Philips Bauelemente

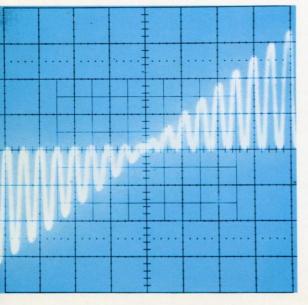
PLUMBICON®-Kameraröhren und Zubehör

1988

Datenbuch

PHILIPS

Elektronik. Wir bauen die Elemente.


Unser Arbeitsgebiet – besonders die Mikroelektronik – entwickelt sich immer rascher zum Motor für eine Vielzahl von Innovationen. Mit gründlicher Information und sorgfältiger Beratung möchten wir Ihnen helfen, diese Entwicklung zu nutzen, um im Wettbewerb vorn zu sein.

Zugegeben, wir sind dabei in einer besonders günstigen Lage: Als Unternehmensbereich Bauelemente des Hauses Philips verbindet Valvo die Erfahrung und Beweglichkeit des deutschen Spezialisten mit der Stärke des weltweit größten Anbieters von elektronischen Bauelementen.

Die Vorteile zeigen sich zum Beispiel in der hohen Innovationsrate, da wir die eigene Forschung und Entwicklung durch internationalen Forschungsverbund ergänzen. Zugleich verfügen wir über das breiteste Produktprogramm in Deutschland. Wir können daher unseren Partnern innovative, vielseitige Problemlösungen aus einer Hand anbieten. Mit Produkten, die pünktlich zur Stelle sind. Hohe Lieferzuverlässigkeit, weit entwickelte Fertigungsverfahren, kompromißlose Qualitätssicherung sind für uns selbstverständlich.

Wie der Erfolg zeigt, ist das eine gute Plattform für die Zusammenarbeit. Damit daraus eine langfristige, erfreuliche Partnerschaft wird, sind wir bereit, schnell zu helfen und Probleme flexibel und unbürokratisch zu lösen.

In den modernen Empfangskonzepten wird die Abstimmfrequenz durch digitale Messung exakt bestimmt. Mit Synthesizertechnik wird die Abstimmung auf den Punkt größter Störunterdrückung mit minimaler Verzerrung geführt, d. h. beste Wiedergabe und größte Reichweite.

Information ist der erste Schritt. Sprechen Sie mit uns, wenn es um Bauelemente geht.

Vertriebsprogramm:

Integrierte Schaltungen Bipolar analog und digital MOS

Mikroprozessoren und -controller

-controller
Bipolar- und
MOS-Systeme
Entwicklungssysteme,
Software und Support
Diskrete Halbleiter

Diskrete naibeiter
Dioden und
Transistoren
Thyristoren und Triacs
Spezialhalbleiter
Optoelektronische

Bauelemente Sensoren, LCDs Hybridschaltungen

und Module
Kondensatoren
Widerstände und
Potentiometer
Heiß- und Kaltleiter
Varistoren
Quarz-Bauelemente
Hart- und weichmagnetische Ferrite
Piezoxide
Fernsehbildröhren und
Ablenkmittel
Spezialröhren und
-bauteile
Bildaufnahme und

Bildaufnahme und
-wiedergabe
Strahlungsmeßtechnik
Hochfrequenz- und
Mikrowellenerzeugung
Reed-Kontakte

Monitorröhren und Ablenkmittel Transformatoren Tuner Lautsprecher Steckverbinder Leiterplatten und Multilayer

Diese Stichwortliste gibt einen groben Überblick über unser Vertriebsprogramm, das insgesamt Bauelemente aus mehr als hundert Technologien bietet.

Valvo Unternehmensbereich Bauelemente der Philips GmbH

PLUMBICON®-Kameraröhren und Zubehör

1988

Datenbuch

PHILIPS

Herausgeber:

Valvo

Unternehmensbereich Bauelemente der Philips GmbH

Burchardstraße 19, 2000 Hamburg 1

Verlag:

Dr. Alfred Hüthig Verlag GmbH

Postfach 10 28 69, 6900 Heidelberg 1

Druck:

Photo Copie GmbH, 2000 Hamburg 1

Oktober 1988

ISBN 3-7785-1777-5

Dieses Datenbuch ist vor allem für den Konstrukteur und Geräteentwickler bestimmt.

Bestellungen und Anfragen richten Sie bitte an

Valvo

Unternehmensbereich Bauelemente der Philips GmbH

Burchardstraße 19, Postfach 10 63 23, 2000 Hamburg 1 Telefon (0 40) 32 96-0, Telefax (0 40) 32 96-917, Telex 2 15 401-53 va d

oder an die Valvo Zweigbüros bzw. Valvo Distributoren (siehe 3. Umschlagseite)

Jeder unserer Lieferungen liegen die Vorschriften bei Transportschäden und die Gewährleistungsbestimmungen zugrunde.

