INSTRUMENT CATHODE-RAY TUBE 14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen. | QUICK REFERENCE DATA | | | | |------------------------------------|------------------|----------|---------------| | Final accelerator voltage | $v_{g7(\ell)}$ | 10 | kV | | Display area | | 100 x 80 | $^{\rm mm^2}$ | | Deflection coefficient, horizontal | $M_{\mathbf{X}}$ | 15,5 | V/cm | | vertical | $M_{\mathbf{y}}$ | 4, 2 | V/cm | SCREEN: Metal backed phosphor | | Colour | Persistence | |-----------|--------|--------------| | D14-120GH | green | medium short | | Useful screen area | | > | 100 x 80 | $^{\rm mm^2}$ | |---|-------------------|---|----------|---------------| | Useful scan at $V_{g7(\ell)}/V_{g2,g4} = 6,7$ | , horizontal | > | 100 | mm | | | vertical | > | 80 | mm | | Spot eccentricity in horizontal and ver | rtical directions | < | 6 | mm | **HEATING**: Indirect by AC or DC: parallel supply | Heater voltage | v_f | 6, 3 | V | |----------------|-------|------|----| | Heater current | If | 300 | mA | #### **MECHANICAL DATA** Dimensions and connections See also outline drawing Overall length (socket included) < 385 mm Face dimensions . < 100×120 mm Net mass approx. 900 g Base 14-pin all-glass #### Dimensions in mm Fig. 2 Pin arrangement. Fig. 3 Electrode configuration. Fig. 1 Outlines. - (1) The centre of the contact is located within a square of 10 mm x 10 mm around the true geometrical position. - (2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm. ### Mounting position any The tube should not be supported by the base alone; under no circumstances should the socket be allowed to support the tube. #### Accessories Socket (supplied with tube) Final accelerator contact connector Mu-metal shield type 55566 type 55563A type 55581 **FOCUSING** electrostatic DEFLECTION double electrostatic x plates symmetrical y plates symmetrical If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable. Angle between x and y traces 90° ± 1° Angle between x trace and the horizontal axis of the face $< 5^{\circ}$ see note 6 ### LINE WIDTH Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current I_{ℓ} = 10 μ A. | Line width at the centre of the screen | 1. w. | 0, 40 | mm | |--|----------------------------|-------|----| | over the whole screen area | 1.w. av. < | 0,45 | mm | | CAPACITANCES | | | | | x_1 to all other elements except x_2 | $C_{x1(x2)}$ | 6,5 | pF | | \mathbf{x}_2 to all other elements except \mathbf{x}_1 | $C_{x2(x1)}$ | 6,5 | pF | | y ₁ to all other elements except y ₂ | $C_{y1(y2)}$ | 5,0 | pF | | y_2 to all other elements except y_1 | $C_{y2(y1)}$ | 5,0 | pF | | x_1 to x_2 | C_{x1x2} | 2,2 | pF | | y ₁ to y ₂ | c_{y1y2} | 1,7 | pF | | Control grid to all other elements | $\mathtt{c}_{\mathtt{gl}}$ | 5,5 | pF | | Cathode to all other elements | c_k | 4,5 | pF | ## TYPICAL OPERATING CONDITIONS | Final accelerator voltage | $v_{g7(\ell)}$ | | 10 | kV | |--|--|--------------|--------------|--------------------| | Interplate shield voltage | v_{g6} | | 1500 | V | | Geomrty control voltage | ΔV_{g6} | | ±15 | V see note 1 | | Deflection plate shield voltage | ${ m v_{g5}}$ | | 1500 | V see note 2 | | Focusing electrode voltage | v_{g3} | 250 to | 350 | V | | First accelerator voltage
Astigmatism control voltage | $^{ m V}$ g2, g4 $^{ m \Delta V}$ g2, g4 | ! | 1500
±50 | V
V see note 3 | | Control voltage for visual extinction of focused spot | v_{gl} | -20 to | -60 | v | | Grid drive for 10 µA screen current | J | approx. | 12 | V | | Deflection coefficient, horizontal | $M_{\mathbf{X}}$ | < | 15,5
16 | V/cm
V/cm | | vertical | My | < | 4,2
4,6 | V/cm
V/cm | | Deviation of linearity of deflection | | < | 2 | % see note 4 | | Geometry distortion | | See not | e 5 | | | Useful scan, horizontal | | > | 100 | mm | | vertical | | > | 80 | mm | | LIMITING VALUES (Absolute max. rating system) | | | | | | Final accelerator voltage | $v_{g7(\ell)}$ | max.
min. | 11
9 | kV
kV | | Interplate shield voltage and geometry control electrode voltage | v_{g6} | max. | 2200 | v | | Deflection plate shield voltage | v_{g5} | max. | 2200 | v | | Focusing electrode voltage | v_{g3} | max. | 2200 | V | | First accelerator and astigmatism control | O | max. | 2200 | v | | electrode voltage | $v_{g2,g4}$ | | 1350 | V | | Control grid voltage | $-v_{g1}$ | max.
min. | 200
0 | V
V | | Cathoda to haston valture | J | | • | · | | Cathode to heater voltage | V _{kf}
-V _{kf} | max. | 1 25
1 25 | V
V | | Voltage between astigmatism control electrode and any deflection plate | V _{g4/x}
V _{g4/y} | max.
max. | 500
500 | V
V | | Grid drive, average | 'g4/y | max. | 20 | v | | Screen dissipation | $\mathbf{w}_{\boldsymbol{\ell}}$ | max. | 8 | mW/cm ² | | <u>.</u> | | | | 111 17 / CIII | | Ratio $V_{g7(\ell)}/V_{g2}$, g4 Control grid circuit resistance | $V_{g7(\ell)}/V_{g4}$ R_{g1} | max. | 6,7
1 | МΩ | | Court of Rife circuit registance | , g1 | ****** | • | | #### Notes - 1. This tube is designed for optimum performance when operating at a ratio $V_{g7(g)}/V_{g2, g4} = 6.7$. The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light. - 2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality. - The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range. - 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value. - 5. A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles. - 6. To align the x trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 ampere turns for the indicated maximum rotation of 5° and should be positioned as indicated in the drawing.