \text{ V}$, $V_{LL} = 5 \text{ V}$, $V_{ref} = 0 \text{ V}$, $T_{A} = 25^{\circ} \text{ C}$

PARAMETER TEST CONDI		IONS	TL191M TYP	TL191I TYP	TL191C TYP	רואט	
ton	Turn-on time	B. = 200 C C. = 20 pE Sec	Can Figure 1	175	175	175	
toff	Turn-off time	$R_L = 300 \Omega$, $C_L = 30 pF$,	See Figure 1	350	350	350	ns

PARAMETER MEASUREMENT INFORMATION

V_S = 3 V for t_{on} and -3 V for t_{off}. R_L V_O = V_S $R_L + r_{DS(on)}$ 1NPUT A

ton
0.9 VO

OUTPUT

VO

-3 V

Input A: Solid for testing S1, dashed for testing S2.

VOLTAGE WAVEFORMS

Vo is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

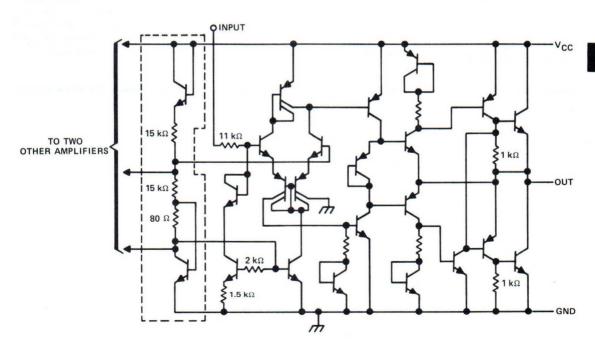
TEXAS INSTRUMENTS

BULLETIN NO. DL-S 12738, DECEMBER 1979

- Three Independent Inverting Stepper-Motor Control Circuits
- High Output Source Current . . . 500 mA Typ
- High Output Sink Current . . . 500 mA Typ
- Inputs Are Compatible With Bipolar and MOS
- Large Supply Voltage Range . . . 4 V to 18 V
- Threshold Voltage Range is Approximately One-Half VCC
- Active Pull-Down on Each Input
- Low Standby Power Dissipation
- 14-Pin NE Power Package

(TOP VIEW) OUT 1 1 14 Vcc IN 1 2 GND GND 4 11 GND GND 5 10 GND OUT 2 7 8 Vcc

NE DUAL-IN-LINE


PACKAGE

description

The TL376C is a monolithic bipolar three-channel stepper-motor controller. The input signal is inverted through the device and drives a totem-pole output section. Each output can source or sink up to 500 milliamperes. The wide supply-voltage range coupled with a threshold voltage level of approximately one-half VCC allows this device to interface with MOS as well as bipolar outputs. An active-pull-down circuit is included on each input. In typical operation, a microprocessor supplies a three-phase signal to the device, which then drives a two-winding stepper-motor.

The TL376C is characterized for operation from 0°C to 70°C.

schematic

Resistor values shown are nominal.

to change without notice.

Copyright © 1979 by Texas Instruments Incorporated

79

ADVANCE INFORMATION

This document contains information on a new product. Specifications are subject

TYPE TL376C THREE-CHANNEL STEPPER-MOTOR CONTROL

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

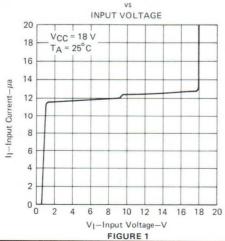
Supply voltage, VCC (see Note 1)
Input voltage, VI
Output voltage range
Output current, each amplifier
Total power dissipation at (or below) 25°C free-air temperature (see Note 2)
Storage temperature range -65°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds

1. Voltage values are with respect to the network ground terminal. Notes:

2. For operation above 25°C free-air temperature, derate linearly at the rate of 16.6 mW/°C.

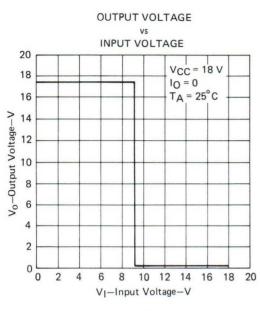
recommended operating conditions

	MIN	NOM	MAX	UNIT
High-level input voltage, V _{IH}	$\frac{V_{CC}}{2} + 0.8$		Vcc	٧
Low-level input voltage, V _{IL}			$\frac{\text{V}_{CC}}{2}$ - 0.2	٧
Supply voltage range, V _{CC}	4	11	18	V
Operating free-air temperature, TA	0		70	С


electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYPT	MAX	UNIT
VOL	Low-level output voltage	I _{OL} = 500 mA,	V _I = V _{IH} min			1.5	V
VOH	High-level output voltage	I _{OH} = -500 mA,	VI = VIL max	V _{CC} - 1.5			V
		V _I = V _{CC}				100	uA
11	Input current	V _I = 1.8 V		5			uA
Icc	Supply current	Inputs open, Outputs	open, V _{CC} = 18 V		0.7	2	mA

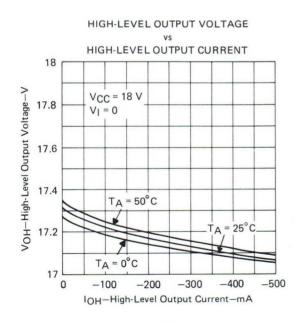
[†] Typical values are measured at $V_{CC} = 15 \text{ V}$, $T_A = 25^{\circ} \text{C}$.


TYPICAL CHARACTERISTICS

INPUT CURRENT

TYPE TL376C THREE-CHANNEL STEPPER-MOTOR CONTROL

TYPICAL CHARACTERISTICS



LOW-LEVEL OUTPUT CURRENT .1 $T_A = 0^{\circ}C$ VOL-Low-Level Output Voltage-V 0.8 $T_A = 50^{\circ}C$ $T_A = 25^{\circ}C$ 0.6 0.4 VCC = 18 V 0.2 VI = 18 V 0 400 0 300 500 100 200 IOL-Low-Level Output Current-mA

LOW-LEVEL OUTPUT VOLTAGE

FIGURE 2

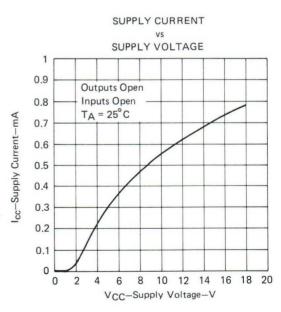
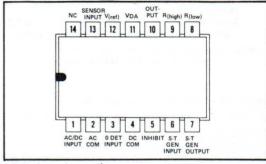


FIGURE 4

FIGURE 5

- Differential Amplifier Inputs
- A-C Line Operation
- Capable of Triggering Several Types of Triacs

description


The TL440 is a combination threshold detector and zero-crossing trigger, intended primarily for a-c power-control circuits. It allows a triac or SCR to be fired when the a-c input signal crosses through zero volts, thereby minimizing undesirable electromagnetic interference. In this manner, the load utilizes full cycles of line voltage as opposed to partial cycles typical with SCR phase-control power circuits.

The circuit includes a zero-voltage detector, a differential amplifier that may be used in conjuction with a resistance bridge to sense the parameter being controlled, the active elements of a saw-tooth generator, and an output section. Also included are resistors which may be used as a voltage divider for the

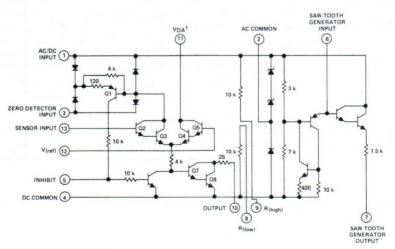
 Internal Active Elements of Saw-Tooth Generator for Proportional Control

 Wide Variety of Possible Connections of Input Section and of Output Section

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection.

reference side of the resistance bridge. An external sensor suitable for the application and an external potentiometer form the input side of the resistance bridge.


The TL440 can be used either as an on-off control with or without hysteresis, or as a proportional control with the use of the internal saw-tooth generator. Although the principal application of this device is in temperature control, it can be used for many power control applications such as a photosensitive control, voltage level sensor, a-c lamp flasher, small relay driver, or a miniature lamp driver.

The inhibit function prevents any output pulses from occurring when the applied voltage at the inhibit input is typically 1 volt or greater. Conversely, if the inhibit input is shorted to dc common, an output pulse will be obtained for each zero-crossing of the a-c power input waveform regardless of the sensor input conditions.

The TL440C is characterized for operation from 0°C to 70°C.

schematic

179

Resistor values shown are nominal and in ohms.

†Pin 11 is usually connected to the AC/DC input, pin 1, unless a control circuit requiring hysteresis is desired. See Figure 4.

TEXAS INSTRUMENTS

TYPE TL440C ZERO-VOLTAGE SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage applied to AC/DC input (See Note 1)
Peak current into AC/DC input
Peak current into zero-detector input
Peak output sink current (See Note 2)
Continuous total power dissipation at (or below) 70°C free-air temperature range
Operating free-air temperature range
Storage temperature range $\dots \dots \dots$
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
Lead temperature 1/16 inch (1.6 mm) from case for 10 seconds: N package

NOTES: 1. Voltage values are with respect to the dc common terminal unless otherwise specified.

2. This value applies for a maximum pulse width of 400 µs and for a maximum duty cycle of 2%.

recommended operating conditions

	MIN NOM MA	UNIT
D-c voltage applied to AC/DC input (See Note 3)	12	V
Differential input voltage, V ₁₃ - V ₁₂	±2	V
Voltage at sensor or V _(ref) input, V ₁₃ or V ₁₂	6	V
Peak output current (See Note 4)	200	mA
Output pulse width	100 400	μs
Operating free-air temperature, TA	0 70	°C

NOTES: 3. This is the recommended d-c supply voltage when the voltage across pins 1 and 4 is not being maintained by charging an electrolytic capacitor from the line voltage. See typical application data.

This value applies for t_W ≤ 400 μs, duty cycle ≤ 2%.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Sensor input voltage hysteresis	Pin 11 connected to Pin 1		30		mV
Voltage required at inhibit input to inhibit output			1	3	V
Current into sensor input	V ₁₃ = 6 V, V ₁₂ = 4 V			5	μА
Current into V _(ref) input	V ₁₂ = 6 V, V ₁₃ = 4 V			5	μА
Current into inhibit terminal required to inhibit output			20		μА
Peak output current (pulsing)	V ₅ = 0	75	100		mA
Output current (inhibited)	V ₁₀ = 13.5 V			1	μА
Output pulse width into resistive load	25 kΩ connected to zero- detector input, 60-Hz power source		150		μs
Average temperature coefficient of output pulse width (0°C to 70°C)			0.7		μs/°C
Peak output voltage of saw-tooth generator	V ₁ = 12 V		9		٧
Voltage at AC/DC input(See Note 5)		9	11.5		V

NOTE 5: This is the voltage across an electrolytic capacitor connected between pins 1 and 4 whose charge is maintained by the a-c line voltage. See Figures 1 and 3.

TYPE TL440C ZERO-VOLTAGE SWITCH

TYPICAL APPLICATION DATA

The circuit shown in Figure 1 provides on-off temperature control. Electrolytic capacitor C1 maintains the d-c operating voltage. Since the series combination of D5 and D6 is in parallel with the series combination of C1 and D7, the voltage developed across C1 is limited to approximately 12 V. Because the energy to fire the triac comes from C1, the voltage across pins 1 and 4 will fluctuate as the triac fires. If a more stable operation of the circuit is desired, a 12-volt d-c supply should be connected between pins 1 and 4 in lieu of C1. The temperature sensor must have a negative coefficient in this circuit.

During most of the a-c cycle, Q1 is turned on by the current flow through either D1, Q1, D4 or D2, Q1, D3, depending on the polarity of the a-c voltage between pins 1 and 3. The collector current of Q1 turns on Q6. With Q6 on, base drive to Q7 and Q8 is inhibited, resulting in no output pulse to fire the triac. When the a-c voltage crosses zero, Q1 and Q6 are turned off. This enables Q7 and Q8 to turn on, thereby connecting d-c common to the triac trigger and firing the triac. This one output pulse per zero crossing is either inhibited or permitted by the action of the differential amplifier and resistance bridge circuit.

As the controlled temperature begins to rise, the positive voltage applied to pin 13 increases. The differential control amplifier acts to lower the potential of the base of Q1 enough to allow Q1 to stay on for the complete cycle, thus inhibiting the output pulses as explained above. Similarly when the temperature being controlled falls, Q1 is allowed to turn off during the intervals where the line voltage passes through zero, thus generating output pulses.

The width of the output pulse at pin 10 can be varied to suit the triggering characteristics of the triac to be used. Table I shows the output pulse lengths obtained as R20 is changed. For small load currents (less than 4-5 amps) a triac with high gate sensitivity may be required due to the high value of "latch-up" current of medium to high power triacs.

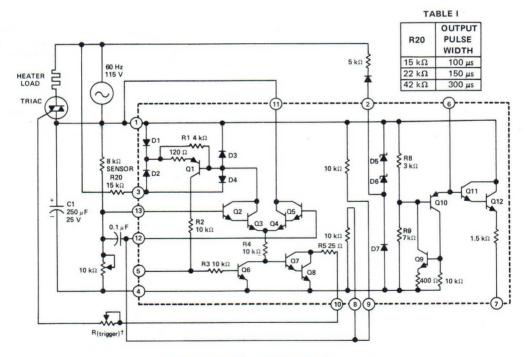
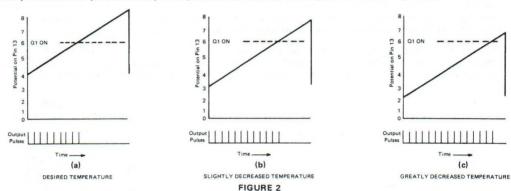


FIGURE 1-ON-OFF HEATER CONTROL


[†] R(trigger) is adjusted so that the peak output is less than 200 mA.

TYPICAL APPLICATION DATA

The circuit shown in Figure 3 provides proportional control of a heating system. With the exception of the saw-tooth generator, the circuit of Figure 3 functions the same as that of Figure 1. The sensor of Figure 3 has a negative temperature coefficient.

Transistors Q9 and Q10 are connected to function as an SCR in order to discharge external capacitor C2 very quickly. The time constant of the saw-tooth generator can be varied by changing either the external capacitor or the external resistor. However it is suggested that the capacitor be varied and not the resistor since too low a value of resistance would allow Q9 and Q10 to stay on continuously. The period of the saw-tooth generator is usually 10 to 100 times the period of the line voltage.

At the start of the saw-tooth waveform the base of Q1 is high and output pulses occur at pin 10. At the desired temperature a certain number of output pulses occur during each saw-tooth cycle as shown in Figure 2(a). At a slightly decreased temperature the resistance of the sensor increases, lowering the d-c potential of pin 13. This lowers the potential of the entire saw-tooth waveform as shown in Figure 2(b) which causes a few more output pulses to occur. At greatly decreased temperatures many more pulses occur each saw-tooth cycle as shown in Figure 2(c).

Similarly, increases in temperature cause proportionately fewer output pulses than the normal number of Figure 2(a). Thus the proportional control feature allows a smoother control of temperature in this application by always providing output pulses during some portion of the saw-tooth generator cycle as opposed to the "full on/full off" circuit of Figure 1.

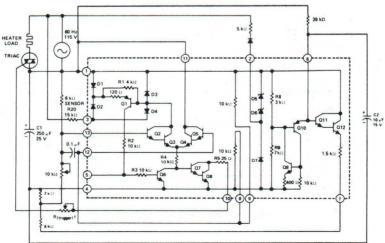
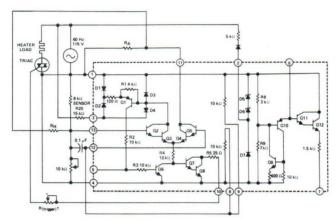
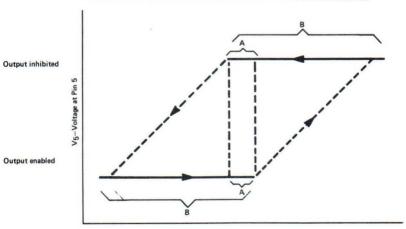


FIGURE 3-PROPORTIONAL HEATER CONTROL


(c)

[†]R_(trigger) is adjusted so that the peak output is less than 200 mA.

TYPE TL440C ZERO-VOLTAGE SWITCH


TYPICAL APPLICATION DATA

Hysteresis may be added to the TL440 by externally making the differential amplifier appear in Schmitt-trigger configuration. This is done by applying positive feedback from pin 11 to pin 13 through hysteresis resistors RA and RH. When the output is enabled, the voltage drop developed across resistor RA is fed through RH to the sensor input of the differential amplifier. This lowers the voltage at this point from the voltage level present when the output is inhibited. The resistance of the sensor must now decrease enough to overcome this additional ("hysteresis") voltage in order to inhibit the output. RH should have a typical value close to the value of the sensor used. The value of RA, which determines the amount of hysteresis, should be approximately one tenth the value of RH. In Figure 4 the 10 k Ω potentiometer is adjusted to set the voltage at pin 13 to the level at which the output is enabled. When precise control is not needed, such a circuit eliminates the small "uncertainty range" observed in time-proportioning systems.

[†]R_(trigger) is adjusted so that the peak output is less than 200 mA.

FIGURE 4-ON-OFF HEATER CONTROL WITH HYSTERESIS ADDED

V₁₃-Voltage at Pin 13

FIGURE 5-HYSTERESIS CURVE FOR FIGURE 4

A-Circuit without added hysteresis ($\Delta V_{13} \approx 15$ to 20 mV residual hysteresis)

B-Circuit with added hysteresis ($\Delta V_{13} \approx 200$ to 300 mV added hysteresis)

79

NOTE 1: Dotted lines represent discontinuous changes where the differential amplifier changes from inhibit to enable or vice-versa. Solid lines represent stable states (inhibit or enable) of the differential amplifier.

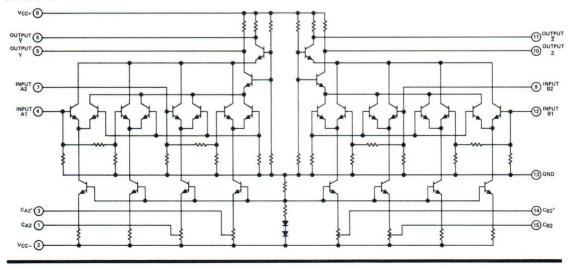
BULLETIN NO. DL-S 11427, JANUARY 1971-REVISED JUNE 1976

JOR N

- DUAL-IN-LINE PACKAGE (TOP VIEW)
- INPLIT CB2 GND
- where: A1, A2, B1, and B2 are in dBV, 0 dBV = 1 V.
- CA2, CA2', CB2, and CB2', are detector compensation inputs. NC-No internal connection

OUTPUTS

Excellent Dynamic Range


- Wide Bandwidth
- **Built-In Temperature Compensation**
- Log Linearity (30 dBV Sections) . . . 1 dBV
- Wide Input Voltage Range

description

This monolithic logarithmic amplifier circuit contains four 30-dBV log stages. Gain in each stage is such that the output of each stage is proportional to the logarithm of the input voltage over the 30-dBV input voltage range. Each half of the circuit contains two of these 30-dBV stages summed together in one differential output which is proportional to the sum of the logs of the input voltages of the two stages. The four stages may be interconnected to obtain a theoretical input voltage range of 120 dBV. In practice, this permits the input voltage range to be typically greater than 80 dBV with log linearity of ± 0.5 dBV (see application data). Bandwidth is from dc to 40 megahertz.

These circuits are useful in military weapons systems, broadband radar, and infrared reconnaissance systems. They serve for data compression and analog compensation. The logarithmic amplifiers are used in log IF circuitry as well as video and log amplifiers. The TL441M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL441C is characterized for operation from 0°C to 70°C.

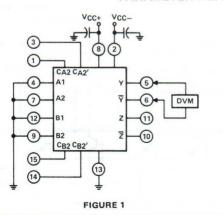
schematic

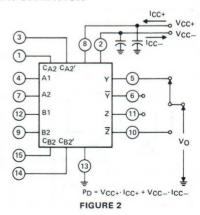
TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltages (see Note 1):												
V _{CC+}												
Vcc				 	 							. –8V
Input voltage (see Note 1)				 	 							6V
Output sink current (any one output)												
Continuous total dissipation at (or bel												
Operating free-air temperature range:	TL441M	Circuit	ts .	 	 				_ <u>;</u>	55°	C	to 125°C
	TI 4410									-	100	40 70°C

 For operation of the TL441M above 70°C free-air temperature, refer to the Dissipation Derating Curves, Section 2. In the J package, TL441M chips are alloy-mounted; TL441C chips are glass-mounted.

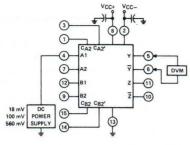

recommended operating conditions


	TL441M			TL441	UNIT	
and the second second	MIN	NOM MA	х Мі	NOM	MAX	ONT
Input voltage for each 30-dBV stage	0.01		1 0.0	1	1	V _{p-p}
Operating free-air temperature, TA	-55	12	5	0	70	°C

electrical characteristics, V_{CC+} = 6 V, V_{CC-} = -6 V, T_A = 25°C

DADAMETER	TEST	TL441M			1	UNIT		
PARAMETER	FIGURE	MIN TYE	TYP	MAX	MIN	TYP	MAX	ONT
Differential output offset voltage	1		±25	±60	1 21 1	±40	1 1	mV
Quiescent output voltage	2	5.45	5.6	5.85	5.45	5.6	5.85	V
D-c scale factor (differential output), each 30-dBV stage, -35 dBV to -5 dBV	3	7	8	10	6	8	12	mV/dBV
A-c scale factor (differential output)			8			8		mV/dBV
D-c error at -20 dBV (midpoint of -35 dBV to -5 dBV range)	3		1	2		1		dBV
Input impedance			500			500		Ω
Output impedance			200			200		Ω
Rise time, 10% to 90% points, C _L = 24 pF	4		20	30	17.0	20	30	ns
Supply current from V _{CC+}	2	14.5	18.5	23	14.5	18.5	23	mA
Supply current from V _{CC} —	2	-6	-8.5	-10.5	-6	-8.5	-10.5	mA
Power dissipation	2	123	162	201	123	162	201	mW

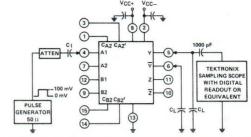
PARAMETER MEASUREMENT INFORMATION



107

-65°C to 150°C

TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS


PARAMETER MEASUREMENT INFORMATION

 $[V_{out}(560 \text{ mV}) - V_{out}(18 \text{ mV})] \text{ mV}$ Scale Factor 30 dBV

 $V_{out(100 \text{ mV})} - 0.5 V_{out(560 \text{ mV})} - 0.5 V_{out(18 \text{ mV})}$ Scale Factor

FIGURE 3

- NOTES: A. The input pulse has the following characteristics: t_W = 50 ns, t_r \leqslant 2 ns, t_f \leqslant 2 ns, PRR = 10 MHz.
 - B. Capacitor C₁ consists of three capacitors in parallel: 1 μ F, 0.1 μ F, and 0.01 μ F.
 - C. C₁ includes probe and jig capacitance.

