

RATINGS

OPERATING VOLTAGE	(MalN)	850	VOLTS
	(max)	950	vocts
ANBIENT TEMPERATURE	(MIN)	-30	${ }^{\circ} \mathrm{C}$
	(max)	\%	${ }^{\circ} \mathrm{C}$
relative mumdity	(max)	100	\checkmark
BETA ENERGY.	(MIN)	160	K.V

The 1885 is a widely used metal wall, beta-gaema counter tube skillfully designed and constructed to provide consistent high performance. This gemeral purpose tube is designed to replace most thin-walled glass tubes. Recent improvements have resulted in better low temperature performance and reduced temperatore coefficients of threshold voltage.

Shock and vibration resistance is substantially greater than for glass-walled tubes. The aluminum shell, although thin, resists implosion, and even if dented the 1B85 counter will coatinue to operate satisfactorily.
Reliability, owing to bigh uniformity of construction, is an catstanding feature. Fill gas is of the selfequenching type; hence, the useful life is a function of voltage, counting rate, and lifetest end point. The 1B85 is interchangeable with nearly all 900 vole counter tubes.
Simple mounting and teplacement of tabes is achieved through the use of a standatd KETMA type At-82 coaxial base. Water-tight mounting is easy to obeain with the coaxial tuse. Several standard mouotiags are available: Victoreen $380-26$ probe socket, $389-4$ probe assembly. 631-56 probe assembly and the 5100-81-S18 Truare ring for chassis moenting.
The extremely consistent unifoemity and rugged construction, coupled with the simple coaxial base mounting, are features which bave contributed to selection of the 1885 counter tube as first choice for use in portable survey instruments, area monitoring instruments, and precision labceatory measuring equipment. The lB85s are ideally suited for multiple tube counters shich compare favorably with scintillation counters in cost and performance. Decoupling networks are unnecessary. The tubes are also well suited foe coincidence and anti-coincidence circuits.

CHARACTERISTICS

THRESHOLO VOL TAGE* (max)	800	VOLTS
PLATEAU LENOTH* (Man)	200	VOLTS
plateau slope:... ($\mathrm{V}_{\text {. }} 800$ TO 1000 V)	3	*/100 VOLTS
RECOVERY TIME	100	HSEC
BACXGROUND (Y_{*}-900 V)	40	C/M
LIFE (AT $8000 \mathrm{C} / \mathrm{M}, \mathrm{v}_{0}{ }^{\prime} 900 \mathrm{~V}$).	10^{8}	COUNTS
LIFE TEST END POINT, SLOPE ($\mathrm{v}_{0}=850$ TO $\$ 50 \mathrm{~V}$)	10	\%/100 VOLTS
ACTIVE LENGTH.	2.75	INCHES
WALL (ALUNINUM).	30	M $/ . C \mathrm{~m}^{2}$
ELECTROOE CAPACITANCE	2	$\mu \mu=$

CHARACTERISTICS

THRESHOLD VOLTAGE* (MAX) 800
VOLTS
PLATEAU LENGTH* 200
VOLTS
PLATEAU SLOPE* $5 \% / 100$ VOLTS
$\left(V_{0}=800\right.$ TO 1000 V$)$
RECOVERY TIME$100 \mu \mathrm{SEC}$
BACKGROUND $40 \mathrm{C} / \mathrm{M}$
$\left(\mathrm{V}_{0}=900 \mathrm{~V}\right)$
LIFE 10^{8} COUNTS
(AT $6000 \mathrm{C} / \mathrm{M}, \mathrm{V}_{0}=900 \mathrm{~V}$)
LIFE TEST END POINT, SLOPE $10 \% / 100$ VOLTS
($\mathrm{V}_{\mathrm{o}} 850 \mathrm{TO} 950 \mathrm{~V}$)
ACTIVE LENGTH 2.75
INCHES
WALL (ALUMINUM) $30 \mathrm{MG} / \mathrm{CM}^{2}$ELECTRODE CAPACITANCE$2 \mu \mu \oint$
*NEW TUBES
RATINGS
OPERATING VOLTAGE (MIN) 850 VOLTS
(MAX) 950 VOLTS
AMBIENT TEMPERATURE (MIN) -10° C (MAX) $100^{\circ} \mathrm{C}$
RELATIVE HUMIDITY (MAX) 95 \%
BETA ENERGY (MIN) 160 KEV

TUBE CHARACTERISTICS

