

TYPE 6777 HYDROGEN THYRATRON

GENERAL DATA

DESCRIPTION:

The 6777 is a unipotential cathode, three element, hydrogen filled thyratron with reservoir, designed for network discharge service. In such service it is suitable for producing pulse outputs of more than 120 KW at an average power level of more than 150 watts.

The special features of the 6777 include the high peak voltage rating and the very compact size as well as the inclusion of a hydrogen reservoir for long stable tube life.

Electrical Data, General	Nom.	Min.	Max.
Heater voltage	6.3	5.9	6.7 Volts a.c.
Heater current. Eh=6.3 volts		2.2	2.7 Amperes
Minimum heating time	. 3 M	inutes	
Mechanical Data, General			
Mounting position	. Any		
Base	Medium, 4-pin low-loss		
	phen	olic, A	4-9
Anode cap	Small metal, C1-1		
Cooling	Note	1	
Net weight	3.5 0	unces	

Dimensions

See outline drawing

Ratings

max. peak anode vonage, forward	0.0 KII040II3
Max. peak anode voltage, inverse	
(Note 2)	8.0 Kilovolts
Min. anode supply voltage	2.5 Kilovolts d.c.
Max. peak anode current	35 Amperes
Max. average anode current	45 Milliamperes
Max. RMS anode current (Note 3)	1.25 Amperes d.c.
Max. epy x ib x prr	0.75 x 10 ⁹
Max. anode current rate of rise	1200 Amperes/ μ second
Peak trigger voltage	Note 4
Max. peak inverse trigger voltage	200 Volts
Max. anode delay time (Note 5)	0.6 Microsecond
Max. anode delay time drift	0.15 Microsecond
Max. time jitter (Note 6)	0.03 Microsecond (initial)
	0.04 μ second (end of life)
Ambient temperature	-50° to $+90^{\circ}$ Cent.

Max. peak anode voltage, forward.... 8.0 Kilovolts

Printed in U.S.A. 1-60

(Continued)

Typical Operation as Pulse Modulator,

DC Resonant Charging

Peak network voltage	8.0 Kilovolts
Pulse repetition rate	2800 Pulses/second
Pulse length	0.25 Microsecond
Pulse forming network impedance	119 Ohms
Trigger voltage	175 Volts
Peak power output (Resistive load	
92% Zn)	130 Kilowatts
Peak anode current	35 Amperes
Average anode current	.025 Amperes d.c.

Note 1

Cooling of the anode lead is permissible but there shall be no air blast directly on the bulb.

Note 2

The peak inverse voltage, exclusive of a spike of 0.05 microsecond max. duration, shall not exceed 3 KV during the first 25 microseconds after the pulse.

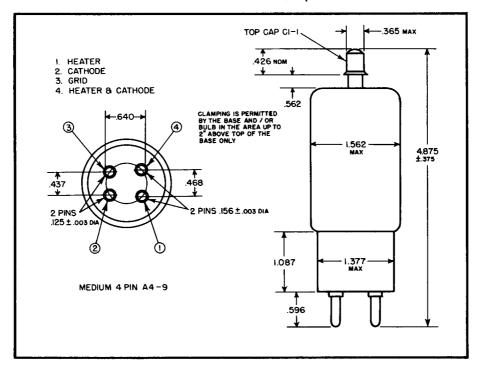
Note 3

The root mean square anode current shall be computed as the square root of the product of peak current and the average current.

Note 4

The voltage between grid and cathode terminals of the tube, with the grid of the tube disconnected should have the following characteristics:

A.	Voltage	175-250 Volts
В.	Duration	2.0 Microseconds (at 70% points)
C.	Time of rise	0.5 Microseconds (max.)
D.	Impedance	1500 Ohms (max.)


The limits of anode time delay and anode time jitter are based on the minimum trigger. Using the highest permissible trigger voltage and lowest trigger source impedance materially reduces these values below the limits specified.

Note 5

The time of anode delay is measured between the 26 percent point on the rising portion of the unloaded grid voltage pulse and the point at which evidence of anode conduction first appears on the loaded grid pulse.

Note 6

Time jitter is measured at the 50 percent point on the anode current pulse.