FIGURE 4

TYPICAL CHARACTERISTICS

TL441M

DIFFERENTIAL OUTPUT OFFSET VOLTAGE QUIESCENT OUTPUT VOLTAGE

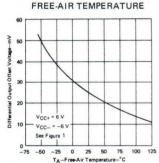


FIGURE 5

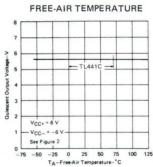


FIGURE 6

TL441M

D-C SCALE FACTOR

FREE-AIR TEMPERATURE

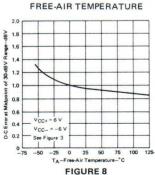
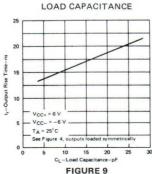


FIGURE 7


TL441M

D-C ERROR

VS

OUTPUT RISE TIME

POWER DISSIPATION

FREE-AIR TEMPERATURE

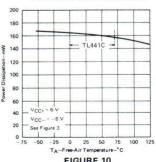


FIGURE 10

TEXAS INSTRUMENTS INCORPORATED

TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS

TYPICAL APPLICATION DATA

Although designed for high-performance applications such as broadband radar infrared detection, and weapons systems, this device has a wide range of applications in data compression and analog computation.

basic log function

The basic log response is derived from the exponential current-voltage relationship of collector current and base-emitter voltage. This relationship is given in the equation:

where: IC = collector current

ICES = collector current at VBE = 0

m = q/kT (in V^{-1})

V_{BF} = base-emitter voltage

The differential input amplifier allows dual-polarity inputs, is self-compensating for temperature variations, and is relatively insensitive to noise.

functional block diagram

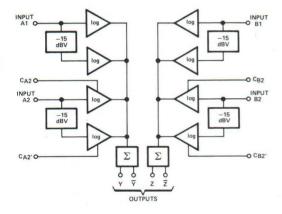


FIGURE 11

log sections

As can be seen from the schematic, there are eight differential pairs. Each pair is a 15-dBV log subsection, and each input feeds two pairs for a range of 30 dBV per stage.

Four compensation points are made available to allow slight variations in the gain (slope) of the two individual 15-dBV stages of input A2 and B2. By slightly changing the voltage on any of the compensation pins from its quiescent value, the gain of that particular 15-dBV stage can be adjusted to match the other 15-dBV stage in the pair. The compensation pins may also be used to match the transfer characteristics of input A2 to A1 or B2 to B1.

The log stages in each half of the circuit are summed by directly connecting their collectors together and summing through a common-base output stage. The two sets of output collectors are used to give two log outputs, Y and \overline{Y} (or Z and \overline{Z}) which are equal in amplitude but opposite in polarity. This increases the versatility of the device.

By proper choice of external connections, linear amplification, linear attentuation, and many different applications requiring logarithmic signal processing are possible.

input levels

The recommended input voltage range of any one stage is given as 0.01 volt to one volt. Input levels in excess of one volt may result in a distorted output. When several log sections are summed together, the distorted area of one section overlaps with the next section and the resulting distortion is insignificant. However, there is a limit to the amount of overdrive that may be applied. As the input drive reaches $\pm 3.5 \ \text{volts}$, saturation occurs, clamping the collector-summing line and severely distorting the output. Therefore, the signal to any input must be limited to approximately $\pm 3 \ \text{volts}$ to ensure a clean output.

output levels

Differential-output-voltage levels are low, generally less than 0.6 volt. As demonstrated in Figure 12, the output swing and the slope of the output response can be adjusted by varying the gain by means of the slope control. The coordinate origin may also be adjusted by positioning the offset of the output buffer.

TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS

TYPICAL APPLICATION DATA

circuits

477

Figures 12 through 19 show typical circuits using these logarithmic amplifiers, Operational amplifiers not otherwise designated are uA741. For operation at higher frequency, use of uA733 is recommended instead of uA741, with the differential outputs connected as in Figure 14.

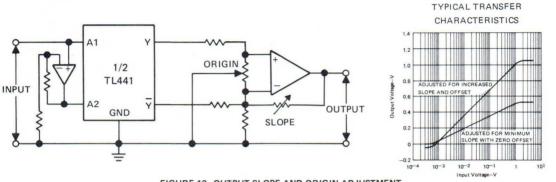
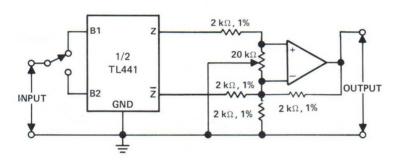



FIGURE 12-OUTPUT SLOPE AND ORIGIN ADJUSTMENT

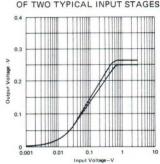
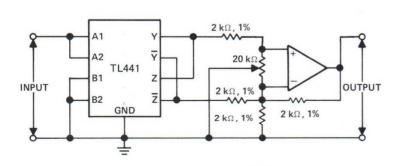



FIGURE 13-UTILIZATION OF SEPARATE STAGES

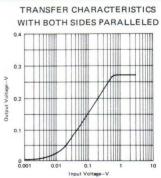
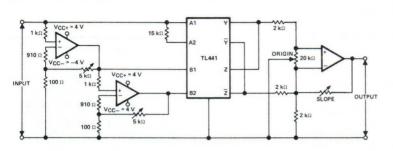
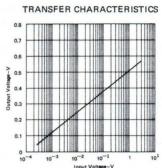
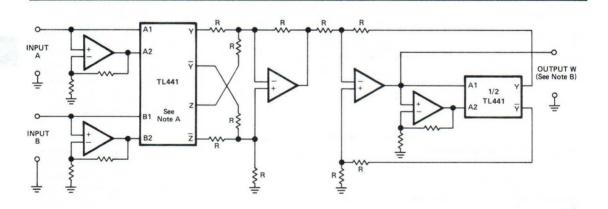




FIGURE 14-UTILIZATION OF PARALLELED INPUTS

TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS

TYPICAL APPLICATION DATA



NOTES: A. Inputs are limited by reducing the supply voltages for the input amplifiers to ±4 V.

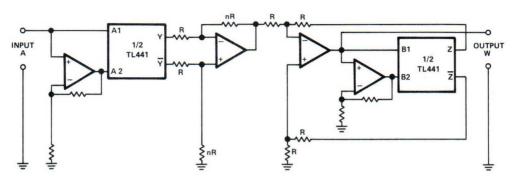
B. The gains of the input amplifiers are adjusted to achieve smooth transitions.

FIGURE 15-LOGARITHMIC AMPLIFIER WITH INPUT VOLTAGE RANGE GREATER THAN 80 dBV

NOTES: A. Connections shown are for multiplication. For division, Z and Z connections are reversed.

B. Output W may need to be amplified to give actual product or quotient of A and B.

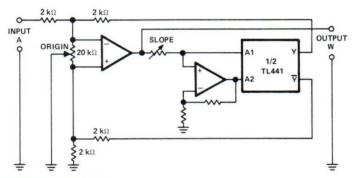
C. R designates resistors of equal value, typically 2 k Ω to 10 k Ω .


Multiplication: $W = A \cdot B \Rightarrow \log W = \log A + \log B$, or $W = a(\log_a A + \log_a B)$

Division: $W = A/B \Rightarrow log W = log A - log B$, or $W = a(log_a A - log_a B)$

FIGURE 16-MULTIPLICATION OR DIVISION

TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS


TYPICAL APPLICATION DATA

NOTE: R designates resistors of equal value, typically $2 k\Omega$ to 10 $k\Omega$. The power to which the input variable is raised is fixed by setting nR. Output W may need to be amplified to give the correct value.

Exponential: $W = A^n \Rightarrow \log W = n \log A$, or $W = a(n \log_a A)$

FIGURE 17-RAISING A VARIABLE TO A FIXED POWER

NOTE: Adjust the slope to correspond to the base "a".

Exponential to any base: W = a

FIGURE 18-RAISING A FIXED NUMBER TO A VARIABLE POWER

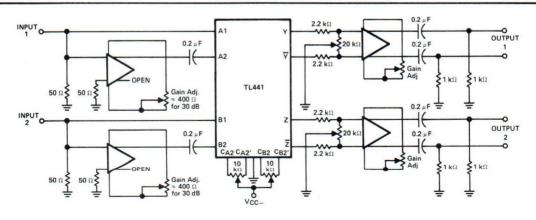
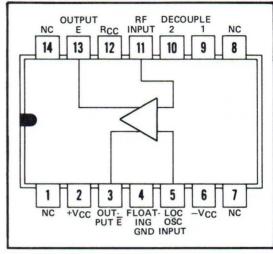


FIGURE 19-DUAL-CHANNEL RF LOGARITHMIC AMPLIFIER WITH 50-dB INPUT RANGE PER CHANNEL AT 10 MHz

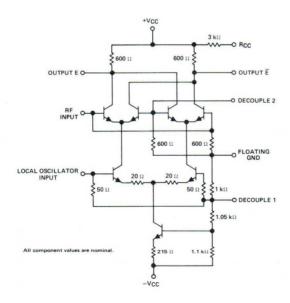
BULLETIN NO. DL-S 11430, OCTOBER 1979

FORMERLY SN56514, SN76514


- Flat Response to 100 MHz
- Local Oscillator IF Isolation . . . 30 dB Typ
- Local Oscillator RF Isolation . . . 60 dB Typ
- RF-IF Isolation . . . 30 dB Typ
- Conversion Gain . . . 14 dB Typ
- Use with 12-V or ±6-V Power Supplies

description

The TL442M and TL442C are doubly balanced mixers that utilize two cross-coupled, differential transistor pairs driven by a third balanced pair. The circuit features a flat response over a wide band of frequencies. Operation from single or split power supplies is possible. Refer to typical application data.


The TL442M is characterized for operation over the full military temperature range of -55°C to 125°C ; the TL442C is characterized for operation from 0°C to 70°C .

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

schematic

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL442M, TL442C BALANCED MIXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 18 V
Input voltage (see Notes 1 and 2)		 7 V
Continuous output current (see Note 3)		 10 mA
Continuous total power dissipation at (or below) 25°C		
Operating free-air temperature range: TL442M Circui	ts	 -55°C to 125°C
TL442C Circuit	ts	 0°C to 70°C
Storage temperature range		 -65°C to 150°C

recommended operating conditions

	MIN	NOM MAX	K UNIT
Supply voltage, VCC		12	V
Local oscillator input voltage (see Note 5)		250 300	mV rms
RF input voltage (see Note 5)		10 30	mV rms
Operating free-air temperature range: TL442M Circuits	-55	125	°C
TL442C Circuits	0	70	°C

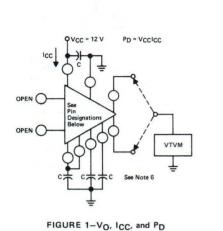
electrical characteristics at 25°C free-air temperature, VCC = 12 V

	DARAMETER	TEST	TECT COMPLETIONS		TL442M		7	L442C	ade and	1 18117
	PARAMETER	PARAMETER FIGURE TEST CONDITIONS		MIN TYP		MAX	MIN	TYP	MAX	UNIT
Vo	Quiescent output voltage	1		9.6	10.5	11.3	9.6	10.5	11.3	V
Icc	Supply current	1		5.5	7.4	10.9	5.5	7.4	10.9	mA
GC	Conversion gain (single-ended output)	2	f _{RF} and f _{LO} = 100 kHz thru 40 MHz	11	14	17	11	14	17	dB
LOIFI	Local oscillator to IF isolation	3	f _{LO} = 100 kHz thru 40 MHz	15	29†			29†	, 15	dB
LORFI	Local oscillator to RF isolation	3	f _{LO} = 100 kHz thru 40 MHz	40	52†			52†		dB
RFIFI	RF to IF isolation	4	fRF = 100 kHz thru 40 MHz	15	28†			28†		dB

[†]The typical values are at 40 MHz.

NOTES: 1. All d-c voltage values are with respect to $-V_{CC}$ terminal.

- 2. This rating applies to the local-oscillator input, RF input, and Decouple 2.
- 3. This value applies for both outputs simultaneously.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL442M chips are alloy-mounted; TL442C chips are glass-mounted.
- 5. All signal voltages are with respect to the floating-ground terminal. Alternatively, the RF input may be applied differentially between the RF input terminal and Decouple 2.


DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J(Alloy-Mounted Chip)	500 mW	11.0 mW/° C	105°C
J(Glass-Mounted Chip)	500 mW	8.2 mW/° C	89°C
N	500 mW	9.2 mW/° C	96° C

Also see Dissipation Derating Curves, Section 2.

TYPES TL442M, TL442C BALANCED MIXERS

PARAMETER MEASUREMENT INFORMATION

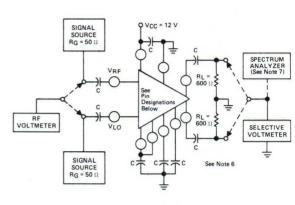
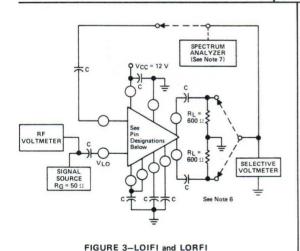
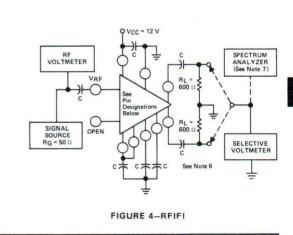
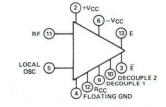
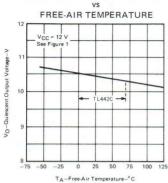





FIGURE 2-GC

Pin Designations: For all test circuits appearing in this data sheet, terminal functions are defined by their relative positions as shown in the drawings in this block.


NOTES: 6. Capacitor C comprises the following capacitors in parallel: 1 μ F, 0.1 μ F, and 0.0015 μ F.

7. The spectrum analyzer is used for frequencies above the normal range of the selective voltmeter.

TYPES TL442M, TL442C BALANCED MIXERS

TYPICAL CHARACTERISTICS

FIGURE 5

CONVERSION GAIN

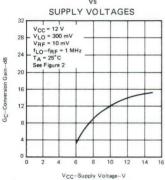


FIGURE 7

CONVERSION GAIN

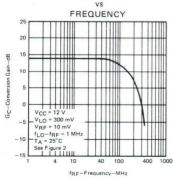


FIGURE 9

TOTAL POWER DISSIPATION

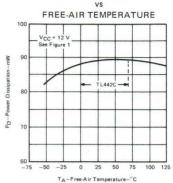


FIGURE 6

CONVERSION GAIN

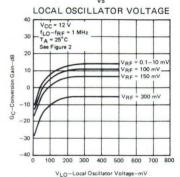


FIGURE 8

CONVERSION GAIN

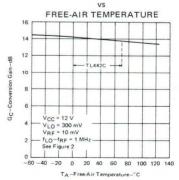


FIGURE 10

TYPES TL442M, TL442C BALANCED MIXERS

TYPICAL CHARACTERISTICS

LOCAL OSCILLATOR TO IF ISOLATION

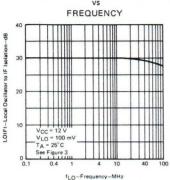


FIGURE 11

LOCAL OSCILLATOR TO RF ISOLATION

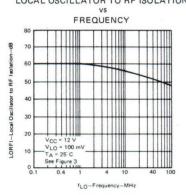


FIGURE 13

FIGURE 15

079

LOCAL OSCILLATOR TO IF ISOLATION

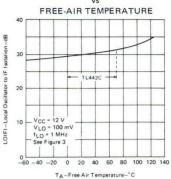


FIGURE 12

LOCAL OSCILLATOR TO RF ISOLATION

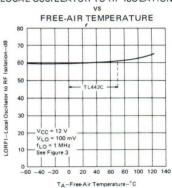


FIGURE 14

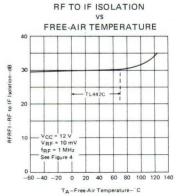
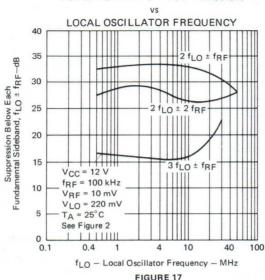
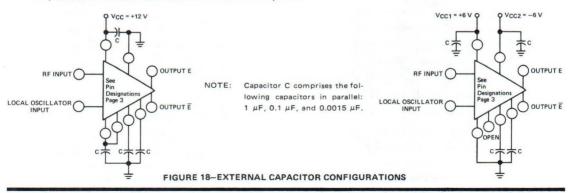



FIGURE 16

TYPICAL CHARACTERISTICS

SIDEBAND HARMONIC SUPPRESSION



TYPICAL APPLICATION DATA

The TL442M and TL442C balanced mixers are designed to have considerable circuit flexibility, which results in a wide range of applications. Typical applications include use as balanced modulators for sideband-suppressed-carrier generation, product detectors for demodulation, frequency converters, and frequency or phase modulators. In addition, the TL442M and TL442C may be used in control systems and analog computers as low-level multipliers or squaring circuits.

For operation from a single 12-V supply, connect the positive terminal of the supply to $+V_{CC}$, the negative terminal to $-V_{CC}$, and the floating-ground terminal to R_{CC} . For operation from two 6-V supplies, leave R_{CC} open and connect the positive terminal of one supply to $+V_{CC}$, the negative terminal of the other supply to $-V_{CC}$, and the remaining terminals of the two supplies to the floating-ground terminal. Electrical characteristics will be unchanged with the use of either power supply option. External bypass capacitors, as shown in Figure 18, should be used for optimum performance.

The mixer's electrical performance and the inherent IC advantages of size, reliability, and component matching make it very desirable for use in communication and control systems.

LINEAR INTEGRATED CIRCUITS

TYPE TL480C 10-STEP LOGARITHMIC ANALOG LEVEL DETECTOR

BULLETIN NO. DL-S 12735, NOVEMBER 1979

OR

07

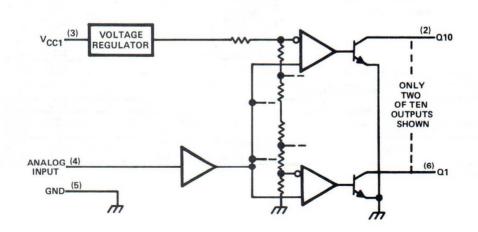
06

- 10 Comparators Logrithmically Digitize **Analog Input Signals**
- High Input Impedance . . . 100 kΩ Typical
- Open-Collector Outputs Capable of Sinking up to 40 mA and Withstanding up to 32 V
- Economical 14-Pin Dual-In-Line Plastic Package
- 2-dB Intervals

description

The TL480C consists of ten comparators and a reference voltage network to detect the level of a signal at the analog input. Output Q1 is switched to a low logic level at a typical input voltage of 218 millivolts. After each 2-dB increment, the next output is switched to a low logic level. All outputs are at low logic levels at a typical input voltage of 1732 millivolts. The hysteresis of all trigger points is typically 10 millivolts.

DUAL-IN-LINE PACKAGE (TOP VIEW) 09 Q10 13 12 V_{CC1}


JOR N

ANALOG 11 NC INPUT 10 Q5 GND 01 02 03 NC-No internal connection

The TL480C is especially designed to detect logrithmic analog-signal levels and may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning-signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and for automatic range switching. The open-collector outputs are capable of sinking currents up to 40 milliamperes and may be operated at voltages up to 32 volts. The power outputs are suitable for driving a variety of display elements such as LED's or filament lamps. The outputs may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL480C is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL480C 10-STEP LOGARITHMIC ANALOG LEVEL DETECTOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Off-state output voltage
On-state output current (each output)
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2): J package 1025 mW
N package 1150 mW
Operating free-air temperature range
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

recommended operating conditions	MIN	NOM	MAX	UNIT
Supply voltage, VCC	10.8	12	13.2	V
Output voltage, VO			32	V
Output current, IO			40	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature, V_{CC} = 12 V, (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYPT	MAX	UNIT
		Switching Q1		197	218	242	mV
		Switching Q2	T _A = 25°C	247	275	304	
	Positive-going threshold voltage at input A	Switching Q3		311	346	383	
		Switching Q4		392	435	483	
1/-		Switching Q5		494	548	607	
V _{T+}		Switching Q6		621	690	765	
		Switching Q7		782	868	963	
		Switching Q8		985	1093	1212	
		Switching Q9		1240	1376	1526	
		Switching Q10		1561	1732	1921	
$V_{T+} - V_{T-}$	Input hysteresis				10		mV
ГОН	High-level (off-state) output curren	t	V _{OH} = 32 V		0.5	200	μΑ
Val	Law level (an atota) autaut valtage		I _{OL} = 10 mA		0.12	0.3	V
VOL	Low-level (on-state) output voltage		1 _{OL} = 40 mA		0.3	0.6	
l _I	Input current	nt			10	20	μΑ
loo	Supply current	All outputs high	V _{CC} = 12 V,		7.5	12	mA
ICC	ouppry current	All outputs low	No load		24	38	11114

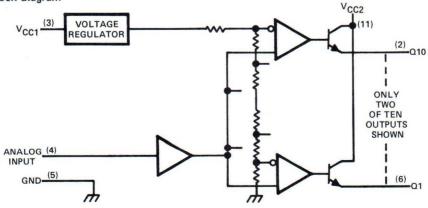
 $^{^{\}dagger}$ All typical values are at $^{\lor}$ CC = 12 $^{\lor}$ and $^{\lor}$ A = 25 $^{\circ}$ C.

- 10 Comparators Logarithmically Digitize Analog Input Signals
- High Input Impedance . . . 100 kΩ Typical
- Open-Emitter Outputs Capable of Sourcing Up to 25 mA and Withstanding Up to 35 V
- Supply Voltage Range of 10 to 35 V (Vcc2)
- Economical 14-Pin Dual-In-Line Plastic Package
- 2-dB Intervals

description

The TL481C features open-emitter outputs capable of operating to 35 volts and sourcing 25 milliamperes for driving vacuum fluorescent displays. The TL481C uses ten comparators and a reference voltage network to detect the level of a signal at the analog input. Output Q1 is switched to a high logic level at a typical input voltage of 218 millivolts. As the input signal is increased, subsequent outputs are switched to a high logic level at 2-dB intervals. All outputs are

NG **DUAL-IN-LINE PACKAGE** (TOP VIEW) 09 08 Q10 07 V_{CC1} 3 Q6 ANALOG V_{CC2} INPUT GND 10 Q5 01 7 02 03


at high logic levels at a typical input voltage of 1732 millivolts. The hysteresis of all trigger points is typically 10 millivolts.

The analog input has an impedance of 100 kilohms. This high input impedance can be driven directly from a high-impedance source; however, the addition of a capacitor may be required to reduce noise.

The TL481C is designed for logarithmic detection of analog signals and may be used in applications such as low-precision meters, warning signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and automatic range switching.

The TL481C is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL481C 10-STEP ADJUSTABLE ANALOG LEVEL DETECTOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage	VCC1 (see Note 1)	/
	VCC2 40 V	1
Input voltage	8 V	1
Output voltage	range 0 V to VCC2	2
On-state output	t current (each output)	1
	al dissipation at (or below) 25°C free-air temperature (see Note 2)	
Operating free	air temperature range	3
Storage tempe	ature range	
Lead temperat	re 1/16 inch (1,6 mm) from case for 10 seconds	

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply Voltage, VCC1	10.8	12	13.2	V
V _{CC2}				V
Output current, IO			25	mA
Operating free-air temperature, TA			70	°C

electrical characteristics over recommended operating free-air temperature and supply voltage ranges (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYPT	MAX	UNIT
		Switching Q1		197	218	242	
		Switching Q2		247	275	304	7
		Switching Q3		311	346	383	1
		Switching Q4		392	435	483	
17	Positive-going threshold	Switching Q5	T 05°0	494	548	607	1
V _{T+}	voltage at Analog input	Switching Q6	$T_A = 25^{\circ}C$	621	690	765	mV
		Switching Q7	25	782	868	963	1
		Switching Q8		985	1093	1212	1
		Switching Q9		1240	1376	1526	1
		Switching Q10	×	1561	1732	1921	
$V_{T+} - V_{T-}$	Input hysteresis				10		mV
VoH	High-level (on-state) output	voltage	I _{OH} = -10 mA	V _{CC2} -1.3	.8	V	
VOH	riigii-level (oii-state) output	vortage	I _{OH} = -25 mA	V _{CC2} -1.5	V _{CC2} -0	.9	7 °
IOL	Low-level (off-state) output	current	V _{CC2} = 35 V		0.5	200	μА
Tj	Input current	Analog input	V _I = 2 V		10	20	μΑ
leer	Supply current from V _{CC1}	All outputs high	V _{CC1} = 12 V, No load		15	25	
CC1	Supply current from VCC1	All outputs low	VCC1 - 12 V, No load		9	15	mA
loos	Supply ourrant from Vess	All outputs high	V _{CC1} = 12 V, V _{CC2} = 35 V,		15	27	mA
ICC2	Supply current from V _{CC2} All or		No load		1	200	μА

 $^{^{\}dagger}$ All typical values are at V $_{CC1}$ = 12 V, V $_{CC2}$ = 25 V, and T $_{A}$ = 25 $^{\circ}$ C.

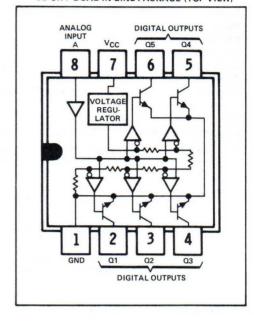
^{2.} For operation above 25°C free-air temperature, derate linearly to 1328 mW at 70°C at the rate of 16.6 mW/°C.

LINEAR INTEGRATED CIRCUITS

TYPE TL487C 5-STEP LOGARITHMIC ANALOG LEVEL DETECTOR

BULLETIN NO. DL-S 12675, FEBRUARY 1979

- 5 Comparators to Digitize Logarithmic Analog Input Signals in 3-dB Step Increments
- High Input Impedance . . . 100 kΩ Typ
- Open-Collector Outputs Capable of Sinking up to 40 mA and Withstanding up to 18 V
- Supply Voltage Range of 10 to 18 V
- Economical 8-Pin Dual-in-Line Plastic Package and Ceramic Package


FUNCTION TABLE

INPUT A	OUTPUTS								
(NOM)	Q1	Q2	Q3	Q4	Q5				
0 -≈266 mV	Н	Н	Н	Н	Н				
≈266 –≈375 mV	L	Н	H	H	Н				
≈375 –≈530 mV	L	L	H	H	Н				
≈530 -≈749 mV	L	L	L	H	H				
≈749 –≈1058 mV	L	L	L	L	Н				
>≈1058 mV	L	L	L	L	L				

H = high level, L = low level

The nominal input voltage ranges shown are for rising input voltage. Negative-going thresholds are typically 10 mV lower.

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

description

079

The TL487C is especially designed to detect and indicate analog signal levels. The device may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and automatic range switching. The power outputs are suitable for driving a variety of display elements such as LED's or filament lamps. The outputs may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL487C consists of five comparators and a reference voltage network to detect the level of an analog input signal at the A input. Output Q1 is switched to a low logic level at a typical input voltage of 266 millivolts. After each 3-dB increase, the next output is switched to a low logic level. All outputs are at low logic levels at a typical input voltage of 1058 millivolts. The open-collector outputs are capable of sinking currents up to 40 milliamperes and may be operated at voltages up to 18 volts. The analog input has a high impedance of typically 200 kilohms.

Since all five trigger points have a switching hysteresis of typically 10 millivolts, the circuit may be operated with slow input signals without the danger of oscillation at the outputs. To prevent pickup of noise, a capacitor should be connected between the high-impedance input and ground, especially when the input is driven from a high-impedance source.

The TL487C is characterized for operation from 0°C to 70°C.

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL487C

5-STEP LOGARITHMIC ANALOG LEVEL DETECTOR

absolute maximum ratings

Supply voltage, V _{CC} (see Note 1) 20 Voltage at analog input A 8	
Off-state output voltage	V
Current through analog input A —10 m	Α
Low-level output current (each output)	A
Total low-level output current 200 m/	A
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2): JG package 825 ml	Ν
P package 1000 m\	Ν
Operating free-air temperature range	C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	C

NOTES: 1. Voltage values are with respect to network ground terminal.

For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the JG package, TL487C chips are glass-mounted.

DISSIPATION DERATING TABLE

D. OV. A. O. F.	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
P	1000 mW	8.0 mW/°C	25°C

Also see Dissipation Derating Curves, Section 2.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	10	12	18	V
Output voltage, VO			18	V
Low-level output current			40	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating ranges of V_{CC} and T_A (unless otherwise noted)

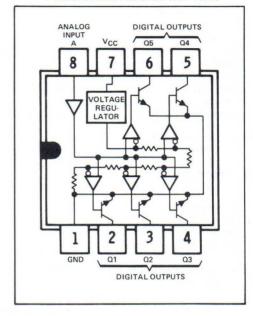
	PARAMETER		TEST CONDITIONS	MIN	TYPT	MAX	UNIT	
		Switching Q1		237	266	298		
V _{T+}	Parising gains should	Switching Q2		335	375	421		
	Positive-going threshold voltage at input A‡	Switching Q3	$T_A = 25^{\circ}C$	473	530	595	mV	
		Switching Q4	1904	668	749	840		
		Switching Q5		943	1058	1187		
	Switching interval §				3		dB	
$V_{T+} - V_{T-}$	Input hysteresis				10		mV	
ГОН	High-level output current		V _{OH} = 18 V		0.5	20	μА	
Val	Low-level output voltage		I _{OL} = 16 mA		0.15	0.3	V	
VOL Low-level output voltage			I _{OL} = 40 mA		0.25	0.5	V	
Ц	Input current		V _I = 1 V		5	10	μА	
Icc	Supply current	All outputs high	All outputs open,		8	12	mA	
100	ICC Supply current	All outputs low	V _{CC} = 12 V		18	27	mA	

 $^{^{\}dagger}$ AII typical values are at V_{CC} = 12 V, T_{A} = 25 $^{\circ}$ C.

[‡]These thresholds increase with temperature at the approximate rate of 1 mV/°C.

 $[\]S$ Switching interval is the ratio of (1) V_{T+} for switching output Q_{n+1} to (2) V_{T+} for switching output Q_n .

TYPE TL489C


- 5 Comparators to Digitize Analog Input Signals in 200 mV Increments
- High Input Impedance . . . 100 kΩ Typ
- Open-Collector Outputs Capable of Sinking up to 40 mA and Withstanding up to 18 V
- Supply Voltage Range of 10 to 18 V
- Economical 8-Pin Dual-in-Line Plastic **Package**

FUNCTION TABLE

INPUT A	OUTPUTS											
(NOM)	Q1	Q2	Q3	Q4	Q5							
0-≈200 mV	Н	Н	Н	Н	Н							
≈200-≈400 mV	L	H	H	H	H							
≈400-≈600 mV	L	L	Н	Н	Н							
≈600-≈800 mV	L	L	L	Н	Н							
≈800-≈ 1000 mV	L	L	L	L	Н							
>≈1000 mV	L	L	L	L	L							

H = high level, L = low level

P DUAL-IN-LINE PACKAGE (TOP VIEW)

description

9

The TL489C consists of five comparators and a reference voltage network to detect the level of an analog input signal at the A input. Output Q1 is switched to a low logic level at a typical input voltage of 200 millivolts. After each 200-millivolt step, the next output is switched to low logic levels. All outputs are at low logic levels at a typical input voltage of 1000 millivolts. The open-collector outputs are capable of sinking currents up to 40 milliamperes and may be operated at voltages up to 18 volts. The analog input has a high impedance of typically 100 kilohms.

Since all five trigger points have a switching hysteresis of typically 10 millivolts, the circuit may be operated with slow input signals without the danger of oscillation at the outputs. To prevent pickup of noise, a capacitor should be connected between the high-impedance input and ground, especially when the input is driven from a high-impedance source.

The TL489C is especially designed to detect and indicate analog signal levels. The device may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and automatic range switching. The power outputs are suitable for driving a variety of display elements such as LED's or filament lamps. The outputs may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL489C is characterized for operation from 0°C to 70°C.

TYPE TL489C 5-STEP ANALOG LEVEL DETECTOR

absolute maximum ratings

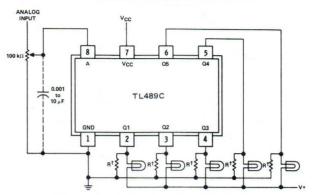
Supply voltage, VCC (see Note 1)														20 V
Voltage at analog input A														8 V
Off-state output voltage														20 V
Current through analog input A													10	mA (
Low-level output current (each output) .													. 80	mA
Total low-level output current													. 200	mA (
Continuous total dissipation at (or below)														
Operating free-air temperature range												(°C to	70°C
Lead temperature 1/16 inch (1,6 mm) from	n case	for	10 s	econ	ds .								20	60°C

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

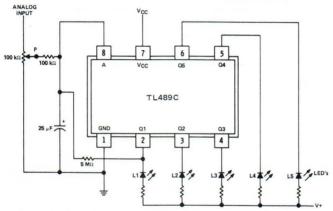
	MIN	NOM	MAX	UNIT
Supply voltage, VCC	 . 10	12	18	V
Output voltage, VO			18	V
Low-level output current			40	mA
Operating free-air temperature, TA)	70	°C

electrical characteristics over recommended range of V_{CC} and operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{T+} Positive-going threshold		Switching Q1		160	200	240	
	Switching Q2		350	400	450		
	Switching Q3	$T_A = 25^{\circ}C$	540	600	660	mV	
	voltage at input A	Switching Q4		730	800	870	
		Switching Q5		920	1000	1080	
V _{T+} - V _T Input hysteresis					10		mV
¹ ОН	High-level output current	/1>-	V _{OH} = 18 V		0.5	20	μА
V	Low lovel output valence		I _{OL} = 16 mA		0.15		V
VOL Low-level output voltage		1	I _{OL} = 40 mA		0.25	0.5	1 "
11	Input current		V _I = 1 V		0.5		μΑ
Icc	Supply current	All outputs high	V _{CC} = 12 V		8	12	mA
100	All outputs low		All outputs open		15	25	mA.

 $^{^{\}dagger}$ All typical values are at V CC = 12 V , T A = 25 $^{\circ}$ C.

^{2.} Derate linearly to 640 mW at 70°C free-air temperature at the rate of 8.0 mW/°C.


TYPE TL489C 5-STEP ANALOG LEVEL DETECTOR

TYPICAL APPLICATIONS DATA

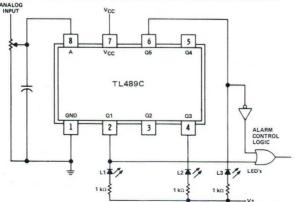

[†]Keep-alive resistors to avoid high switching current.

FIGURE 1-INTERFACING WITH INCANDESCENT LAMPS

 $Lamps\ L1\ through\ L5\ illuminate\ as\ the\ input\ voltage\ increases\ in\ nominally\ 200-mV\ steps.$ Additionally, lamp\ L1\ will flash\ periodically\ when\ the\ input\ voltage\ at\ point\ P\ is\ below\ 200\ mV.

FIGURE 2-LEVEL INDICATION WITH FLASHING FEATURE

Lamp L1 is turned on at input voltages (pin 8) ≥ 200 mV and the alarm turns off.

Lamp L2 is turned on at input voltages \geq 600 mV to indicate correct operation.

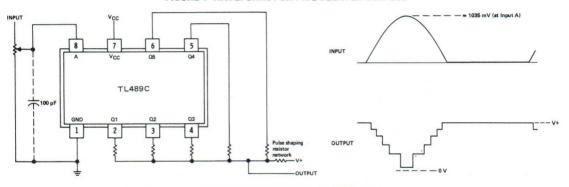
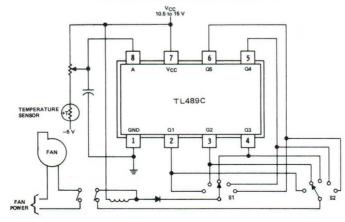

Lamp L3 is turned on at input voltages ≥ 1000 mV and the over-range alarm turns on.

FIGURE 3-THREE-STAGE LEVEL INDICATION AND CONTROL


TEXAS INSTRUMENTS

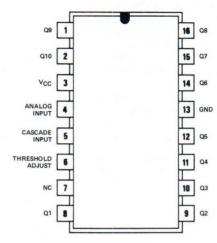
OUTPUT 03 OUTPUT 04 OUTPUT 05

FIGURE 4-WAVEFORMS FOR FIVE DELAYED OUTPUTS

FIGURE 5-PULSE-SHAPE CONVERTER

Switch S1 selects the temperature at which the fan starts operating, and S2 selects the temperature at which the fan stops operating.

FIGURE 6—TEMPERATURE FEEDBACK REGULATION WITH SELECTABLE SYSTEM HYSTERESIS


TEXAS INSTRUMENTS

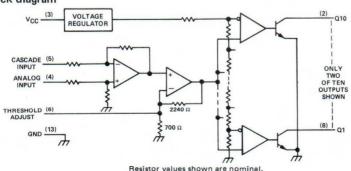
- 10 Comparators to Digitize Analog Input Signals
- Cascade Feature Allows Stacking **Output Display Strings**
- Threshold Intervals Adjustable from 200 mV to 100 mV
- Open-Collector Outputs Capable of Sinking up to 40 mA and Withstanding up to 32 V
- Supply Voltage Range of 10 to 18 V

description

The TL490C consists of ten comparators and a reference voltage network to detect the level of a signal at the analog input. Output Q1 is switched to a low logic level at a typical input voltage of 200 millivolts with Threshold-Adjust open and the cascade input grounded. After each 200-millivolt increment, the next output is switched to a low logic level. All outputs are at low logic levels at a typical input voltage of 2000 millivolts. The threshold-adjust

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection


terminal allows the user to decrease the input voltage steps from 200-millivolt to 100-millivolt increments by connecting an external resistor from Threshold Input to ground.

This level detector is directly cascadable requiring only two external resistors. The maximum number of devices that can be cascaded is determined by the threshold level and the maximum input voltage. See Figure 4 in Typical Application Data. If the cascade feature is not utilized, the cascade input must be grounded for proper operation.

The TL490C is especially designed to detect and indicate analog signal levels and may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning-signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and for automatic range switching. The open-collector outputs are capable of sinking currents up to 40 milliamperes and may be operated at voltages up to 32 volts. The power outputs are suitable for driving a variety of display elements such as LED's or filament lamps. The outputs may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL490C is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL490C 10-STEP LOGARITHMIC ANALOG LEVEL DETECTOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: Analog input	8 V
Cascade input	8 V
Off-state output voltage	40 V
On-state output current (each output)	60 mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2):	: J package 1025 mW
	N package 1150 mW
Operating free-air temperature range	0°C to 70°C
Storage temperature range	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: J package	
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: N package	260°C

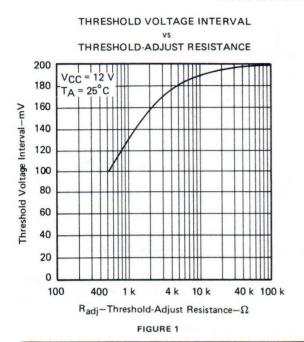
- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, chips are glass-mounted.

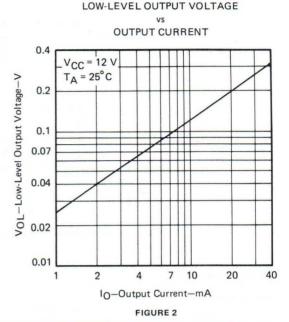
DISSIPATION DERATING TABLE

PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
J (Glass-Mounted Chip)	1025 mW	8.2 mW/°C	25°C
N	1150 mW	9.2 mW/°C	25°C

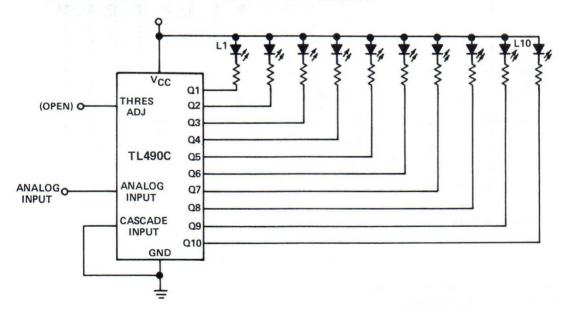
Also see Dissipation Derating Curves, Section 2.

recommended operating conditions


	MIN	NOM	MAX	UNIT
Supply voltage, VCC		12	18	V
Output voltage, VO			32	V
Cascade input voltage (Pin 5) (when not grounded)			8	V
Output current, IO			40	mA
Operating free-air temperature, TA	0		70	°C


electrical characteristics over recommended operating free-air temperature and supply voltage ranges, pin 5 at gnd, pin 6 open (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYPT	MAX	UNIT
-a.		Switching Q1	T _A = 25°C	125	200	275	
		Switching Q2		325	400	475	
		Switching Q3		525	600	675	
		Switching Q4		725	800	875	mV
	Positive-going threshold voltage at input A	Switching Q5		925	1000	1075	
V _{T+}		Switching Q6		1125	1200	1275	
		Switching Q7		1325	1400	1475	
		Switching Q8		1525	1600	1675	
		Switching Q9		1725	1800	1875	
		Switching Q10		1925	2000	2075	
$V_{T+} - V_{T-}$	Input hysteresis				10		mV
ГОН	High-level output current		V _{OH} = 32 V		0.5	200	μА
V	Low-level output voltage		I _{OL} = 10 mA		0.12	0.3	V
VOL			I _{OL} = 40 mA		0.3	0.6	7 V
1.	Input current	Analog input	V ₁ = 2 V		260	400	μΑ
Ц		Cascade input	V - 2 V		1000	1700	
laa	Supply current	All outputs high	V _{CC} = 12 V,		10	15	mA
ICC		All outputs low	All outputs open		30	45	


 $^{^{\}dagger}$ All typical values are at V CC = 12 V and T A = 25 $^{\circ}$ C

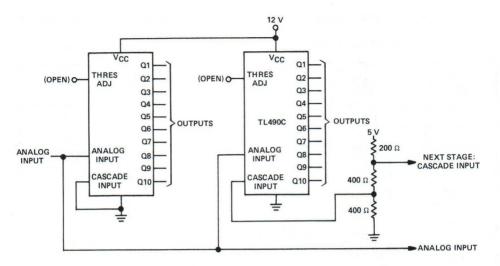
TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

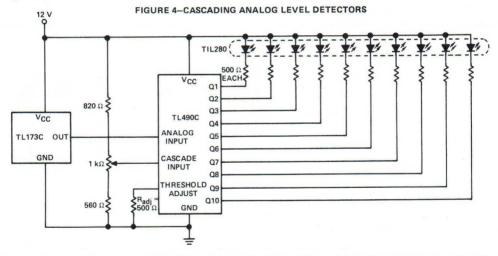
Lamps L1 through L10 sequentially illuminate as the input voltage increases in nominally 200-millivolt steps.

FIGURE 3-LEVEL INDICATION WITH LIGHT-EMITTING DIODES

TEXAS INSTRUMENTS


INCORPORATED

351


6

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

To cascade three TL490C detectors, parallel all analog inputs, connect cascade input 1 to ground, bias cascade input 2 to 2 volts (or 10 times the threshold interval), and bias cascade input 3 to 4 volts (or 20 times the threshold interval). This provides drive for 30 output steps with one continuous 0- to 6-volt input. The maximum number of devices that can be cascaded is determined by the threshold level and the maximum input voltage rating.

The appropriate value of R_{adj} , the external resistance between the threshold-adjust terminal and ground, may be calculated from:

$$\frac{0.84}{V_T} \approx \frac{(R_{adj} + 700 \Omega) \bullet 2240 \Omega}{700 \Omega \bullet R_{adj}} + 1; \text{ or } R_{adj} \approx \frac{533 V_T}{0.2 - V_T}$$

where:

V_T = threshold voltage interval, V

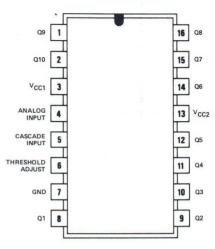
Alternatively, Radj can be estimated using Figure 1.

In the circuit shown with R_{adi} = 500 Ω , V_T \approx 100 mV.

FIGURE 5-LINEAR HALL-EFFECT SENSOR WITH 10-STEP ANALOG LEVEL INDICATOR

6

TYPE TL491C 10-STEP ADJUSTABLE ANALOG LEVEL DETECTOR

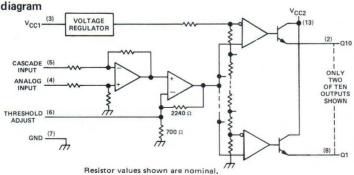

BULLETIN NO. DL-S 12730, DECEMBER 1979

- 10 Comparators to Digitize Analog Input Signals
- Cascade Feature Allows Stacking Output Display Strings
- Threshold Intervals Adjustable from 200 mV to 100 mV
- Open-Emitter Outputs Capable of Sourcing up to 25 mA and Withstanding up to 35 V
- Supply Voltage Range of 10 to 35 V (Vcc2)

description

The TL491C consists of ten comparators and a reference voltage network to detect the level of a signal at the analog input. Output Q1 is switched to a low logic level at a typical input voltage of 200 millivolts with Threshold Adjust open and the cascade input grounded. After each 200-millivolt increment, the next output is switched to a low logic level. All outputs are at low logic levels at a typical input voltage of 2000 millivolts. The threshold-adjust

NG DUAL-IN-LINE PACKAGE (TOP VIEW)


terminal allows the user to decrease the input voltage steps from 200-millivolt to 100-millivolt increments by connecting an external resistor from Threshold Adjust to ground.

This level detector is directly cascadable requiring only two external resistors to establish a zero-reference level voltage for the cascade input. The maximum number of devices that can be cascaded is determined by the threshold level and the maximum input voltage. See Figure 4 in Typical Application Data. If the cascade feature is not utilized, the cascade input must be grounded for proper operation.

The TL491C is especially designed to detect and indicate analog signal levels and may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning-signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and for automatic range switching. The open-emitter outputs are capable of sourcing currents up to 25 milliamperes and may be operated at voltages up to 35 volts. The power outputs are suitable for driving a variety of display elements such as vacuum flourescent displays, LED's, or filament lamps. The outputs may also drive digital integrated logic such as CMOS or other high-level logic.

The TL491C is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1979 by Texas Instruments Incorporated

ADVANCE INFORMATION

9

This document contains information on a new product. Specifications are subject to change without notice.

TEXAS INSTRUMENTS

TYPE TL491C 10-STEP ADJUSTABLE ANALOG LEVEL DETECTOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage: VCC1 (see Note 1)	1
VCC2 40 V	1
Input voltage: Analog input	1
Cascade input	1
Output voltage range 0 V to VCC2	2
On-state output current (each output)	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	
Operating free-air temperature range	;
Storage temperature range—65°C to 150°C	;
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	;

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	MOM	MAX	UNIT
Supply voltage: VCC1	10.8	12	13.2	V
V _{CC2}	10	25	35	V
Cascade input voltage (When not at ground)	1		8	V
Output current, IO			25	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature and supply voltage ranges, pin 5 at gnd, pin 6 open (unless otherwise noted)

	PARAMETERS		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
V _{T+}	-	Switching Q1	T _A = 25°C	125	200	275	mV	
		Switching Q2		325	400	475		
		Switching Q3		525	600	675		
		Switching Q4		725	800	875		
	Positive-going threshold	Switching Q5		925	1000	1075		
	voltage at input A	Switching Q6		1125	1200	1275		
		Switching Q7		1325	1400	1475		
		Switching Q8		1525	1600	1675		
		Switching Q9		1725	1800	1875		
		Switching Q10		1925	2000	2075		
$V_{T+} - V_{T}$	_ Input hysteresis				10		mV	
Vou	High lovel (on state) outp	ut valtage	I _{OH} = -10 mA	V _{CC2} -1.3	V _{CC2} -0.8		V	
VOH High-level (on-state) output voltage		ut voitage	I _{OH} = -25 mA	V _{CC2} -1.5	V _{CC2} -0.9		1	
OL	Low-level (off-state) outp	ut current	V _{CC2} = 35 V	the state	0.5	200	μΑ	
i.	Input current	Analog input	V - 2 V	12.00	260	400		
11		Cascade input	V _I = 2 V	54	1000	1700	μΑ	
Icc	Supply current A	All outputs high	V _{CC1} = 12 V,		15	25	^	
	from V _{CC1}	All outputs low	No load		9	15	mA	
Icc	Supply current All outputs high	V _{CC1} = 12 V, V _{CC2} = 35 V,		15	27	mA		
	from VCC2	All outputs low	No load		1	200	μА	

 $^{^{\}dagger}$ All typical values are at V CC1 = 12 V , V CC2 = 25 V , and T A = 25 $^{\circ}$ C.

^{2.} For operation above 25°C free-air temperature, derate linearly to 1328 mW at 70°C at the rate of 16.6 mW/°C.

TYPE TL491C 10-STEP ADJUSTABLE ANALOG LEVEL DETECTOR

TYPICAL CHARACTERISTICS

THRESHOLD VOLTAGE INTERVAL

THRESHOLD-ADJUST RESISTANCE

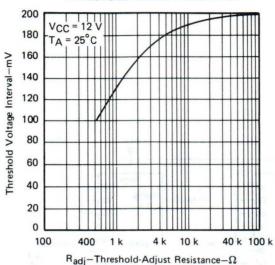
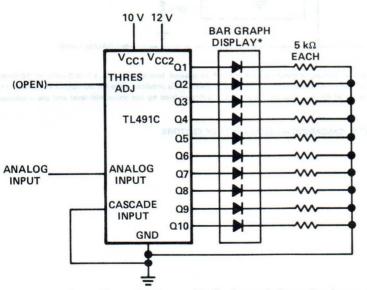



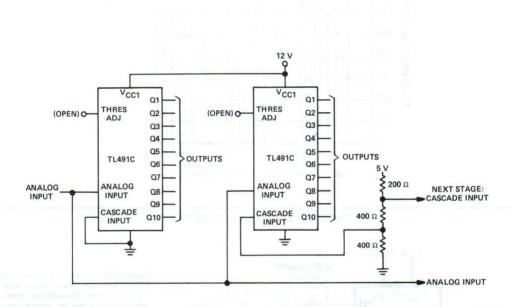
FIGURE 1

TYPICAL APPLICATION DATA

Outputs Q1 through Q10 turn on LED's to represent the Input voltage level in multiples of the 200-millivolt threshold voltage. The threshold interval can be reduced for greater accuracy by adding a shunt resistor between Threshold Adjust and ground. The appropriate value of shunt resistance, Radj, can be approximated from

$$\frac{0.84}{V_T} \approx \frac{(\mathsf{R}_{\mathsf{adj}} + 700 \; \Omega) \, \bullet \, 2240 \; \Omega}{700 \; \Omega \, \bullet \, \mathsf{R}_{\mathsf{adj}}} + 1 \; \mathsf{or}$$

$$R_{adj} \approx \frac{533 \text{ V}_T}{0.2 - \text{V}_T}$$


where: V_T = threshold voltage interval. Alternatively R_{adj} can be estimated using Figure 1.

Lamps L1 through L10 sequentially illuminate as the input voltage increases in nominally 200-millivolt steps.

FIGURE 2-LEVEL INDICATION WITH LIGHT-EMITTING DIODES

^{*}General Instruments MV57164 or equivalent,

TYPICAL APPLICATION DATA

To cascade three TL491C detectors, parallel all analog inputs, connect cascade input 1 to ground, bias cascade input 2 to 2 volts (or 10 times the threshold interval), and bias cascade input 3 to 4 volts (or 20 times the threshold interval). This provides drive for 30 output steps with one continuous 0- to 6-volt input. The maximum number of devices that can be cascaded is determined by the threshold level and the maximum input voltage rating.

FIGURE 3-CASCADING ANALOG LEVEL DETECTORS

TYPES TL500C THRU TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

BULLETIN NO. DL-S 12740, DECEMBER 1979

TL500C/TL501C ANALOG PROCESSORS

- True Differential Inputs
- Automatic Zero
- Automatic Polarity
- High Input Impedance . . . 109Ohms Typically

TL500C CAPABILITIES

- Resolution . . . 14 Bits (with TL502C)
- Linearity Error . . . 0.001%
- 4 1/2-Digit Readout Accuracy with External Precision Reference

TL501C CAPABILITIES

- Resolution . . . 10-13 Bits (with TL502C)
- Linearity Error . . . 0.01%
- 3 1/2-Digit Readout Accuracy

TL502C/TL503C DIGITAL PROCESSORS

- Fast Display Scan Rates
- Internal Oscillator May Be Driven or Free-Running
- Interdigit Blanking
- Over-Range Blanking
- Display Test
- 4 1/2-Digit Display Circuitry
- High-Sink-Current Digit Driver for Large Displays

TL502C CAPABILITIES

- Compatible with Popular Seven-Segment Common-Anode Displays
- High-Sink-Current Segment Driver For Large Displays

TL503C CAPABILITIES

- Multiplexed BCD Outputs
- High-Sink-Current BCD Outputs

description of converter system

79

The TL500C and TL501C analog processors and TL502C and TL503C digital processors provide the basic functions for a dual-slope-integrating analog-to-digital converter.

The TL500C and TL501C contain the necessary analog switches and decoding circuits, reference voltage generator, buffer, integrator, and comparator. These devices may be controlled by the TL502C, TL503C, by discrete logic, or by a software routine in a microprocessor.

The TL502C and TL503C each includes oscillator, counter, control logic, and digit enable circuits. The TL502C provides multiplexed outputs for seven-segment displays, while the TL503C has multiplexed BCD outputs.

When used in complementary fashion, these devices form a system that features automatic zero-offset compensation, true differential inputs, high input impedance, and capability for 4 1/2-digit accuracy. Applications include the conversion of analog data from high-impedance sensors of pressure, temperature, light, moisture, and position. Analog-to-digital-logic conversion provides display and control signals for weight scales, industrial controllers, thermometers, light-level indicators, and many other applications.

Copyright © 1979 by Texas Instruments Incorporated

TYPES TL500C THRU TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

principles of operation

The basic principle of dual-slope-integrating converters is relatively simple. A capacitor, Cx, is charged through the integrator from VCT for a fixed period of time at a rate determined by the value of the unknown voltage input. Then the capacitor is discharged at a fixed rate (determined by the reference voltage) back to VCT where the discharge time is measured precisely. The relationship of the charge and discharge values are shown below (see Figure 1).

$$V_{CX} = V_{CT} - \frac{V_1 t_1}{R_{YCY}}$$
 Charge (1)

$$V_{CX} = V_{CT} - \frac{V_{I} t_{1}}{R_{X} C_{X}}$$
 Charge (1)

$$V_{CT} = V_{CX} - \frac{V_{ref} t_{2}}{R_{X} C_{X}}$$
 Discharge (2)

Combining equations 1 and 2 results in:

$$\frac{V_{I}}{V_{ref}} = -\frac{t_2}{t_1} \qquad \qquad \text{Oscillation for the property of the p$$

where:

VCT = Comparator (offset) threshold voltage

VCX = Voltage change across Cx during t1 and during t2 (equal in magnitude)

VI = Average value of input voltage during t1

t₁ = Time period over which unknown voltage is integrated

t2 = Unknown time period over which a known reference voltage is integrated.

Equation 3 illustrates the major advantages of a dual-slope converter:

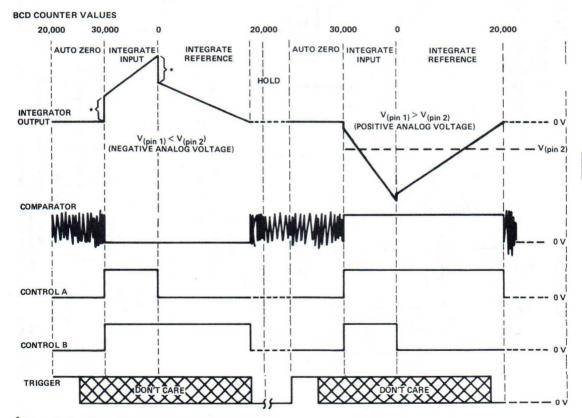
- a. Accuracy is not dependent on absolute values of t1 and t2, but is dependent on their ratios. Long-term clock frequency variations will not affect the accuracy.
- b. Offset values, VCT, are not important.

The BCD counter in the digital processor (see Figure 2) and the control logic divide each measurement cycle into three phases. The BCD counter changes at a rate equal to one-half the oscillator frequency.

auto-zero phase

The cycle begins at the end of the integrate-reference phase when the digital processor applies low levels to inputs A and B of the analog processor. If the trigger input is at a high level, a free-running condition exists and continuous conversions are made. However, if the trigger input is low, the digital processor stops the counter at 20,000, entering a hold mode. In this mode, the processor samples the trigger input every 4000 oscillator pulses until a high level is detected. When this occurs, the counter is started again and is carried to completion at 30,000. The reference voltage is stored on $reference\ capacitor\ C_{ref},\ comparator\ offset\ voltage\ is\ stored\ on\ integration\ capacitor\ C_X,\ and\ the\ sum\ of\ the\ buffer\ and\ of\ sum\ o$ integrator offset voltages is stored on zero capacitor Cz. During the auto-zero phase, the comparator output is characterized by an oscillation (limit cycle) of indeterminate waveform and frequency that is filtered and d-c shifted by the level shifter.

integrate-input phase


The auto-zero phase is completed at a BCD count of 30,000, and high levels are applied to both control inputs to initiate the integrate-input phase. The integrator charges Cx for a fixed time of 10,000 BCD counts at a rate determined by the input voltage. Note that during this phase, the analog inputs see only the high impedance of the noninverting operational amplifier input. Therefore, the integrator responds only to the difference between the analog input terminals, thus providing true differential inputs.

TYPES TL500C THRU TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

integrate-reference phase

At a BCD count of 39,999 + 1 = 40,000 or 0, the integrate-input phase is terminated and the integrate-reference phase is begun by sampling the comparator output. If the comparator output is low corresponding to a negative average analog input voltage, the digital processor applies a low and a high to inputs A and B, respectively, to apply the reference voltage stored on C_{ref} to the buffer. If the comparator output is high corresponding to a positive input, inputs A and B are made high and low, respectively, and the negative of the stored reference voltage is applied to the buffer. In either case, the processor automatically selects the proper logic state to cause the integrator to ramp back toward zero at a rate proportional to the reference voltage. The time required to return to zero is measured by the counter in the digital processor. The phase is terminated when the integrator output crosses zero and the counter contents are transferred to the register, or when the BCD counter reaches 20,000 and the over-range indication is activated. When activated, the over-range indication blands all but the most significant digit and sign.

Seventeen parallel bits (4 1/2 digits) of information are strobed into the buffer register at the end of the integrate-input phase. Information for each digit is multiplexed out to the BCD outputs (TL503C) or the seven-segment drivers (TL502C) at a rate equal to the oscillator frequency divided by 400.

^{*}This step is the voltage at pin 2 with respect to analog ground.

79

FIGURE 1-VOLTAGE WAVEFORMS AND TIMING DIAGRAM

TYPES TL500C THRU TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

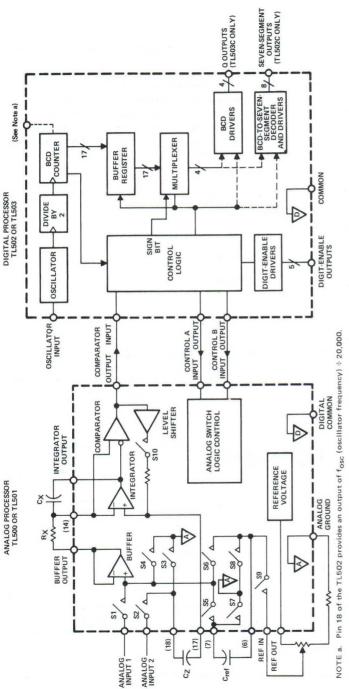
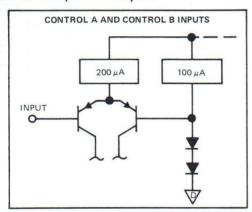


FIGURE 2 – BLOCK DIAGRAM OF BASIC ANALOG-TO-DIGITAL CONVERTER USING TL500C OR TL501C AND TL502C OR TL503C

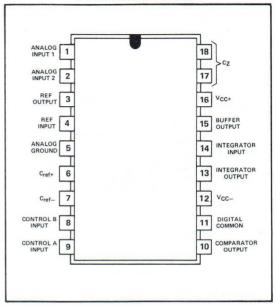
1000	ANALOG		CONTROLS	ANALOG SWITCHES
MODE	INPUT	COMPARATOR	A AND B	CLOSED
Auto Zero	>	Occillation	-	C2 C4 C7 C9 C10
*PIOH	<	Oscillation	L L	010,00,00,00
Integrate	Positive	Ι	2	25
Input	Negative	T		20,10
Integrate	>	H‡	Н	53, 86, 87
Reference	<	+1	H	S3, S5, S8

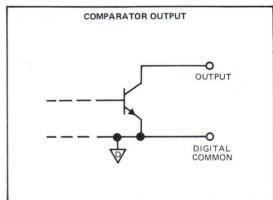
H ≡ High, L ≡ Low, X ≡ Irrelevant

^{*}If the trigger input is low at the beginning of the auto-zero cycle, the system will enter the hold mode. A high level (or open circuit) will signal the digital processor to continue or resume normal operation.


This is the state of the comparator output as determined by the polarity of the analog input during the integrate input phase.

TYPES TL500C, TL501C ANALOG PROCESSORS


description of analog processors


The TL500C and TL501C analog processors are designed to automatically compensate for internal zero offsets, integrate a differential voltage at the analog inputs, integrate a voltage at the reference input in the opposite direction, and provide an indication of zero-voltage crossing. The external control mechanism may be a microcomputer and software routine, discrete logic, or a TL502C or TL503C controller. The TL500C and TL501C are designed primarily for simple, cost-effective, dual-slope analogto-digital converters. Both devices feature true differential analog inputs, high input impedance, and an internal reference-voltage source. The TL500C provides 4 1/2-digit readout accuracy when used with a precision external reference voltage. The TL501C provides 100-ppm linearity error and 3 1/2-digit accuracy capability. These devices are manufactured using TI's advanced technology to produce JFET. MOSFET, and bipolar devices on the same chip. The TL500C and TL501C are intended for operation over the temperature range of 0°C to 70°C.

schematics of inputs and outputs

N DUAL-IN-LINE PACKAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply voltage, V _{CC} +(see Note 1)
Negative supply voltage, V _{CC} 18 V
Input voltage, VI
Comparator output voltage range (see Note 2)
Comparator output sink current (see Note 2)
Buffer, reference, or integrator output source current (see Note 2)
Operating free-air temperature range
Storage temperature range

NOTES: 1. Voltage values, except differential voltages, are with respect to the analog ground and digital common pins tied together.

2. Buffer, integrator, and comparator outputs are not short-circuit protected.

TYPES TL500C, TL501C ANALOG PROCESSORS

recommended operating conditions

The state of the s		MIN	NOM	MAX	UNIT
Positive supply voltage, V _{CC+}		7	12	15	V
Negative supply voltage, V _{CC} _		-9	-12	-15	V.
Reference input voltage, V _{reg(I)}		0.1		5	V
Analog input voltage, V _I				5	V
Differential analog input voltage, V _{ID}				10	V
Peak positive integrator output voltage, VOM+				+9	V
Peak negative integrator output voltage, VOM-				-5	V
Full scale input voltage			2 V _{ref}		
Autozero and reference capacitors, CZ and Cref		0.2			μF
Integrator capacitor, CX	0	0.2			μF
Integrator resistor, RX		15		100	kΩ
Integrator time constant, R _X C _X		See Note	3		
Free-air operating temperature, TA	perature, T _A 0 70		°C		
Maximum conversion rate (see Figure 2)	4 1/2 Digits			15	
Maximum conversion rate (see Figure 2)	3 1/2 Digits			150	conv/sec

system electrical characteristics at VCC = ±12 V, TA = 25°C (unless otherwise noted) see Figure 3

PARAMETER	TEST CONDITIONS	TL501C			nif is it	TL500C	5 103	LINUTO
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Zero error			50	300		10	30	μV
Linearity error relative to full scale			0.005	0.05		0.001	0.005	%
Full scale temperature coefficient	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$		6			6		ppm/°C
Temperature coefficient of zero error	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$		4			1		μV/°C
Rollover error			200	500		30	100	μV
Equivalent peak-to-peak input noise voltage			20			20		μV
Analog input resistance	Pin 1 or 2		109			109		Ω
Common-mode rejection ratio	$V_{IC} = -1 \ V \ to +1 \ V$		86			90		dB
Current into analog input	V ₁ = ±5 V		50	I		50		pA
Supply voltage rejection ratio			90			90		dB

NOTE 3. The minimum integrator time constant may be found by use of the following formula:

Minimum
$$R_X C_X = \frac{V_{ID}(\text{full scale}) t_1}{V_{OM} - V_I(\text{pin 2})}$$

where

V_{ID} = voltage at pin 1 with respect to pin 2

 $V_1(pin 2)$ = voltage at pin 2 with respect to analog ground

 t_1 = input integration time seconds

electrical characteristics at V_{CC} = ± 12 V, V_{ref} = 1 V, T_A = 25° C, see Figure 3

integrator and buffer operational amplifiers

	PARAMÈTER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VIO	Input offset voltage			15		mV
IB	Input bias current	1 2101	17	50		pA
V _{OM+}	Positive output voltage swing	The second of the second of	9	11		V
VOM-	Negative output voltage swing		-5	-7		V
AVD	Voltage amplification	1 DEMON A THREE PARTY	CONTRACTOR OF THE PARTY OF THE	110		dB
B ₁	Unity-gain bandwidth			3		MHZ
CMRR	Common mode rejection	V _{IC} = -1 V to +1 V	e-428	100		dB
SR	Output slew rate	3	September 1	5	1	V/µs

comparator

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNITS
VIO	Input offset voltage	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15		mV
IB	Input bias current	220000 20000 20000	50	1	pA
AVD	Voltage amplification		100		dB
VOL	Low-level output voltage	I _{OL} = 1.6 mA	200	400	mV
ЮН	High-level output current	V _{OH} = 3 V	5	20	nA

voltage reference output

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V _{ref(0)}	Reference voltage		1.12	1.22	1.32	V
odá kora som mu	Reference-voltage temperature coefficient	T _A = 0°C to 70°C	l r	80	e Hori	ppm/°C
ro	Reference output resistance	en roce - metioge desprivible en c		3	day	Ω

logic control section

olvesolt	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VIH	High-level input voltage	is the constrained of the state of the constraint	2	TL K	(5)	V
VIL	Low-level input voltage	and the satisfied stands the		- AT	0.8	V
ЧН	High-level input current	V _{IH} = 2 V	s_ut 9a	11	are Sim	μА
IL	Low-level input current	V _{IL} = 0.8 V		-40	-300	μΑ

total device

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Icc+	Positive supply current	merical management of the control of		15	20	mA
ICC-	Negative supply current	numbers of the Account to the		12	18	mA

PARAMETER MEASUREMENT INFORMATION

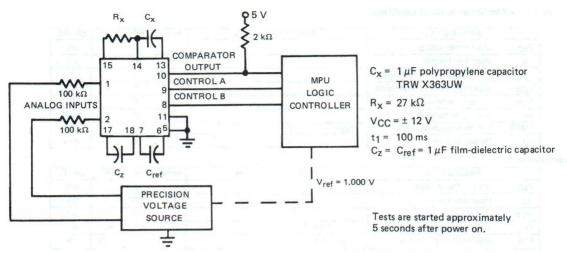


FIGURE 3-TEST CIRCUIT CONFIGURATION

external-component selection guide

The autozero capacitor C_Z and reference capacitor C_{ref} should be within the recommended range of operating conditions and should have low leakage characteristics. Most film-dielectric capacitors and some tantalum capacitors provide acceptable results. Ceramic and aluminum capacitors are not recommended because of their relatively high leakage characteristics.

The integrator capacitor C_X should also be within the recommended range and must have good voltage linearity and low dielectric absorbtion. A polypropylene-dielectric capacitor similar to TRW's X363UW is recommended for 4 1/2-digit accuracy. For 3 1/2-digit applications, polyester, polycarbonate, and other film dielectrics are usually suitable. Ceramic and electrolylic capacitors are not recommended.

Stray coupling from the comparator output to any analog pin (in order of importance 17, 18, 14, 7, 6, 13, 1, 2, 15) must be minimized to avoid oscillations. In addition, all power supply pins should be bypassed at the package.

Analog and digital common are internally isolated and may be at different potentials. Digital common can be within 4 volts of positive or negative supply with the logic decode still functioning properly.

The time constant RXCX should be kept as near the minimum value as possible and is given by the formula:

$$Minimum R_XC_X = \frac{V_{ID} \text{ (full scale) t}_1}{V_{OM} - V_{I}(pin 2)}$$

where:

VID(full scale) = Voltage on pin 1 with respect to pin 2

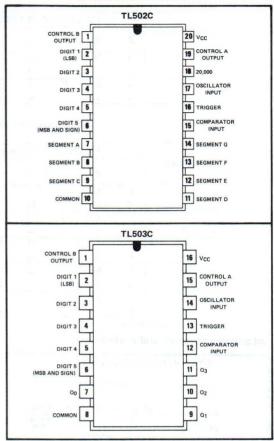
t₁ = Input integration time in seconds

VI(pin 2) = Voltage on pin 2 with respect to analog ground

365

TYPES TL502C, TL503C DIGITAL PROCECSSORS

description of digital processors


The TL502C and TL503C are control logic devices designed to complement the TL500C and TL501C analog processors. They feature interdigit blanking, over-range blanking, an internal oscillator, and a fast display scan rate. The internal-oscillator input is a Schmitt trigger circuit that can be driven by an external clock pulse or provide its own time base with the addition of a capacitor. The typical oscillator frequency is 240 kHz with a 470-picofarad capacitor connected between the oscillator input and ground.

The TL502C provides seven-segment-display output drivers capable of sinking 100 milliamperes and compatible with popular common-anode displays. The TL503C has four BCD output drivers capable of 100-milliampere sink currents. The code (see next page and Figure 4) for each digit is multiplexed to the output drivers in phase with a pulse on the appropriate digit-enable line at a digit rate equal to fosc. divided by 400. Each digit-enable output is capable of sinking 20 milliamperes.

The comparator input of each device, in addition to monitoring the output of the zero-crossing detector in the analog processor, may be used in the display test mode to check for wiring and display faults. A high logic level at the trigger input starts the integrate-input phase and, in combination with the comparator input, can provide a system clear function to reset the display output to zero and restart the conversion cycle at the auto-zero phase.

These devices are manufactured using I^2L and bipolar techniques. The TL502C and TL503C are intended for operation from 0°C to 70°C.

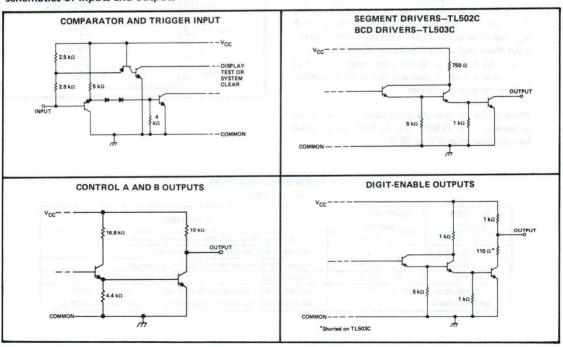
N DUAL-IN-LINE PACKAGE

TABLE OF SPECIAL FUNCTIONS VCC = 5 V ±10%

TRIGGER INPUT	FUNCTION					
V ₁ ≤ 0.8 V	V ₁ ≤ 6.5 V	Hold at auto-zero cycle after completion of conversion				
$2 \text{ V} \leq \text{V}_{\parallel} \leq 6.5 \text{ V}$ $\text{V}_{\parallel} \leq 6.5 \text{ V}$		Normal operation (continuous conversion)				
V ₁ ≤ 6.5 V	V _I ≥ 7.9 V	Display Test: All segment or BCD outputs high				
V ₁ ≥ 7.9 V	V ₁ ≤ 6.5 V Internal Test					
Both inputs go hig	go high (V ₁ ≥ 2 V) System clear: Sets outputs to zero and BCD counter to 20,0					
simultaneously		When normal operation is resumed, cycle begins with Auto Zer				

TYPES TL502C, TL503C DIGITAL PROCECSSORS

DIGIT 5 (MOST SIGNIFICANT DIGIT) CHARACTER CODES


	HE GLE I	TL50	2C SEV	EN-SEG	TL503C BCD OUTPUT LINES						
CHARACTER	Α	В	С	D	E	F	G	Q3 8	Q2 4	Q1 2	Q0 1
Tel +	Н	н	157 H	Н	L	L.	L	Н	L	Hyge	neraL
+1	Н	L	L	Н	L	L	L	н	H ma	н	L
maoral.	L	Н	Н	L	Н	- Н	aL or	Н	rintr'L or	H	Н
-1	L	L	L	L	Н	Н	L	H and	н	н	Н

DIGITS 1 THRU 4 NUMERIC CODE (See Figure 4)

		TL50	2C SEV	EN-SEG	MENT	LINES		TL503C BCD OUTPUT LINES					
NUMBER		- 6	H LIPS III	_		680	_	Q3	Q2	Q1	QO		
198	A	В	С	D	D E	F	G	8	4	2	1		
0	L	L.	L	L	L	L	Н	L	paka.	to Line	usa L		
Daz Lai	Н	L	L	Н	Н	Н	Н	L	ana Luca	ng Law	H		
2	L	L	Н	L	L	Н	L	th La	ve G L S s	H A	L		
3	L	L	L	L	Н	н	L	L	and Lib	H	Н		
4	Н	L	L	Н	Н	SV: L	each Light	L	alb Hie	L	L		
2/5	L	Н	L	L	Н	L	L	L	Hy	arte L	н		
6	L	Н	L	L	L	SeL.	L	L	Н	Н	L		
7	L	L	L	Н	Н	- H	H	L L	High	Н	H		
8	L	L	L	L	L	L	L	Н	L	L	L		
9	L	L	L	L	Н	L	L	Н	L	L	Н		

H = high level, L = low level

schematics of inputs and outputs

TYPES TL502C, TL503C DIGITAL PROCESSORS

absolute maximum ratings

Supply voltage, V _{CC} (see Note 4)		7	V	
Input voltage, V ₁	Oscillator	5,5	V	
input voltage, v	Comparator or Trigger	9	- v	
	BCD or Segment drivers	120		
Output current	Digit-enable outputs	40	mA	
	Pin 18 (TL502C only)	20		
Total power dissipation at (or below) 30°C free-air temperatur	e (see Note 5)	1100	mW	
Operating free-air temperature range				
Storage temperature range				

NOTES: 4. Voltage values are with respect to the network ground terminal.

5. For operation above 30°C free-air temperature, derate linearly at the rate of 9.2 mW/°C.

recommended operating conditions

		MIN	NOM	MAX	UNI
Supply voltage, V _{CC}		4.5	5	5.5	V
High-level input voltage, VIH	Comparator and trigger inputs	2			V
Low-level input voltage, VIL	Comparator and trigger inputs			0.8	٧
Operating free-air temperature		0		70	°C

electrical characteristics at 25°C free-air temperature

PARAMETER		TERMINAL TEST CONDITIONS			TL502	2C		С	UNIT		
	PANAMETER	TERMINAL	1EST CO	NDITIONS	MIN	TYP	MAX	MIN	NOM	MAX	UNIT
VIK	Input clamp voltage	All inputs	VCC = 4.5 V,	$I_1 = -12 \text{ mA}$		-0.8	-1.5		-0.8	-1.5	V
V _{T+}	Positive-going input threshold voltage	Oscillator	V _{CC} = 5 V			1.5			1.5		V
V _T _	Negative-going input threshold voltage	Oscillator	V _{CC} = 5 V			0.9			0.9		V
V _{T+} - V _{T-}	Hysteresis	Oscillator	VCC = 5 V		0.4	0.6	0.8	0.4	0.6	0.8	V
I _{T+}	Input current at positive-going input threshold voltage	Oscillator	V _{CC} = 5 V		-40	-94	-100	-40	-94	-100	μА
I _T _	Input current at negative-going input threshold voltage	Oscillator	V _{CC} = 5 V		-40	117	170	-40	117	170	μА
100 - 1211		Digit enable			4.15	4.4		4.15	4.4	100	
VOH	High-level output voltage	Pin 18 (TL502C only)	V _{CC} = 4.5 V,	IOH = 0	4.25	4.4					V
		Control A and B			4.25	4.4		4.25	4.4		1
		Digit enable		IOL = 20 mA					0.2	0.5	
		Pin 18 (TL502C only)		I _{OL} = 10 mA		0.15	0.4		10		1
VOL	Low-level output voltage	Control A and B	VCC = 4.5 V	IOL = 2 mA		0.088	0.4		0.088	0.4	V
		Segment drivers		IOL = 100 mA		0.17	0.3				1
		BCD drivers		I _{OL} = 100 mA					0.17	0.3	1
11	Input current	All inputs	V _{CC} = 5.5 V,	V ₁ = 5.5 V		65	100		65	100	μА
l _{IH}	High-level input current	Oscillator, Comparator, Trigger	V _{CC} = 5.5 V,	V ₁ = 2.4 V		-0.6	-1		-0.6	-1	mA
To a	Low-level input voltage	Oscillator	V F F V	V = 0.4.V		-0.1	-0.17		-0.1	-0.17	
11L	Low-level input voltage	Comparator, Trigger	V _{CC} = 5.5 V,	V1 = 0.4 V	-	-1	-1.6		-1	-1.6	mA
		Digit enable		V _O = 0.5 V	-2.5	-4		-2.5	-4		
	I the land of the land	Pin 18 (TL502C only)		V _O = 0.5 V	-0.5	-0.9					1
ЮН	High-level output current	Control A and B	VCC = 4.5 V	V _O = 0.5 V	-0.25	-0.4		-0.25	-0.4		mA
E-00	(Output transistor off)	Segment drivers		V _O = 5.5 V			0.25				1
		BCD drivers		V _O = 5.5 V						0.25	1
lor	Low-level output current (Output transistor on)	Digit enable	V _{CC} = 4.5, \	V _O = 3.55 V	18	23					mA
Icc	Supply current	Vcc	V _{CC} = 5.5 V			73	110		73	110	mA

special functions operating characteristics at 25°C free-air temperature

3,	PARAMETER		TEST CONDITIONS	MIN TYP MAX	UNIT
Acres Sanker	Input current into	V _{CC} = 5.5 V,	V _I = 8.55 V	1.2 1.8	mA
1	comparator or trigger inputs	V _{CC} = 5.5 V,	V ₁ = 6.25 V	0.5	mA

[§] The comparator and trigger inputs may be used in the normal mode or to perform special functions. See the Table of Special Functions.

TYPES TL502C, TL503C DIGITAL PROCECSSORS

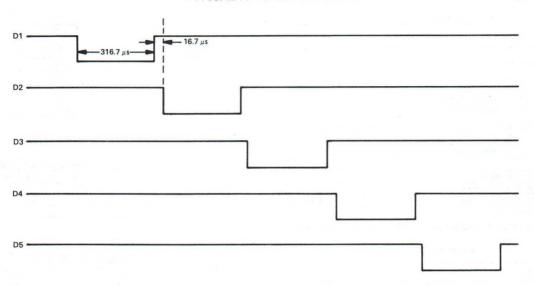


FIGURE 4-TL502C, TL503C DIGIT TIMING WITH 240-kHz CLOCK SIGNAL AT OSCILLATOR INPUT

This 4%-digit thermistor thermometer application will indicate the temperature inside a deep freeze, solution temperature in a darkroom, or any other temperature measureable with a thermistor. However, to ensure accuracy to 4% digits, an external precision reference and a very stable external oscillator should be used. The external oscillator could be crystal-controlled or stabilized with a phase-locked loop. For 3%-digit accuracy. The TL500C internal reference and the TL502C internal oscillator are sufficient.

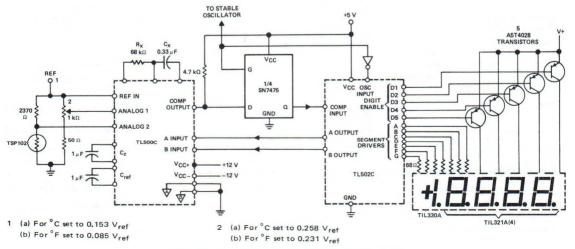


FIGURE 5-4 1/2-DIGIT THERMISTOR THERMOMETER

LINEAR INTEGRATED CIRCUITS

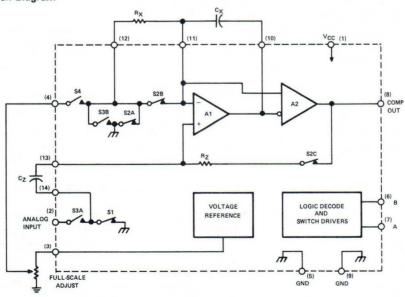
TYPE TL505C ANALOG-TO-DIGITAL CONVERTER

BULLETIN NO. DL-S 12580, OCTOBER 1977

- 3-Digit Accuracy (0.1%)
- Automatic Zero
- Internal Reference Voltage
- Single-Supply Operation
- High-Impedance MOS Input
- Designed for use with TMS 1000 Type Microprocessors for Cost-Effective High-Volume Applications
- BI-MOS Technology
- Only 40 mW Typical Power Consumption

N DUAL-IN-LINE (TOP VIEW) ZERO CAP 2 (13 ZERO CAP 1 ANALOG INPUT INTEGRATOR RES REF OUTPUT INTEGRATOR IN **REF INPUT** 5 INTEGRATOR OUT GND 6 GND **B INPUT** 7 COMPARATOR OUT A INPUT

description


079

The TL505C is an analog-to-digital converter building block designed for use with TMS 1000 type microprocessors. It contains the analog elements (operational amplifier, comparator, voltage reference, analog switches, and switch drivers) necessary for a unipolar automatic-zeroing dual-slope converter. The logic for the dual-slope conversion can be performed by the associated MPU as a software routine or it can be implemented with other components such as the TL502 logic-control device.

The high-impedance MOS inputs permit the use of less expensive, lower value capacitors for the integration and offset capacitors and permit conversion speeds from 20 per second to 0.05 per second.

The TL505C is a product of TI's BI-MOS process, which incorporates bipolar and MOSFET transistors on the same monolithic integrated circuit. The TL505C is characterized for operation from 0°C to 70°C.

functional block diagram

TYPE TL505C ANALOG-TO-DIGITAL CONVERTER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)					100																	. 18	V
Input voltage, pins 2, 4, 6, and	7.																٠						. V	CC
Continuous total dissipation at	(or be	elow) 25	°C	fre	e-ai	ir t	temp	oer	atu	re	see	No	ote	2)	91							900 m	Wn
Operating free-air temperature	range																				0	°C	to 70	°C
Storage temperature range .																				-6	i5°	C	to 150	°C

NOTES: 1. Voltage values are with respect to the two ground terminals connected together.

 For operation above 25°C free-air temperature, derate linearly from 900 mW at 52°C to 736 mW at 70°C at the rate of 9.2 mW/°C.

recommended operating conditions

See the second s	MIN NOM MAX	UNIT
Supply voltage, V _{CC}	7 9 15	V
Analog input voltage, V _I	0 4	V
Reference input voltage, V _{ref(I)}	0.5 3	V
Integrator capacitor, CX	See "component selection"	E
Integrator resistor, R _X	0.5 2	MΩ
Integration time, t ₁	16.6 500	ms
Operating free-air temperature, TA	0 70	°C

electrical characteristics, V_{CC} = 9 V, V_{ref(I)} = 1 V, T_A = 25°C, connected as shown in figure 1 (unless otherwise noted)

	PARAMETER	TEST CONE	ITIONS	MIN	TYP	MAX	UNIT
VIH	High-level input voltage at A or B	En formal and an artist of the second	* Filant	3.6		Vcc+1	V
VIL	Low-level input voltage at A or B			0.2		1.8	V
Vон	High-level output voltage at pin 8	IOH = 0		7.5	8.5		V
IOH	High-level output current at pin 8	V _{OH} = 7.5 V			-100		μА
VOL	Low-level output voltage at pin 8	I _{OL} = -100 μA				120	mV
V _{OM}	Maximum peak output voltage swing at integrator output	R _X ≥ 500 kΩ	- N	V _{CC} -2	V _{CC} -1		V
V _{ref(0)}	Reference output voltage			1.15	1.22	1.35	V
	Temperature coefficient of reference output voltage	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$			± 100		ppm/°C
Iн	High-level input current into A or B	V ₁ = 9 V			1	10	μА
IIL	Low-level input current into A or B	V _I = 1 V			10	200	μА
Ц	Current into analog input	V ₁ = 0 to 4 V,	A input at 0 V		±10	±200	pA
//	Total integrator input bias current				±10		pA
lcc	Supply current	No load			4.5	8	mA

system electrical characteristics, V_{CC} = 9 V, V_{ref(I)} = 1 V, T_A = 25°C, connected as shown in figure 1 (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero error	V ₁ = 0		0.1	0.4	mV
Linearity error	V _I = 0 to 4 V		0.02	0.1	%
Ratiometric reading	V _I = V _{ref(I)} ≈ 1 V,	0.998	1.000	1.002	
Temperature coefficient of ratiometric reading	$V_{ref(I)}$ constant and $\approx 1 \text{ V}$, $T_A = 0^{\circ}\text{C to }70^{\circ}\text{C}$	S 8 1	±10		ppm/°C

TYPE TL505C ANALOG-TO-DIGITAL CONVERTER

DEFINITION OF TERMS

Zero Error

The intercept (b) of the analog-to-digital converter-system transfer function y = mx + b, where y is the digital output, x is the analog input, and m is the slope of the transfer function, which is approximated by the ratiometric reading.

Linearity Error

The maximum magnitude of the deviation from a straight line between the end points of the transfer function.

Ratiometric Reading

The ratio of negative integration time (t2) to positive integration time (t1).

PRINCIPLES OF OPERATION

A block diagram of an MPU system utilizing the TL505C is shown in Figure 1. The TL505C operates in a modified positive-integration three-step dual-slope conversion mode. The A/D converter waveforms during the conversion process are illustrated in Figure 2.

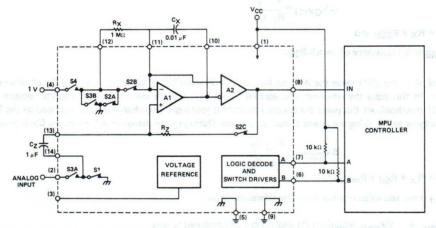


FIGURE 1-FUNCTIONAL BLOCK DIAGRAM OF TL505C INTERFACE WITH A MICROPROCESSOR SYSTEM

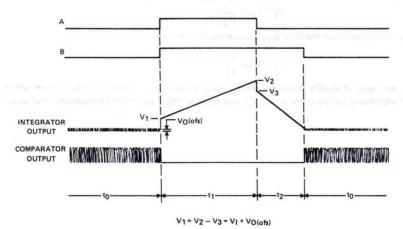


FIGURE 2-CONVERSION PROCESS TIMING DIAGRAMS

PRINCIPLES OF OPERATION

The first step of the conversion cycle is the auto-zero period to during which the integrator offset is stored in the auto-zero capacitor and the offset of the comparator is stored in the integrator capacitor. To accomplish this, the MPU takes the A and B inputs both low. This is decoded by the switch drivers, which close S₁ and S₂. The output of the comparator is connected to the input of the integrator through the low-pass filter consisting of R_Z and C_Z. The closed loop of A1 and A2 will seek a null condition where the offsets of the integrator and comparator are stored in C_Z and C_X, respectively. This null condition is characterized by a high-frequency oscillation at the output of the comparator. The purpose of S_{2B} is to shorten the amount of time required to reach the null condition.

At the conclusion of t_0 , the MPU takes the A and B inputs both high. This closes S3 and turns all other switches off. The input signal V₁ is applied to the noninverting input of A1 through Cz. V₁ is then positively integrated by A1. Since the offset of A1 is stored in Cz, the change in voltage across Cx will be due to only the input voltage. It should be noted that since the input is integrated in a positive integration during t_1 , the output of A1 will be the sum of the input voltage, the integral of the input voltage, and the comparator offset, as shown in Figure 2. The change in voltage across capacitor Cx (Vcx) during t_1 is given by

$$\Delta V_{CX(1)} = \frac{V_1 t_1}{R_1 C_Y} \tag{1}$$

where R1 = Rx + RS3B and

RS3B is the resistance of switch S3B.

At the end of t₁ the MPU takes the A input low and the B input high. This turns on S₁ and S₄; all other switches are turned off. In this state the reference is integrated by A1 in a negative sense until the integrator output reaches the comparator threshold. At this point the comparator output goes high. This change in state is sensed by the MPU, which terminates t₂ by again taking the A and B inputs both low. During t₂ the change in voltage across C_X is given by

$$\Delta V_{CX(2)} = \frac{V_{ref} t_2}{R_2 C_X}$$
 (2)

where R2 = RX + RS6 + Rref and

Rref is the equivalent resistance of the reference divider.

Since $\Delta V_{CX1} = -\Delta V_{CX2}$, equations (1) and (2) can be combined to give

$$V_1 = V_{ref} \frac{R_1 \cdot t_2}{R_2 \cdot t_1} \tag{3}$$

This equation is a variation on the ideal dual-slope equation, which is

$$V_{l} = V_{ref} \frac{t_2}{t_1} \tag{4}$$

Ideally then, the ratio of R_1/R_2 would be exactly equal to one. In a typical TL505C system where $R_X = 1 \text{ M}\Omega$, the scaling error introduced by the difference in R_1 and R_2 is so small that it can be neglected, and equation (3) reduces to (4).

TYPE TL505C ANALOG-TO-DIGITAL CONVERTER

TYPICAL APPLICATION DATA

There are a wide variety of applications for the TL505C to convert signals to a more useful form from high-impedance sources; appliance controls; weight-scales; and temperature-, light-, or moisture-sensitive transducers.

The TL505C can be used with the TL502, discrete logic, or with an MPU controller that has the control algorithm implemented in software. Figure 3 is a generalized flow chart for any type of TL505C logic controller. The TL505C will directly interface with the TL502 as shown in Figure 4. The sign output of the TL502 will be negative and should be ignored.

When used with the TMS 1000 microprocessor as illustrated in Figure 5, a 3-digit BCD conversion can be accomplished in about 500 ms. This combination is especially useful in applications that do not require fast updates such as temperature controllers or weight scales. The computing power of the TMS 1000 can be used to linearize responses from nonlinear transducers such as thermistors and to make control decisions. Both the TMS 1000 and TL505C can operate from a single 7- to 15-V supply making them ideally suited for battery operation.

The TL505C can be used with the TMS 8080 microprocessor for either binary or BCD conversion. Figure 7 shows a generalized system using the TL505C and TMS 8080.

79

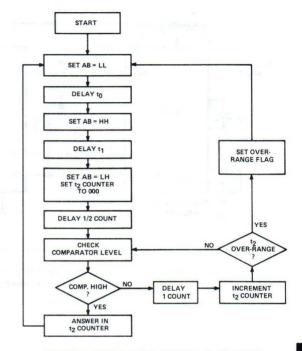


FIGURE 3-TL505C LOGIC CONTROL FLOW CHART

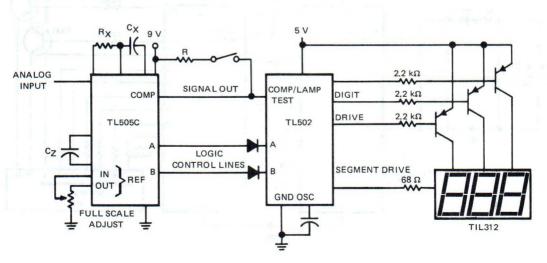
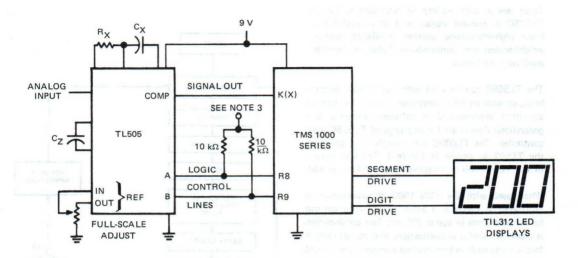



FIGURE 4-TL505C AND TL502 INPUT TO A 3-DIGIT DISPLAY APPLICATION

TYPICAL APPLICATION DATA

NOTE 3: Connect to either +9 V or 0 V depending on which device in the TMS 1000 series is used and how it is programmed.

FIGURE 5-TL505C IN CONJUNCTION WITH A TMS 1000 SERIES MICROPROCESSOR FOR A 3-DIGIT DIGITAL PANEL METER APPLICATION

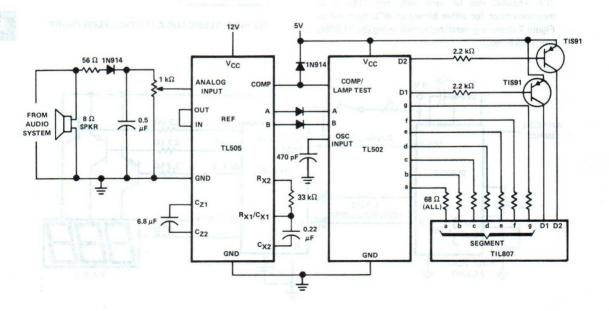


FIGURE 6-AUDIO POWER METER

TYPE TL505C ANALOG-TO-DIGITAL CONVERTER

TYPICAL APPLICATION DATA

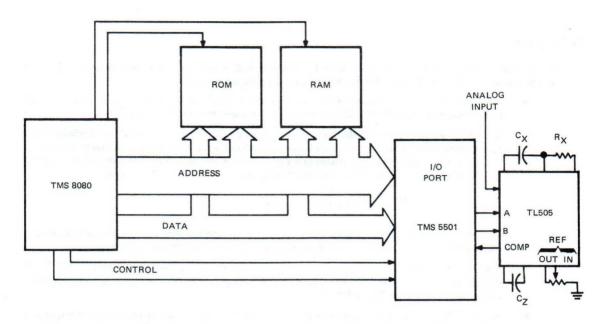


FIGURE 7-TL505C WITH INTERFACE AND CONTROL OF A TMS 8080 MICROPROCESSOR

component selection

When the desired conversion speed and conversion control method have been selected, the passive components can be selected. The capacitor for the auto zero, C_Z , is not critical and can be any value greater than 0.15 μF . The only restriction on this part is that it should not have high leakage. Almost any film capacitor and most tantalum electrolytics are suitable. Ceramic and aluminum capacitors are not recommended.

The integrator capacitor should be a film capacitor. Good results have been obtained at the specified system accuracy for all film capacitors tried, including polycarbonate, polyester, and polypropylene capacitors. Electrolytic and ceramic capacitors are not suitable because of their high dielectric absorption characteristics. The absolute value of CX should be consistent with the equation

$$C_X = \frac{V_1 max \cdot t_1}{(V_{CC} - V_1 max - 2 V) R_X}$$

where V_I max is the most positive analog signal to be encountered in the specific application.

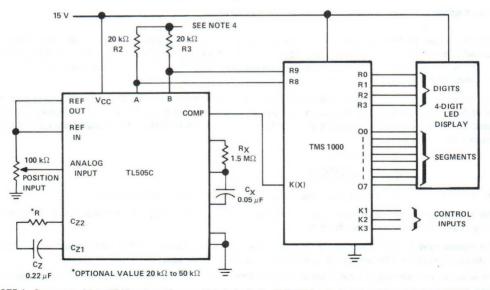
This equation gives the maximum integrator output swing without saturating the integrator. A large integrator output swing is desired for best system performance.

The resistor used for R_X is not critical in either absolute value or tolerance. The value should be selected per the guidelines given under "Recommended Operating Conditions" and the equation above.

The input source resistance to pin 4 should be 2 kilohms or less. This ensures good operation with equation (4) as discussed on page 4.

TYPICAL APPLICATION DATA

design example


Figure 8 is a schematic of a position indication and control system that uses a precision potentiometer to convert a mechanical displacement to an electrical signal. Note the following features of this system:

- The output of the potentiometer is connected directly to the input of the TL505C. Since the TL505C input impedance is so high ($10^{11} \Omega$ typically) the TL505C does not load the potentiometer.
- The reference output of the TL505C is connected directly to the reference input of the TL505C and also to the position potentiometer. In this application, the variable being measured is the voltage at the wiper of R₁, which is a fraction N (directly related to the potentiometer position) of the reference voltage. Recalling equation (4) from the "Principles of Operation" and plugging in N V_{ref} for V_I, we have

$$N \cdot V_{ref} = V_{ref} \frac{t_2}{t_1} \text{ or } N = \frac{t_2}{t_1}$$

Thus the absolute value of V_{ref} is not critical as long as it is stable during a conversion cycle. Long-term changes in V_{ref} due to time and temperature will have no effect on the accuracy of the system.

- The TL505C communicates with the TMS 1000 via the R8 and R9 digit outputs and the K8 input. The R outputs are latched outputs from the TMS 1000. Since the 'R outputs are open sources, pullups for the A and B inputs provided by R2 and R3 are required.
- A 4-digit LED display is driven directly by the TMS 1000. The information displayed by the system is
 program dependent and can be either the value N or some arbitrary function of N, such as the arcsin (N).
- The TMS 1000 has three K inputs and three R outputs available for control purposes such as monitoring limit switches or controlling valve positions.

NOTE 4: Connect to either +15 V or depending on which device in the TMS 1000 series is used and how it is programmed.

FIGURE 8-TL505C SYSTEM FOR POSITION INDICATION AND CONTROL

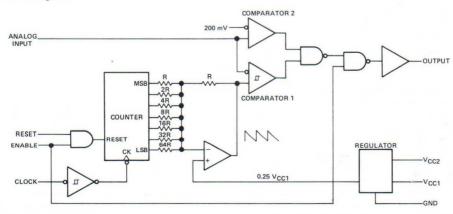
BULLETIN NO. DL-S 12741, OCTOBER 1979

- Low Cost
- 7-Bit Resolution
- Guaranteed Monotonicity
- Ratiometric Conversion
- Conversion Speed . . . approximately 1 ms
- Single-Supply Operation . . . Either Unregulated 8-V to 18-V VCC2 Input, or Regulated 3.5-V to 6-V VCC1 Input
- I²L Technology
- Power Consumption at 5 V . . . 25 mW Typ

description

The TL507C is a single-slope analog-to-digital converter designed for use with TMS 1000 type microprocessors. It contains a 7-bit synchronous counter, a binary weighted resistor ladder network, an operational amplifier, two comparators, a buffer amplifier, an internal regulator, and necessary logic circuitry. Integrated-injection logic (I²L) technology makes it possible to offer this complex circuit at low cost in a small dual-in-line 8-pin package.

In continuous operation, it is possible to obtain conversion speeds up to 1000 per second. The TL507 requires external signals for clock, reset, and enable. Versatility and simplicity of operation coupled with low cost, makes this converter especially useful for a wide variety of applications.

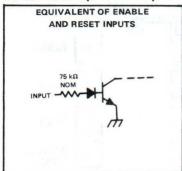

The TL507C is characterized for operation from 0° C to 70° C.

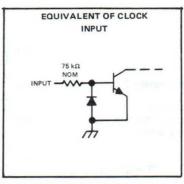
P DUAL-IN-LINE PACKAGE (TOP VIEW) ENABLE 1 8 RESET CLOCK 2 7 VCC2 GROUND 3 6 VCC1 OUTPUT 4 5 ANALOG INPUT

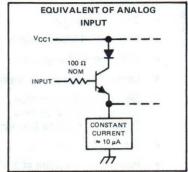
ANALOG INPUT CONDITION	ENABLE	ОUТРИТ
X	L [†]	Н
$V_{I} < 200 mV$	Н	L
$V_{ramp} > V_I > 200 \text{ mV}$	Н	н
$V_I > V_{ramp}$	Н	L

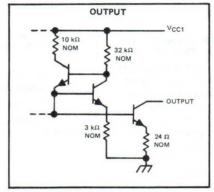
[†] Low level on enable also inhibits the reset function.

functional block diagram


Copyright © 1979 by Texas Instruments Incorporated


6


H = high level, L = low level, X = irrelevant


TYPE TL507C ANALOG-TO-DIGITAL CONVERTER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC1} (see Note 1)
Supply voltage, VCC2
Input voltage at analog input
Input voltage at enable, clock, and reset inputs
On-state output voltage
Off-state output voltage
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)
Operating free-air temperature range
Storage temperature range
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise noted.

2. For operation above 25°C free-air temperature, derate linearly at 8 mW/°C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC1}	3.5	5	6	V
Supply voltage, V _{CC2}	8	15	18	V
Input voltage at analog input	0	1	5.5	V
Input voltage at chip enable, clock, and reset inputs			±18	V
On-state output voltage			5.5	V
Off-state output voltage			18	V
Clock frequency, f _{clock}		125	150	kHz

TYPE TL507C ANALOG-TO-DIGITAL CONVERTER

electrical characteristics over recommended operating free-air temperature range, V_{CC1} = V_{CC2} = 5 V (unless otherwise noted)

regulator section

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
V _{CC1}	Supply voltage (output)	V _{CC2} = 12 V to 18 V, I _{CC1} = 0 to	o –1 mA 5	5.6	6	V
ICC1	Supply current	V _{CC1} = 5 V, V _{CC2} oper	n	5	8	mA
ICC2	Supply current	V _{CC2} = 15 V, V _{CC1} oper	n	7	10	mA

inputs

	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	Reset and		2			V
VIL	Low-level input voltage	Enable				0.8	V
V _{T+}	Positive-going threshold voltage	01 -1		2.5	3.5	4.5	V
V _T _	Negative-going threshold voltage	Input		0.4	0.9	1.2	V
$V_{T+} - V_{T-}$	Hysteresis		THE RESERVE OF THE PARTY OF THE	2	2.6	4	V
Less	High-level input current	Reset,	V _I = 2.4 V		17	35	
'ін	IH High-level input current Enable	Enable, and	V _I = 18 V	130	220	320	μΑ
IIL	Low-level input current	Clock	V ₁ = 0			±10	μΑ
lj .	Analog input current		V _I = 4 V		10	300	nA

output section

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
ГОН	High-level output current	V _{OH} = 18 V		0.1	100	μΑ
IOL	Low-level output current	V _{OL} = 5.5 V	5	10	15	mA
VOL	Low-level output voltage	I _{OL} = 1.6 mA	14/1	80	400	mV

operating characteristics over recommended operating free-air temperature range, VCC1 = VCC2 = 5 V

PARAMETER	TEST CONDITIONS	MIN	TYP#	MAX	UNIT
Resolution		7			Bits
Overall error	U.50.1 - ABS - 75.0			±80	mV
Differential nonlinearity	See Figure 1			±1	LSB
Zero error	Binary count = 0			±80	mV
Scale error	Binary count = 127			±80	mV
Propagation delay time from reset or enable	TV TR F - Formal - as UNIO		2		μs

[‡]All typical values are at TA = 25°C.

PARAMETER MEASUREMENT INFORMATION

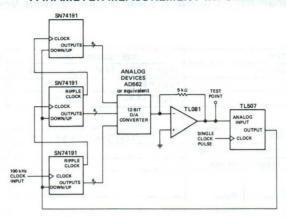


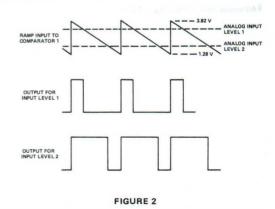
FIGURE 1-MONOTONICITY AND NONLINEARITY TEST CIRCUIT

PRINCIPLES OF OPERATION

The TL507 is a single-slope analog-to-digital converter. All single-slope converters are basically voltage-to-time or current-to-time converters. A study of the functional block diagram shows the versatility of the TL507.

An external clock signal is applied through a buffer to a negative-edge-triggered synchronous counter. Binary-weighted resistors from the counter are connected to an operational amplifier used as an adder. The operational amplifier generates a signal that ramps from 0.75 $^{\circ}$ V_{CC1} down to 0.25 $^{\circ}$ V_{CC1}. Comparator 1 compares the ramp signal to the analog input signal. Comparator 2 functions as a fault detector. With the analog input voltage in the range 0.25 $^{\circ}$ V_{CC1} to 0.75 $^{\circ}$ V_{CC1}, the duty cycle of the output signal is determined by the unknown analog input as shown in Figure 2 and the Function Table.

For illustration assume VCC1 = 5.12 V,


$$0.25 \cdot V_{CC1} = 1.28 \text{ V}$$

$$1 \text{ binary count} = \frac{(0.75 - 0.25) \text{ V}_{CC1}}{128} = 20 \text{ mV}$$

$$0.75 \cdot V_{CC1} - 1 \text{ count} = 3.82 \text{ V}$$

The output is an open-collector n-p-n transistor capable of withstanding up to 18 volts in the off state. The output is current limited to the 8- to 12-milliampere range; however, care must be taken to ensure that the output does not exceed 5.5 volts in the on state.

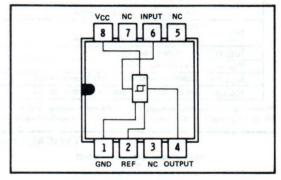
The voltage regulator section allows operation from either an unregulated 8- to 18-volt V_{CC2} source or a regulated 3.5- to 6-volt V_{CC1} source. Regardless of which external power source is used, the internal circuitry operates at V_{CC1}. When operating from a V_{CC1} source, V_{CC2} may be connected to V_{CC1} or left open. When operating from a V_{CC2} source, V_{CC1} can be used as a reference voltage output.

TEXAS INSTRUMENTS

INCORPORATED

BULLETIN NO. DL-S 12400, MAY 1976-REVISED OCTOBER 1979

- Stable Threshold Level
- Low Input Current
- High Output Sink Current Capability
- Threshold Hysteresis
- Wide Supply Voltage Range


description

The TL560C is a precision level detector intended for applications that require a Schmitt-trigger function. The detector has excellent voltage and temperature stability and an internal voltage reference for the input threshold level. The reference-voltage pin is available for external adjustment of the positive-going threshold voltage level.

The TL560C is characterized for operation from 0°C to 70°C.

schematic VCC INPUT 1.3 k 3 k O.2 k OUTPUT

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage (see Note 1)	Vcc
Output voltage (see Note 1)	25 V
Output sink current	
Continuous total dissipation at (or below) 25°C free-air temperature (see Not	te 2) 800 mW
Operating free-air temperature range	0°C to 70°C
Storage temperature range	
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG package	300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package	260°C

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. For operation above 25°C free-air temperature refer to the Dissipation Derating Table. In the JG package, TL560C chips are glass-mounted.

DISSIPATION DERATING TABLE

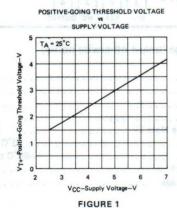
PACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG (Glass-Mounted Chip)	800 mW	6.6 mW/°C	29° C
P	800 mW	8.0 mW/°C	50°C

Also see Dissipation Derating Curves, Section 2.

Copyright © 1979 by Texas Instruments Incorporated

TYPE TL560C PRECISION LEVEL DETECTOR

recommended operating conditions


All Mariant State State Plante Panue	NOIN	WAX	UNII
Supply voltage, VCC	5	7	V
Low-level output current, lou		48	mA
Operating free-air temperature, T _A		70	°C

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 5V (unless otherwise noted)

Positive-going threshold voltage [†]						
			2.8	3	3.2	٧
Ratio of positive-going threshold voltage to supply voltage	V _{CC} = 2.5 V to	7V	1677	0.6	ne TLS	
Negative-going threshold voltage ‡			0.4	0.6	0.8	V
Input current below positive-going threshold voltage	V _I = 2.75 V,	Output on		2	30	nA
Input current above negative-going threshold voltage	V _I = 1 V,	Output off		1.2	A	μА
Off-state output current	V ₁ = 4 V,	V _O = 25 V			10	μΑ
On-state output voltage	V ₁ = 0,	I _O = 48 mA		0.2	0.4	٧
Supply current, output off (each detector)	V ₁ = 4 V	42		4.8	6.5	mA
Supply current, output on (each detector)	V ₁ = 0		1	10	15	mA
	voltage to supply voltage Negative-going threshold voltage Input current below positive-going threshold voltage Input current above negative-going threshold voltage Off-state output current On-state output voltage Supply current, output off (each detector)	Negative-going threshold voltage ‡ Input current below positive-going threshold voltage $V_{1} = 2.75 \text{ V}$, Input current above negative-going threshold voltage $V_{1} = 1 \text{ V}$, Off-state output current $V_{1} = 4 \text{ V}$, On-state output voltage $V_{1} = 0$, Supply current, output off (each detector) $V_{1} = 4 \text{ V}$	Negative-going threshold voltage \ddagger Input current below positive-going threshold voltage $\forall V_1 = 2.75 \text{V}$, Output on Input current above negative-going threshold voltage $\forall V_1 = 1 \text{V}$, Output off Off-state output current $\forall V_1 = 4 \text{V}$, $\forall V_0 = 25 \text{V}$ On-state output voltage $\forall V_1 = 0$, $\forall V_1 = 4 \text{V}$ Supply current, output off (each detector) $\forall V_1 = 4 \text{V}$	Negative-going threshold voltage ‡ 0.4 Input current below	Negative-going threshold voltage ‡ 0.4 0.6 Input current below voltage ‡ V _I = 2.75 V, Output on 2 Input current above regative-going threshold voltage † V _I = 1 V, Output off 1.2 Off-state output current † V _I = 4 V, V _O = 25 V On-state output voltage † V _I = 0, I _O = 48 mA 0.2 Supply current, output off (each detector) V _I = 4 V 4.8	Negative-going threshold voltage ‡ 0.4 0.6 0.8 Input current below positive-going threshold voltage $V_{I}=2.75\text{V}$, Output on $V_{I}=2.75\text{V}$ Output on $V_{I}=1.2\text{Output}$ of $V_{I}=1$

Positive-going threshold voltage, V_{T+} , is the input voltage level at which the output changes state as the input voltage is increased.

TYPICAL CHARACTERISTICS

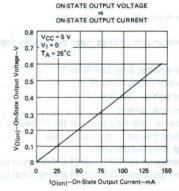


FIGURE 2

TYPICAL APPLICATION DATA

The TL560C performs the function of a Schmitt-trigger circuit. The logic function is noninverting and has a wide hysteresis between the positive-going and negative-going threshold voltage levels (see Figure 3).

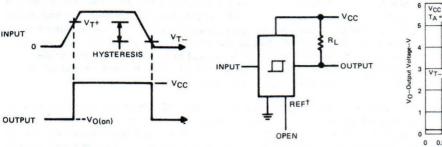

Operation of the TL560C is specified at a VCC of 5 V, although 2.5-V to 7-V supply operation is possible. The device can be used with popular logic systems (such as Series 54/74 TTL) and standard battery voltages.

Figure 4 is used to illustrate operation of the TL560C circuit. The input stage is a differential amplifier composed of $\Omega1$, $\Omega2$, $\Omega3$, and $\Omega4$. The input signal is applied at the base of $\Omega1$ while the base of $\Omega2$ is connected to an internal reference voltage determined by resistors R4 and R5 and V_{CC}; V_{ref} = V_{CC} • R5/(R4+R5).

Negative-going threshold voltage, V_{T-}, is the input voltage level at which the output changes state as the input voltage is decreased.

TYPE TL560C PRECISION LEVEL DETECTOR

TYPICAL APPLICATION DATA

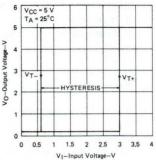


FIGURE 3-INPUT-OUTPUT TRANSFER FUNCTION

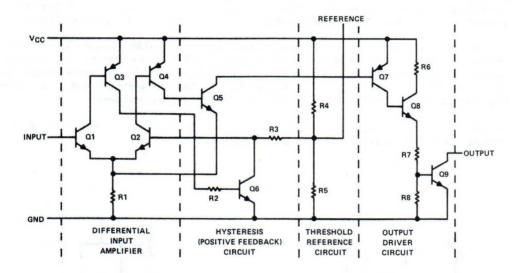
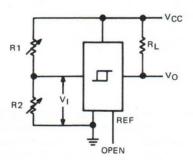


FIGURE 4-FUNCTIONAL CIRCUIT DIAGRAM

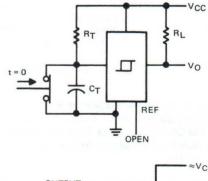
If the base of Q1 is less positive than the base of Q2, Q2 conducts and causes Q4, Q5, Q7, Q8, and the output transistor, Q9, to conduct. Transistors Q2 and Q5 share the current in emitter resistor R1. Since Q1 does not conduct, Q3 and Q6 do not conduct. There is no base current in Q1, and therefore no current required from the input source. A very high input impedance therefore exists. Since Q2 is conducting, a small voltage drop exists across R3 due to Q2 base current.

If the input voltage is increased, Q1 does not conduct until the input voltage (base voltage of Q1) approaches the base voltage of Q2. Current is then switched from the emitters of Q2 and Q5 to the emitter of Q1. Conduction in Q1 causes current to flow in Q3 and Q6 which results in additional voltage drop in R3 and therefore a reduction in the base voltage of Q2. This positive feedback accelerates switching action and causes conduction to rapidly cease in Q2, Q4, Q5, Q7, Q8, and the output transistor, Q9. Conduction in Q6 causes the base of Q2 to assume a voltage (approximately 0.6 V) much lower than the original reference voltage (approximately 3 V). This results in hysteresis between the positive-going and negative-going threshold levels.


TYPICAL APPLICATION DATA

After switching occurs, the base current of Q1 increases to a somewhat higher value than just below threshold because of higher Q1 operating currents. Once the positive-going threshold level (≈ 3 V) has been reached, the input voltage must be reduced to the negative-going threshold level (≈ 0.6 V) before switching back to the original state will occur. Figure 3 illustrates the threshold levels of the TL560C. Because the input current increases after the positive-going threshold voltage level has been exceeded, the input voltage will be reduced by an amount dependent on the source resistance. If the reduced input voltage is not below the negative-going threshold voltage level, a stable state will exist. If the source resistance is too high, oscillation or periodic switching may occur.

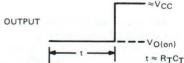
The positive-going threshold voltage level (V_{T+}) is guaranteed to be 3.00 ± 0.20 volts at a V_{CC} of 5 V. It is also approximately 60% of the supply voltage over the supply voltage range of 2.5 V to 7 V. With a resistor-capacitor network as illustrated in Figure 6, a V_{T+}/V_{CC} ratio of 60% results in a timed interval of approximately RC seconds, independent of the V_{CC} level. Since the input current is nominally 2 nA just below the V_{T+} level, very large values of R and/or large values of C may be used to achieve long-timed intervals. The duration of the timed interval may be greatly increased (at the expense of accuracy) by using a P-N-P transistor as shown in Figure 10 in a capacitance-multiplication technique. The timed interval is, however, sensitive to variations in the hFE of the P-N-P transistor. Also for any of the timing applications, very-low-leakage capacitors are necessary for accurate operation.


The low input current (30 nA maximum for I_{T+}) and high output sink current (160 mA maximum) make the TL560C excellent in applications of interfacing between low-level systems and TTL systems where precision level detection is required. The output is capable of sinking up to a maximum of 160 mA with a TTL-compatible on-state voltage of 0.4 V maximum guaranteed at a sink current of 48 mA. With an appropriate output pull-up resistor ($R_L \approx 2~k\Omega$ to 5 V), a fan-out of approximately 30 Series 74 TTL loads can be accommodated.

In addition to applications interfacing with TTL systems, the TL560C finds application in driving relays, lamps, solenoids, thyristors (SCRs and triacs), and other peripheral devices.

Output turns off when $V_1 \ge V_{T+}$ Output turns on when $V_1 \le V_{T-}$ where $V_1 = V_{CC} - R2$

FIGURE 5-BASIC SENSOR CIRCUIT



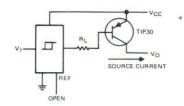


FIGURE 6-BASIC TIMED-INTERVAL CIRCUIT

TYPE TL560C PRECISION LEVEL DETECTOR

TYPICAL APPLICATION DATA

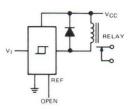
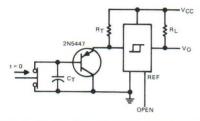



FIGURE 7-EXTERNAL N-P-N TRANSISTOR FOR INCREASING SINK CURRENT

FIGURE 8-EXTERNAL P-N-P TRANSISTOR
FOR INCREASING SOURCE CURRENT

FIGURE 9-RELAY DRIVER

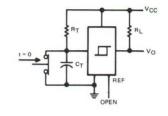
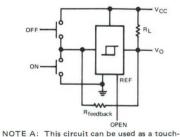
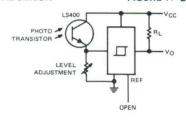
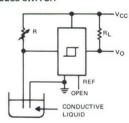
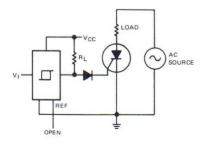





FIGURE 10-LONG-TIMED-INTERVAL CIRCUIT

FIGURE 11-BOUNCELESS SWITCH



NOTE A: This circuit can be used as a touchcontrol switch with R_{feedback} \approx 10 M Ω .

FIGURE 12-SWITCH WITH TWO STABLE STATES

FIGURE 13-LIGHT-LEVEL SENSOR

FIGURE 14-LIQUID-LEVEL SENSOR

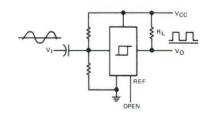


FIGURE 15-THYRISTOR DRIVER CIRCUIT

FIGURE 16-SINE-WAVE-TO-SQUARE-WAVE CONVERTER

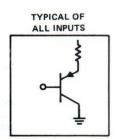
Texas Instruments

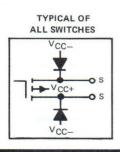
LINEAR INTEGRATED CIRCUITS

TYPES TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES

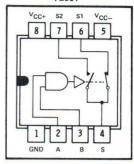
BULLETIN NO. DL-S 12401, JUNE 1976-REVISED OCTOBER 1977

- Switches ±10-V Analog Signals
- TTL/DTL Logic Capability
- 5- to 30-V Supply Ranges
- Low (100 Ω) On-State Resistance
- High (10¹¹ Ω) Off-State Resistance
- 8-Pin Functions

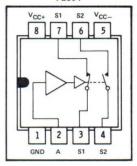

description

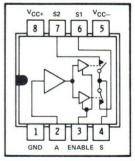

The TL601, TL604, TL607, and TL610 are a family of monolithic P-MOS analog switches that provide fast switching speeds with high $r_{\rm off}/r_{\rm on}$ ratio and no offset voltage. The p-channel enhancement-type MOS switches will accept analog signals up to ± 10 volts and are controlled by TTL-compatible logic inputs. The monolithic structure is made possible by BI-MOS technology, which combines p-channel MOS with standard bipolar transistors.

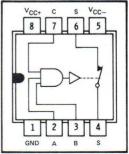
These switches are particularly suited for use in military, industrial, and commercial applications such as data acquisition, multiplexers, A/D and D/A converters, MODEMS, sample-and-hold systems, signal multiplexing, integrators, programmable operational amplifiers, programmable voltage regulators, crosspoint switching networks, logic interface, and many other analog systems.


The TL601 is an SPDT switch with two logic control inputs. The TL604 is a dual complementary SPST switch with a single control input. The TL607 is an SPDT switch with one logic control input and one enable input. The TL610 is an SPST switch with three logic control inputs. The TL610 features a higher roff/ron ratio than the other members of the family.

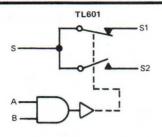
The TL601M, TL604M, TL607M, and TL610M are characterized for operation over the full military temperature range of -55°C to 125°C, the TL601I, TL604I, TL607I, and TL610I are characterized for operation from -25°C to 85°C, and the TL601C, TL604C, TL607C, and TL610C are characterized for operation from 0°C to 70°C.



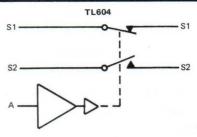

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)


TL604

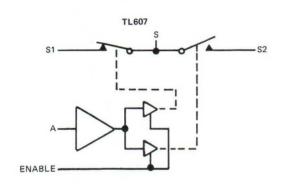
TL607


TL610

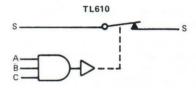
Switch positions shown are for all inputs high.


Copyright © 1979 by Texas Instruments Incorporated

TYPES TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES


FUNCTION TABLE

LOGIC	INPUTS	ANALOG SWITCH					
Α	B S1		S2				
L	X	OFF (OPEN)	ON (CLOSED)				
X	L	OFF (OPEN)	ON (CLOSED)				
H	н	ON (CLOSED)	OFF (OPEN)				


FUNCTION TABLE

LOGIC INPUT	ANALOG SWITCH						
Α	S1	S2					
Н	ON (CLOSED)	OFF (OPEN)					
L	OFF (OPEN)	ON (CLOSED)					

FUNCTION TABLE

INPUTS	ANALOG SWITCH					
A ENABLE	S1	S2				
X L	OFF (OPEN)	OFF (OPEN)				
L H	OFF (OPEN)	ON (CLOSED)				
н н	ON (CLOSED)	OFF (OPEN)				

FUNCTION TABLE

INPUTS			ANALOG SWITCH
Α	В	С	S
L	X	Х	OFF (OPEN)
X	L	X	OFF (OPEN)
X	X	L	OFF (OPEN)
Н	Н	Н	ON (CLOSED)

H = high logic level

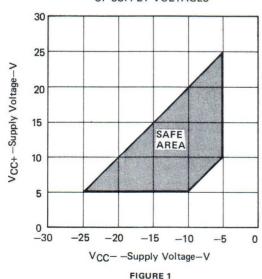
L = low logic level

X = irrelevant

Switch positions shown are for all inputs high.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)						30 V
Supply voltage, VCC						30 V
V _{CC+} to V _{CC} supply voltage differential						35 V
Control input voltage						VCC+
Switch off-state voltage						30 V
Switch on-state current						
Operating free-air temperature range: TL601M, TL604M, TL607M, TL610M						
TL6011, TL6041, TL6071, TL6101 .					-2	5°C to 85°C
TL601C, TL604C, TL607C, TL610C						0°C to 70°C
Storage temperature range					-65	°C to 150°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds: JG package						300°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds: P package NOTE 1: All voltage values are with respect to network ground terminal.						260°C


TYPES TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES

recommended operating conditions

		01M, TL	.604M	TL6011, TL6041		6041	TL601C, TL604C			
	TLE	TL607M, TL610M		TL6071, TL6101			TL607C, TL610C			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC+} (see Figure 1)	5	10	25	5	10	25	5	10	25	V
Supply voltage, V _{CC} — (see Figure 1)	-5	-20	-25	-5	-20	-25	-5	-20	-25	V
V_{CC+} to V_{CC-} supply voltage differential (see Figure 1)	15		30	15		30	15		30	V
Control input voltage	0		5.5	0		5.5	0		5.5	V
Switch on-state current			10			10			10	mA
Operating free-air temperature, TA	-55		125	-25		85	0		70	°C

Figure 1 shows power supply boundary conditions for proper operation of the TL601 Series. The range of operation for supply V_{CC+} from +5 V to +25 V is shown on the vertical axis. The range of supply V_{CC-} from -5 V to -25 V is shown on the horizontal axis. A recommended 30-volt maximum voltage differential from V_{CC+} to V_{CC-} governs the maximum V_{CC+} for a chosen V_{CC-} (or vice versa). A minimum recommended difference of 15 volts from V_{CC+} to V_{CC-} and the boundaries shown in Figure 1 allow the designer to select the proper combinations of the two supplies.

RECOMMENDED COMBINATIONS OF SUPPLY VOLTAGES

Texas Instruments

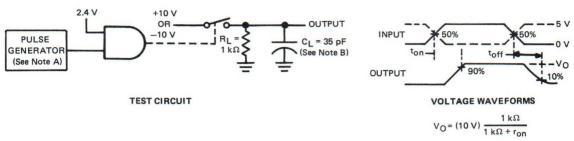
TYPES TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 10 \text{ V}$, $V_{CC-} = -20 \text{ V}$, analog switch test current = 1 mA (unless otherwise noted)

PARAMETER	TEST	TEST CONDITIONS†		TL6M TL6I			TL6—C			UNIT	
		34			MIN	TYP‡	MAX	MIN TYP‡		MAX	
VIH	High-level input voltage			-	2			2			V
			Enable input	of TL607M			0.6			- 41	V
VIL	Low-level input current	All other inputs		uts		4 31	0.8			0.8	V
ΊΗ	High-level input current	V _I = 5.5 V				0.5	10		0.5	10	μΑ
IIL	Low-level input current	V _I = 0.4 V				-50	-250		-50	-250	μΑ
	0.1.1.11	$V_{I(sw)} = -10 \text{ V}, \qquad T_A = 25^{\circ}\text{C}$				-400 -800			-500	-1000	pA
off	Switch off-state current	See Note 2		TA = MAX		-50	-100		-10	-20	nA
	TL601								22		
		V _{I(sw)} = 10 V	,	TL604	55		100	3 11	75	200	
ron Switch on-state resistance	$I_{O(sw)} = -1 \text{ m}$	nΑ	TL607				0 40	- 114			
			TL610	40		80		40	100	Ω	
	V _{I(sw)} = -10 V,		TL601				1	600			
			TL604	220		400				220	
	IO(sw) = -1 m		TL607								
		TL610		TL610		120	300		120	400	1
roff	Switch off-state resistance					1 X 10 ¹¹			5 X 10 ¹⁰		Ω
Con	Switch on-state input capacitance	$V_{I(sw)} = 0 V$	f = 1 MHz			16			16		pF
Coff	Switch off-state input capacitance	V _{I(sw)} = 0 V,	f = 1 MHz			8			8		pF
				TL601		5	10		5	10	
		Logic input(s)		TL604		5	10		5	10	
		at 5.5 V,	Enable			5	10		5	10	1
ICC+	Supply current from V _{CC+}	All switch	input high				10	9		10	mA
		terminals	Enable	TL607		0	_		3	5	
		open input lov				3	5	3		5	
				TL610		5	10		5	10	
				TL601					4.5	0.5	
		Logic input(s)		TL604		-1.2	-2.5		-1.2	-2.5	
		at 5.5 V,	Enable			-	_			-	
Icc-	Supply current from VCC-	aly current from Voc. All switch input high				-2.5	-5	5	-2.5	- 5	mA
-00-				TL607		2		-0.05			1
						-0.05	-0.5			-0.5	
				TL610		-1.2	-2.5		-1,2	-2.5	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 10 V, V_{CC-} = -20 V, T_A = 25°C

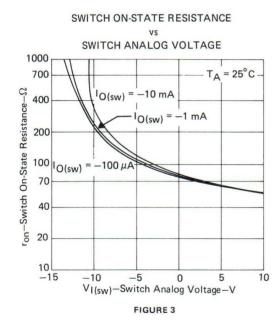

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Switch turn-off time	R _L = 1 kΩ, C _L = 35 pF, See Figure 2		400	500	
ton	Switch turn-on time			100	150	ns

10

[‡]All typical values are at $T_A=25^\circ C$. NOTE 2: The other terminal of the switch under test is at V_{CC+} = 10 V.

TYPES TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES

PARAMETER MEASUREMENT INFORMATION



NOTES: A. The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$, $t_r = 15$ ns, $t_f = 15$ ns, $t_w = 500$ ns.

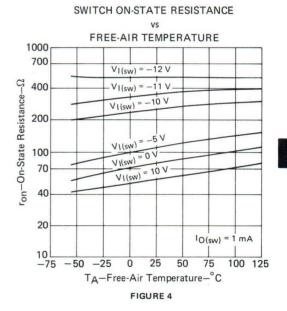

B. C_L includes probe and jig capacitance.

FIGURE 2

TYPICAL CHARACTERISTCS

6

LINEAR INTEGRATED CIRCUITS

TYPES uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

JOR N

BULLETIN NO. DL-S 11415, NOVEMBER 1970-REVISED OCTOBER 1979

- 200 MHz Bandwidth
- 250 kΩ Input Resistance
- Selectable Nominal Amplification of 10, 100, or 400
- No Frequency Compensation Required
- Designed to be Interchangeable with Fairchild μA733M and μA733C

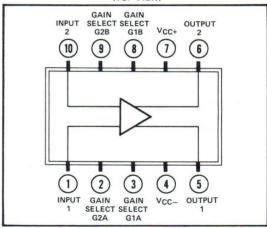
description

179

The uA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

Fixed differential amplification of 10, 100, or 400 may be selected without external components, or amplification may be adjusted from 10 to 400 by the use of a single external resistor connected between G1A and G1B. No external frequency-compensating components are required for any gain option.


The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The uA733M is characterized for operation over the full military temperature range of -55° C to 125° C; the uA733C is characterized for operation from 0° C to 70° C.

DUAL-IN-LINE PACKAGE (TOP VIEW) GAIN INPUT SELECT OUTPUT NC G2B G1B VCC+ NC 14 13 12 8 7 1 6 GAIN GAIN Vcc-INPUT OUTPUT SELECT SELECT G2A G1A

NC-No internal connection

U FLAT PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	8	uA733M	uA733C	UNIT
Supply voltage V _{CC+} (See Note 1)		8	8	V
Supply voltage V _{CC} — (See Note 1)	-8	-8	V	
Differential input voltage	±5	±5	V	
Common-mode input voltage	±6	±6	V	
Output current	10	10	mA	
Continuous total power dissipation at (or below) 25°C free-air te	mperature (see Note 2)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 60 seconds	J or U package	300	300	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	N package		260	°C

NOTES: 1. All voltage values, except differential input voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .

For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, uA733M chips are alloy-mounted; uA733C chips are glass-mounted.

Copyright © 1979 by Texas Instruments Incorporated

TYPES uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

DISSIPATION DERATING TABLE

DACKAGE	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
J (Alloy-Mounted Chip)	500 mW	11.0 mW/°C	105° C	
J (Glass-Mounted Chip)	500 mW	8.2 mW/°C	89°C	
N	500 mW	9.2 mW/°C	96°C	
U	500 mW	5.4 mW/°C	57° C	

Also see Dissipation Derating Curves, Section 2.

electrical characteristics, $V_{CC+} = 6 \text{ V}$, $V_{CC-} = -6 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{C}$

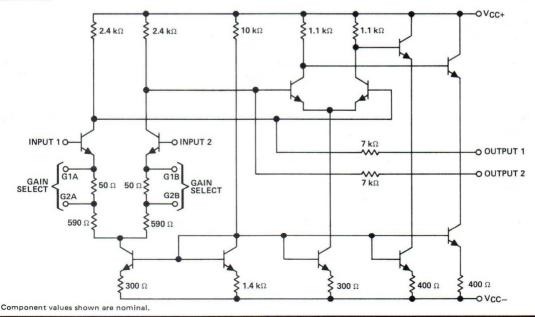
	DADAMETER	TEST	TEST SOMBITIONS	GAIN†	u	A733	М	uA733C			UNIT
PARAMETER		FIGURE	TEST CONDITIONS	SELECT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	, a . Magnet Au	9		1	300	400	500	250	400	600	
AVD	Large-signal differential	1	V _{OD} = 1 V	2	90	100	110	80	100	120	
voltage amplification			3	9	10	11	8	10	12		
			1		50			50			
BW	Bandwidth	2	R _S = 50 Ω	2	-114	90			90		MHz
				3		200			200	47.	-
10	Input offset current			Any		0.4	3		0.4	5	μА
IB	Input bias current			Any		9	20		9	30	μА
VICR	Common-mode input voltage range	- 1	E 44 2 5	Any	±1	7		±1	/ar	Alla	٧
v _{oc}	Common-mode output voltage	1		Any	2.4	2.9	3.4	2.4	2.9	3.4	V
V	0			1		0.6	1.5		0.6	1.5	V
V ₀₀	Output offset voltage	1		2 & 3		0.35	1		0.35	1.5	V
VOPP	Maximum peak-to-peak output voltage swing	1		Any	3	4.7		3	4.7		V
r; Input resistance				1		4			4		
	3	V _{OD} ≤ 1 V	2	20	24	-	10	24		kΩ	
No.				3		250			250		
ro	Output resistance					20			20		Ω
Ci	Input capacitance	3	V _{OD} ≤ 1 V	2	1 50	2		1 8	2		pF
CMRR	Common-mode	4	V _{IC} = ±1 V, f ≤ 100 kHz	2	60	86	#F =	60	86		dB
CWIRK	rejection ratio	4	V _{IC} = ±1 V, f = 5 MHz	2		70			70		ab
SVR	Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	1	$\Delta V_{CC+} = \pm 0.5 \text{ V},$ $\Delta V_{CC-} = \pm 0.5 \text{ V}$	2	50	70		50	70		dB
Vn	Broadband equivalent input noise voltage	5	BW = 1 kHz to 10 MHz	Any		12	K 6		12		μV
			$R_S = 50 \Omega$,	1		7.5			7.5		ns
^t pd	Propagation delay time	2	Output voltage step = 1 V	2		6.0	10	107	6.0	10	
			Cutput vortage step 1 v	3		3.6			3.6		
		-	$R_S = 50 \Omega$,	1		10.5	an In	0.00	10.5		
tr	Rise time	2	Output voltage step = 1 V	2		4.5	10	14.5	4.5	12	ns
	(4) (A)	Surput voltage step 1 v	3	316	2.5	W.		2.5	100		
Isink(max)	Maximum output sink current			Any	2.5	3.6	NESTEL N	2.5	3.6		mA
Icc	Supply current		No load, no signal	Any		16	24	117 EX	16	24	mA

[†]The gain selection is made as follows:

Gain 1 . . . Gain Select pin G1A is connected to pin G1B, and pins G2A and G2B are open.
Gain 2 . . . Gain Select pin G1A and pin G1B are open, pin G2A is connected to pin G2B.
Gain 3 . . . All four gain-select pins are open.

electrical characteristics (continued), V_{CC+} = 6 V, V_{CC-} = -6 V T_A = -55° C to 125°C for uA733M, 0°C to 70°C for uA733C

PARAMETER		TEST	TEST CONDITIONS	GAIN†	uA73	ЗМ	uA73	3C	UNI
PA	RAWETER	FIGURE	TEST CONDITIONS	SELECT	MIN	MAX	MIN	MAX	UNI
	l avec signal differential			1	200	600	250	600	
AVD	Large-signal differential	1	V _{OD} = 1 V	2	80	120	80	120	
	voltage amplification			3	8	12	8	12	
10	Input offset current			Any		5		6	μΑ
IIB	Input bias current			Any		40		40	μΑ
VICR	Common-mode input voltage range	1		Any	±1		±1		V
V00	Output offset voltage	1		1		1.5		1.5	V
V00	Output offset vortage	'		2 & 3		1.2		1.5	ľ
VOPP	Maximum peak-to-peak output voltage swing	1		Any	2.5		2,8	70.	٧
rį	Input resistance	3	V _{OD} ≤ 1 V	2	8		8	20	kΩ
CMRR	Common-mode		V _{IC} = ±1 V, f ≤ 100 kHz	2	50		50		
CIVIRR	rejection ratio	4	V _{IC} = ±1 V, f = 5 MHz	2					dB
ksvr	Supply voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	1	$\Delta V_{CC+} = \pm 0.5 \text{ V},$ $\Delta V_{CC-} = \pm 0.5 \text{ V}$	2	50		50		dB
Isink(max)	Maximum output sink current		*	Any	2.2		2.5	9, 11	m/
Icc	Supply current		No load, No signal	Any		27	1.20	27	m/


[†]The gain selection is made as follows:

Gain 1... Gain Select pin G1A is connected to pin G1B, and pins G2A and G2B are open.

Gain 2... Gain Select pin G1A and pin G1B are open, pin G2A is connected to pin G2B.

Gain 3 . . . All four gain-select pins are open.

schematic

TEXAS INSTRUMENTS

DEFINITION OF TERMS

Large-Signal Differential Voltage Amplification (AVD) The ratio of the change in voltage between the output terminals to the change in voltage between the input terminals producing it.

Bandwidth (BW) The range of frequencies within which the differential gain of the amplifier is not more than 3 dB below its low-frequency value.

Input Offset Current (I10) The difference between the currents into the two input terminals with the inputs grounded.

Input Bias Current (IIB) The average of the currents into the two input terminals with the inputs grounded.

Input Voltage Range (V_I) The range of voltage that if exceeded at either input terminal will cause the amplifier to cease functioning properly.

Common-Mode Output Voltage (VOC) The average of the d-c voltages at the two output terminals.

Output Offset Voltage (VOO) The difference between the d-c voltages at the two output terminals when the input terminals are grounded.

Maximum Peak-to-Peak Output Voltage Swing (VOPP) The maximum peak-to-peak output voltage swing that can be obtained without clipping. This includes the unbalance caused by output offset voltage.

Input Resistance (ri) The resistance between the input terminals with either input grounded.

Output Resistance (r_O) The resistance between either output terminal and ground.

Input Capacitance (Ci) The capacitance between the input terminals with either input grounded.

Common-Mode Rejection Ratio (CMRR) The ratio of differential voltage amplification to common-mode voltage amplification. This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

Supply Voltage Rejection Ratio ($\Delta V_{CC}/\Delta V_{IO}$) The absolute value of the ratio of the change in power supply voltages to the change in input offset voltage. For these devices, both supply voltages are varied symmetrically.

Equivalent Input Noise Voltage (V_n) The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

Propagation Delay Time (t_{pd}) The interval between the application of an input voltage step and its arrival at either output, measured at 50% of the final value.

Rise Time (t_r) The time required for an output voltage step to change from 10% to 90% of its final value.

Maximum Output Sink Current (I_{sink(max)}) The maximum available current into either output terminal when that output is at its most negative potential.

Supply Current (ICC) The average of the magnitudes of the two supply currents ICC1 and ICC2.

676

PARAMETER MEASUREMENT INFORMATION

test circuits

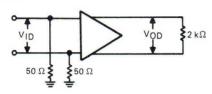


FIGURE 1

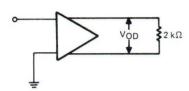


FIGURE 3

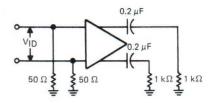


FIGURE 2

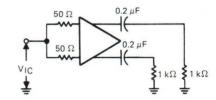
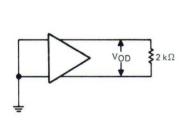
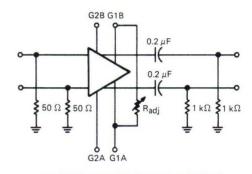
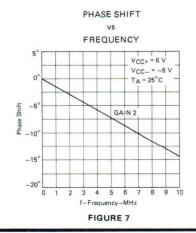
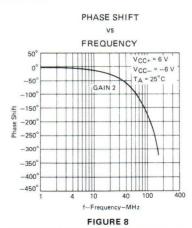




FIGURE 4

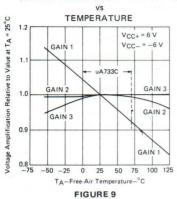




VOLTAGE AMPLIFICATION ADJUSTMENT FIGURE 6

FIGURE 5

TYPICAL CHARACTERISTICS



TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

VOLTAGE AMPLIFICATION (SINGLE-ENDED OR DIFFERENTIAL)

DIFFERENTIAL VOLTAGE AMPLIFICATION

RESISTANCE BETWEEN G1A AND G1B

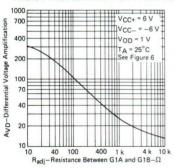


FIGURE 11

SUPPLY CURRENT

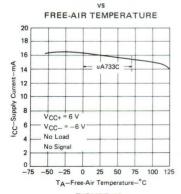
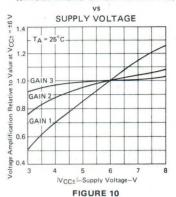



FIGURE 13

VOLTAGE AMPLIFICATION (SINGLE-ENDED OR DIFFERENTIAL)

SINGLE-ENDED VOLTAGE AMPLIFICATION

FREQUENCY

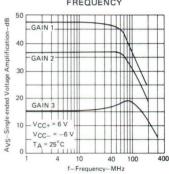


FIGURE 12

SUPPLY CURRENT

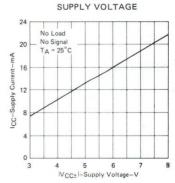


FIGURE 14

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

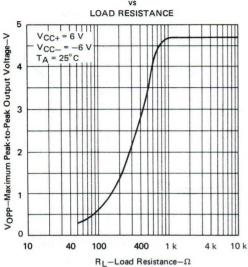


FIGURE 15

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

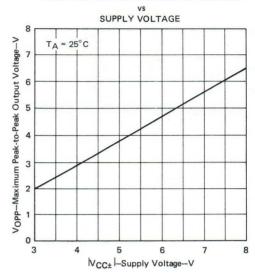


FIGURE 16

INPUT RESISTANCE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

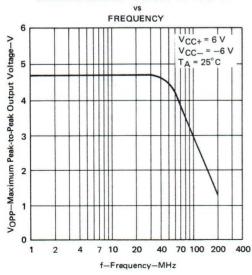
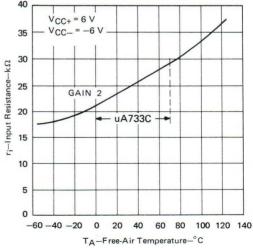
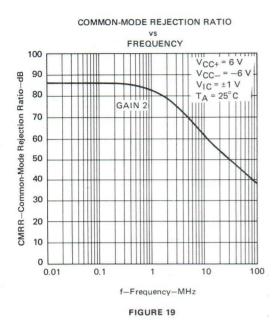
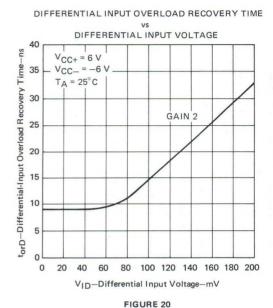
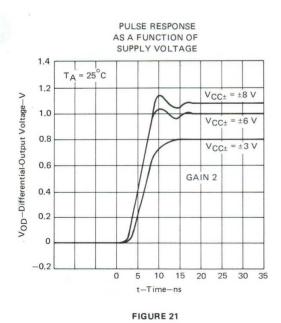
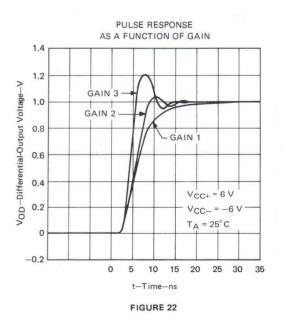


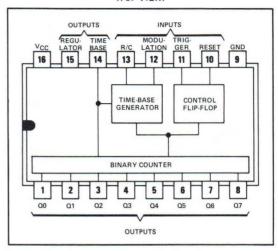
FIGURE 17

FREE-AIR TEMPERATURE 40


FIGURE 18

TYPICAL CHARACTERISTICS


LINEAR INTEGRATED CIRCUITS

TYPE uA2240C PROGRAMMABLE TIMER/COUNTER

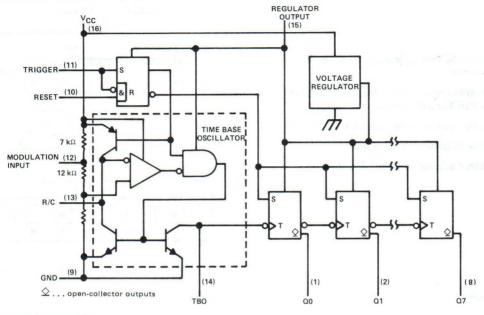
BULLETIN NO. DL-S 12610, JUNE 1978-REVISED DECEMBER 1979

uA2240C ... J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

- Accurate Timing from Microseconds to Days
- Programmable Delays from 1 Time Constant to 255 Time Constants
- Outputs Compatible with TTL, DTL, CMOS
- Wide Supply-Voltage Range
- External Sync and Modulation Capability

description

These circuits consist of a time-base oscillator, an eight-bit counter, a control flip-flop, and a voltage regulator. The frequency of the time-base oscillator is set by the time constant of an external resistor and capacitor at pin 13 and can be synchronized or modulated by signals applied to the modulation input. The output of the time-base section is applied directly to the input of the counter section and also appears at pin 14 (time base). The time-base pin may be used to monitor the frequency of the oscillator, to provide an output pulse to other circuitry, or (with the time-base section disabled) to drive the counter input from an external source. The counter input is activated on a negative-going transition. The reset input stops the time-base oscillator and sets each binary output, Q0 through Q7, and the time-base output to a TTL high level. After resetting, the trigger input starts the oscillator and all Q outputs go low. Once triggered, the uA2240 will ignore any signals at the trigger input until it is reset.


The uA2240C timer/counter may be operated in the free-running mode or with output-signal feedback to the reset input for automatic reset. Two or more binary outputs may be connected together to generate complex pulse patterns, or each output may be used separately to provide eight output frequencies. Using two circuits in cascade can provide precise time delays of up to three years.

The uA2240C is intended for operation from 0°C to 70°C.

79

TYPE uA2240C PROGRAMMABLE TIMER/COUNTER

functional block diagram

absolute maximum ratings

18 V
18 V
10 mA
<u>–</u> 5 mA
750 mW
650 mW
0°C to 70°C
300°C
260°C

NOTES: 1. Voltage values are with respect to the network ground terminal.

2. For operation above 25°C, see the Dissipation Derating Table. In the J package uA2240C chips are glass-mounted.

recommended operating conditions

	uA2240	uA2240C		
	MIN NOM	MAX	UNIT	
Supply voltage, V _{CC} (see Note 3)	4	15	V	
Timing resistor	0.001	10	MΩ	
Timing capacitor	0.01	1000	μF	
Counter input frequency (Pin 14)	1.5		MHz	
Pull-up resistor, time-base output	20		kΩ	
Trigger and reset input pulse voltage	2 3		V	
Trigger and reset input pulse width	2		μs	
External clock input pulse voltage	3		V	
External clock input pulse width	1		μs	

NOTE 3: For operation with $V_{CC} \le 4.5 \text{ V}$, short regulator output to V_{CC} .

403

TYPE uA2240C PROGRAMMABLE TIMER/COUNTER

electrical characteristics at 25°C free-air temperature

DADAMETED	TEST	20	TECT CONDITIONS			uA2240C		1
TANAMELEN	CIRCUIT		I EST CONDITION	2	Z	TYP	MAX	200
Coccellant succession acceptions	1	V _{CC} = 5 V,	Trigger and reset open or grounded	or grounded	3.9	4.4		;
negulator output voitage	2	V _{CC} = 15 V,	Trigger and reset open or grounded	or grounded	5.8	6.3	8.9	>
Modulation input open-		VCC = 5 V,	Trigger and reset open or grounded	or grounded	2.8	3.5	4.2	;
circuit voltage	-	V _{CC} = 15 V,	Trigger and reset open or grounded	or grounded		10.5		>
Trigger threshold voltage	-	VCC = 5 V,	Reset at 0 V		i.	1.4	2	>
High-level trigger current	-	VCC = 5 V,	Trigger at 2 V, Re	Reset at 0 V		10		μА
Reset threshold voltage	-	VCC = 5 V,	Trigger at 0 V			1.4	2	>
High-level reset current	-	VCC = 5 V,	Trigger at 0 V			10		Рη
Counter input (time base) threshold voltage	2	V _{CC} = 5 V,	Trigger and reset open or grounded	or grounded	-	1.4		>
Low-level output current, Q0 thru Q7	2	V _{CC} = 5 V, V _{OL} < 0.4 V	Trigger at 2 V, Re	Reset at 0 V,	2	4		шA
High-level output current, Q0 thru Q7	2	V _{OH} = 15 V,	Reset at 2 V, Tri	Trigger at 0 V		0.01	15	нΑ
	-	$V_{CC} = 5 V$	Trigger at 0 V, Re	Reset at 5 V		4	7	
Supply current	1	V _{CC} = 15 V,	Trigger at 0 V, Re	Reset at 5 V		13	18	mA
	3	V+ = 4 V				1.5		

operating characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER	TEST	TEST CONDITIONS		uA2240C	-
	CIRCUIT			MIN TYP MAX	5
Initial error of time base [‡]	1	V _{CC} = 5 V, Trigger at 5 V, Reset at 0 V		±0.5 ±5	%
Temperature coefficient	1	T = 0°C to 70°C	Vcc = 5 V	-200	Jours
of time-base period			VCC = 15 V	-80	
Supply voltage sensitivity		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		000	14,70
of time-base period		\$ \$ \$ 30\$		-0.08	2/%
Time-base output frequency	1	V _{CC} = 5 V, R = MIN, C = MIN		130	kHz
Property of the Party of the Pa		Leton Co.	From trigger input	1	
المعقودات مواعد الناو			From reset input	0.8	his
Output rise time	C	0100	- 00	180	
Output fall time	7	n[-3 kit, c[=10 pr	do thru d/	180	Su

^{*}For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: Propagation delay time is measured from the 50% point on the leading edge of an input pulse to the 50% point on the leading edge of the resulting change of state at 00. $^{\pm}$ This is the time-base period error due only to the uA2240 and expressed as a percentage of nominal (1.00 RC). .

PARAMETER MEASUREMENT INFORMATION

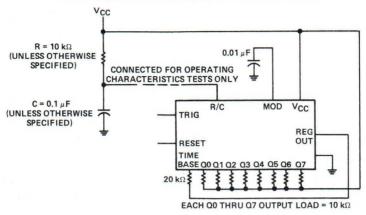


FIGURE 1-GENERAL TEST CIRCUIT

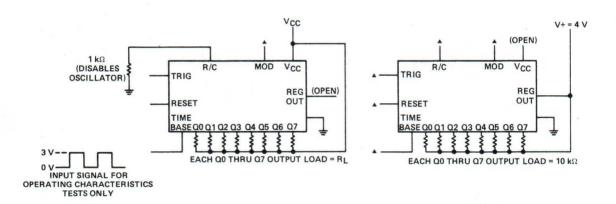


FIGURE 2-COUNTER TEST CIRCUIT

FIGURE 3—REDUCED-POWER TEST CIRCUIT
(TIME BASE DISABLED)

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A
J (Glass-Mounted Chips)	750 mW	8.2 mW/° C	58° C
N	650 mW	9.2 mW/°C	79° C

Also see Dissipation Derating Curves, Section 2.

[▲]These connections maybe open or grounded for this test,

TYPE uA2240C PROGRAMMABLE TIMER/COUNTER

TYPICAL CHARACTERISTICS

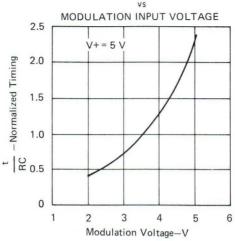


FIGURE 4

TYPICAL APPLICATION INFORMATION

Figure 5 shows voltage waveforms for typical operation of the uA2240. If both reset and trigger inputs are low during power-up, the timer/counter will be in a reset state with all binary (Q) outputs high and the oscillator stopped. In this state, a high level on the trigger input starts the time-base oscillator. The initial negative-going pulse from the oscillator sets the Q outputs to low logic levels at the beginning of the first time-base period. The uA2240 will ignore any further signals at the trigger input until after a reset signal is applied to the reset input. With the trigger input low, a high level at the reset input will set Q outputs high and stop the time-base oscillator. If the reset signal occurs while the trigger input is high, the reset is ignored. If the reset input remains high when the trigger input goes low, the uA2240 will reset.

279

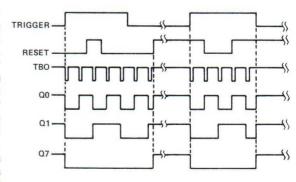
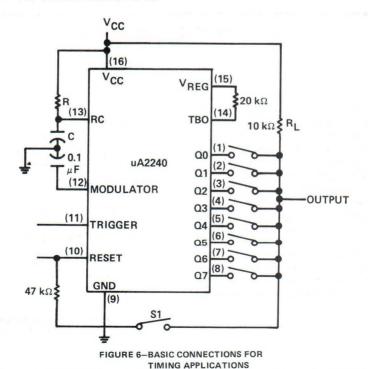


FIGURE 5-TIMING DIAGRAM OF OUTPUT WAVEFORMS

TYPICAL APPLICATION INFORMATION


In monostable applications of the uA2240 one or more of the binary outputs will be connected to the reset terminal as shown in Figure 6. The binary outputs are open-collector stages that can be connected together to a common pull-up resistor to provide a "wired-OR" function. The combined output will be low as long as any one of the outputs is low. This type of arrangement can be used for time delays that are integer multiples of the time-base period. For example, if Q5 (25 = 32) only is connected to the reset input, every trigger pulse will generate a 32-period active-low output. Similarly, if Q0, Q4, and Q5 are connected to reset, each trigger pulse creates a 49-period delay.

In astable operation, the uA2240 will free-run from the time it is triggered until it receives an external reset signal.

The period of the time-base oscillator is equal to the RC time constant of an external resistor and capacitor connected as shown in Figure 6 when the modulation input is open (approximately 3.5 volts internal, see Figure 4). Under conditions of high supply voltage ($V_{CC} > 7$ V) and low value of timing capacitor ($C < 0.1 \,\mu\text{F}$), the pulse width of the time-base oscillator may be too short to properly trigger the counters. This situation can be corrected by adding a 300-picofarad capacitor between the time-base output and ground. The time-base output (TBO) is an open-collector output that requires a 20-k Ω pull-up resistor to Pin 15 for proper operation. The time-base pin may also be used as an input to the counters for an external time-base or as an active-low inhibit input to interrupt counting without resetting.

The modulation input varies the ratio of the time-base period to the RC time constant as a function of the dc bias voltage (see Figure 4). It can also be used to synchronize the timer/counter to an external clock or sync signal.

The regulator output is used internally to drive the binary counters and the control logic. This terminal can also be used to supply voltage to additional uA2240 devices to minimize power dissipation when several timer circuits are cascaded. For circuit operation with an external clock, the regulator output can be used as the VCC input terminal to power down the internal time base and reduce power dissipation. When supply voltages less than 4.5 volts are used with the internal time base, Pin 15 should be shorted to Pin 16.

Military Products

MIL-M 38510 AND MIL-STD-883 MILITARY HIGH-RELIABILITY INTEGRATED CIRCUITS

The Texas Instruments MIL-M-38510 and MIL-STD-883 programs offer a variety of options designed to meet contractual, reliability, and cost goals. MIL-M-38510 and MIL-STD-883 have been fully implemented to provide a broad product line of control circuits for both military original equipment and logistic requirements. Included in this section is a complete cross reference from the JAN part number to the corresponding standard catalog part number for ease in locating the commercial equivalent. A cross reference from the catalog number to the JAN slash sheet number is also included.

When system designs require military-class circuits and no slash-sheet specification exists, the TI/883 or MIL-M-38510 JAN-processed program is recommended as a cost-effective substitute for nonstandard program drawings or specifications.

As an aid to predicting system reliability performance, the following is the estimated quality factor, π_Q , for Texas Instruments Linear Circuits processed to the options outlined in Table IV.

TABLE I
STANDARD-PROCESS PROGRAM QUALITY LEVELS

OPTION		πο
JAN MIL-M-38510	CLASS B	2
JAN-PROCESSED (SNJ)	CLASS B	3
JAN-PROCESSED (/883)	CLASS B	3
STANDARD HERMETIC		10

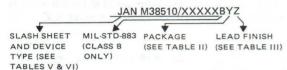
The documents listed below (see Note 1) establish the processing for quality and reliability assurance requirements for JAN integrated circuits. The detail requirements of each individual JAN device are specified in the slash sheets.

MIL-M-38510/XXX, Microcircuits, Digital, Linear
Monolithic Silicon (Slash Sheets)
MIL-M-38510, Microcircuits, General Specification for
MIL-STD-883, Test Methods and Procedure for Microelectronics
QPL-38510, Qualified Products List for MIL-M-38510

NOTE 1: Copies of these documents may be requested from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 19120.

L

MILITARY HIGH-REL PRODUCTS


1. JAN MIL-M-38510 CLASS B PRODUCT

These devices will be manufactured to the full requirements of the appropriate MIL-M-38510 slash sheet in DESC-approved domestic production facilities. The TI Linear Department is supplying only Class B product (see Table V).

A. Ordering Information:

JAN DEVICE DESIGNATION

TI ORDER ENTRY CODE (14-DIGITS MAXIMUM)

JANBXXXXXXTYY

DEVICE TEMPERATURE PACKAGE
DESIGNATOR CODE (M, I, OR C, (NOTE 3)

(NOTE 2) IF APPROPRIATE)

Examples: JAN M38510/10101BHBJANBUA741MU

JAN M38510/10303BPB ...JANBLM106JG JAN M38510/10401BCB ...JANB55107J JAN M38510/11004BFB ...JANBRM4136W

B. Symbolization:

JM38510/XXXXXBYY TI Symbol (Trade Mark) 4-Digit Date Code

TABLE II

JAN AND TI PACKAGE CODE DESIGNATIONS AND LEAD-FINISH AVAILABILITY

TABLE III
LEAD-FINISH CODE DESIGNATIONS

JAN PACKAGE CODE	TI PACKAGE CODE	DESCRIPTION	JAN CODE AVAILABLE LEAD FINISH	38510 APP. C
Α	NOT AVAIL.	14-PIN F/P 1/4" × 1/4"		F-1
B/T [†]	Т	14-PIN F/P 3/16" × 1/4"	C/D†	F-3
C	J	14-PIN C DIP	В	D-1
D	w	14-PIN F/P 1/4" × 3/8"	В	F-2
E	J	16-PIN C DIP	В	D-2
F	w	16-PIN F/P 1/4" × 3/8"	В	F-5
G	NOT AVAIL.	8-PIN CAN (TO-99)		A-1
н	U	10-PIN F/P 1/4" × 1/4"	В	F-4
1	NOT AVAIL.	10-PIN CAN (TO-100)		A-2
J	J	24-PIN C DIP	В	D-3
K	w	24-PIN F/P 3/8" × 5/8"	В	F-6
M	NOT AVAIL.	12-PIN CAN (TO-101)		A-3
P	JG	8-PIN C DIP	В	D-4
Q	NOT AVAIL.	40-PIN C DIP		D-5
R	J	20-PIN C DIP	В	D-8
V	JR	18-PIN C DIP	С	D-6
W	JR	22-PIN C DIP	С	D-7

JAN	DESCRIPTION
Α	SOLDER DIP
В	TIN-PLATE
C/D†	GOLD-PLATE
×	OPTIONAL#

Per MIL-M-0038510B, Class S.

[&]quot;X" denotes lead finish A, B, or C at option of manufacturer. Devices will be marked A, B, or C as applicable.

NOTES: 2. The device designator may include a letter A, B, or C as a last character.

^{3.} The package code may include one or two characters.

II, JAN-PROCESSED (SNJ OR /883B) PRODUCTS PROCESSED PER MIL-STD-883 METHOD 5004

These devices will be tested to the electrical characteristics specified on the Texas Instruments Data Sheet and 100% processed in accordance with MIL-STD-883 Class B requirements of method 5004 as defined in Table IV.

Ordering Information:

/883B DEVICES ORDER ENTRY CODE

DESIGNATOR (NOTE 2)

DEVICE DESIGNATOR (NOTE 2)

TEMPERATURE RANGE CODE (IF APPROPRIATE)

XXXXXXTYY/883B

PACKAGE (NOTE 3)

FOR JAN PROCESSING

Examples:

PROCESSING

SNJ55107AJ SNJ55107BJ SNJ55325W

TL022MJG/883B TL497AMJ/883B RM4558JG/883B

Symbolization: В.

> SNJXXXXXXYY TI Symbol (Trade Mark) 4-Digit Date Code

XXXXXXTYY/883B TI Symbol (Trade Mark) 4-Digit Date Code

STANDARD PRODUCTS

These devices will be tested to data sheet electrical requirements and processed in accordance with Table IV. For detailed ordering information see ordering instructions on page 37.

Ordering Information:

(NOTE 2)

(IF REQUIRED)

Example: TL494MJ

SN55325J SN55107AJ

Symbolization-B.

> XXXXXXTYY TI Symbol (Trade Mark) 4-Digit Date Code

NOTES: 2. The device designator may include a letter A, B, or C as a last character.

3. The package code may include one or two characters.

TABLE IV
SCREENING AND LOT CONFORMANCE-CLASS B

	JAN QUAL	IFIED	SNJ AND /		STANDARD HEI	
SCREEN	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT
Internal Visual (Precap)	2010 Condition B and 38510	100%	2010 Condition B and 38510	100%	Commercial Standard 40X	100%
Stabilization Bake	1008 24 hours minimum test Condition C	100%	1008 24 hours minimum test Condition C	100%	1008 24 hours minimum test Condition C	100%
Temperature Cycling	1010 Condition C	100%	1010 Condition C	100%		
Constant Acceleration	2001 Condition E (min) in Y ₁ plane	100%	2001 Condition E (min) in Y ₁ plane	100%		
Seal Fine & Gross	1014	100%	1014	100%	1 × 10 ⁻⁷ atm cc/sec	100%
Interim Electrical	JAN slash-sheet electrical specifications	As appli- cable	TI data sheet electrical specifications	As appli- cable		
Burn-In Test	1015 125°C minimum§	100%	1015 (Note 4) 125° C minimum §	100%		
Final Electrical Tests (a) Static tests (1) 25°C (Subgroup 1, table 1, 5005) (2) Temperature	JAN slash-sheet electrical specifications	100%	TI data sheet electrical specifications	100%	TI data sheet electrical specifications	100%
(Subgroups 2 and 3, table 1, 5005)		100%		100%		100% (Note
(b) Dynamic tests and switching tests 25° C (Subgroup 4 and 9, table 1, 5005)		100%		100%		
(c) Functional test (Note 6) (Subgroup 7.8,		100%		100%		100%
table 1, 5005) Quality Conformance				(Note 7)		(Note
Inspection				(14010 77		111010
Group A (a) Static	5005 Class B	LTPD	5005 Class B (Note 4)	LTPD		LTPD
(1) 25° C (Subgroup 1) (2) Temperature (Subgroups 2 & 3)		5% 7%	(1.05.0 1)	5% 7%		5%
(b) Switching (1) 25° C (Subgroup 9) (2) Temperature (Subgroups 10 & 11) (c) Functional test (Note 6)		7% 10%		7% 10%		
(1) 25°C (Subgroup 7)		5%		5%		
(2) Temperature (Subgroup 8)		10%		10%		
Group B	5005 Class B	Insp. Lot	5005 Class B	6 weeks package		
Group C	5005 Class B	13 weeks	5005 Class B	prod. 13 weeks prod.		
Group D	5005 Class B	6 months package	5005 Class B	6 months package		
External Visual	2009	prod. 100%	2009	prod. 100%	2009	100%

 $[\]S$ Lower temperatures if required to limit T_J to 150°C.

NOTES: 4. Includes group A and burn-in attributes data reports.

^{5.} Temperature guardband test may be used in lieu of 100% test.

^{6.} When specified on data sheets.

^{7.} Group A per 5005. Generic data available for groups B, C, and D.

7


TABLE V
JAN DEVICE TO CIRCUIT TYPE CROSS REFERENCE

JAN	CIRCUIT
TYPE	TYPE
10101	uA741
10102	uA747
10103	LM101A
10201	uA723
10202*	LM104
10203*	LM105
10301	uA710
10302	uA711
10303	LM106
10304	LM111
10501*	uA733
10701	LM109
10702*	LM140-12
10703*	LM140-15
10704*	LM140-24
10901*	SE555
10902*	SE556
11004	RM4156

TABLE VI CIRCUIT TYPE TO JAN DEVICE CROSS REFERENCE

CIRCUIT	JAN
TYPE	TYPE
LM101A	10103
LM104	10202*
LM105	10203*
LM106	10303
LM109	10701
LM111	10304
LM140-12	10702*
LM140-15	10703*
LM140-24	10704*
RM4156	11004
SE555	10901*
SE556	10902*
uA710	10301
uA711	10302
uA723	10201
uA733	10501*
uA741	10101
uA747	10102

^{*}Slash sheets not released as of date of this publication.