Rücklieferungen von gewährleistungspflichtigen Spezialbauelementen senden Sie bitte an

Valvo Unternehmensbereich Bauelemente der Philips GmbH Lieferzentrum Hamburg Retourenstelle Kronsaalsweg 20 2000 Hamburg 54

Dieses Datenbuch gibt keine Auskunft über Liefermöglichkeiten. Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen. Etwaige Schadensersatzansprüche gegen uns – gleich aus welchem Rechtsgrund – sind ausgeschlossen, soweit uns nicht Vorsatz oder grobe Fahrlässigkeit trifft. Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutzrechten Dritter sind.

Ein Nachdruck – auch auszugsweise – ist nur zulässig mit Zustimmung des Herausgebers und mit genauer Quellenangabe.

Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

Wichtiger Hinweis!

Bei der Handhabung und beim Betrieb einiger Bauelemente sind mögliche gesundheitsgefährdende oder umweltstörende Einflüsse zu beachten.

Es ist deshalb bei diesen Typen besondere Sorgfalt erforderlich

- beim Betrieb (Bauelement und Gerät),
- bei Lagerung und Transport,
- bei der Beseitigung nicht mehr verwendbarer oder überzähliger Bauelemente (Röhren mit Fotokatode, Leuchtschirm oder fotoleitender Schicht enthalten in geringen Mengen gesundheitsschädliche Verbindungen. Bei der Beseitigung großer Stückzahlen ist deshalb besondere Vorsicht geboten).

Mögliche Gefahrenursachen sind

- 1. Röntgen-Strahlung sowie HF- und Mikrowellenenergie (nur bei angelegten Spannungen),
- 2. chemische Wirkungen (Gifte), Berylliumoxid-Staub u. ä.,
- hohe Spannungen,
- 4. Implosionsgefahr.
- 5. Magnetfelder

Gesetzliche und sonstige Vorschriften, in denen u. a. zulässige Höchstwerte und/oder eine Kennzeichnungspflicht für die Geräte festgelegt sind (z.B. Röntgen-Verordnung [RöV], Arbeitsschutz- und Unfallverhütungsvorschriften, Umweltschutzgesetze) sind vom Anwender (insbesondere Gerätehersteller, Betreiber u.s.w.) in jedem Falle zu beachten.

Die folgende Tabelle gibt einen Überblick über mögliche Gefahren (Hinweise im Datenblatt beachten):

Produktgruppe	Röntgen- Strahlung	HF- und Mikrowellen- Energie	Implosions- gefahr	Verschiedenes 1)
Bildverstärkerröhren				
Fernsehbildröhren	•		•	
Fotovervielfacher			•	Berylliumoxid (BeO)
Infrarot-Detektoren				Berylliumoxid (BeO)
Kameraröhren				Bleioxid (PbO)
Klystrons		•		
Leiterplatten				Flammhemmer
Monitorröhren	•			
Oszilloskopröhren	•			
UHF-Trioden	-			
Zirkulatoren				Magnetfelder

¹⁾ Elektroschock

Bei Berührung von Bauelementen während des Betriebes (evtl. auch nach Abschalten durch Restladung) kann eine Gefährdung von hohen elektrischen Spannungen ausgehen.

Typenverzeichnis Typenübersicht	
Formelzeichen Erläuterungen	
PLUMBICON®-Kameraröhren	
Zubehör	

Typenverzeichnis Typenübersicht

Typenverzeichnis

Тур		Seite	Тур		Seite	Тур		Seite
	ICON® - aröhren		XQ 1071/01 R	*)	83	XQ 1428 R		139
			XQ 1072		85			
XQ 1022	*)	65	XQ 1073 R	*)	91	XQ 1500		141
XQ 1070	*)	71	XQ 1073 X		99	XQ 1500 B		141
XQ 1070 B	*)	71	XQ 1074 R	*)	105	XQ 1500 G		141
XQ 1070 G	*)	71	XQ 1075 R	*)	91	XQ 1500 L		141
XQ 1070 L	*)	71	XQ 1075/02 R	*)	107	XQ 1500 R		141
XQ 1070 R	*)	71	XQ 1076 R	*)	105	XQ 1503 R		153
XQ 1070/01	*)	71				XQ 1505 R		153
	*)	71	XQ 1410		111			
-	*)		XQ 1410 B		111	XQ 1520		165
-	•	71	XQ 1410 G		111	XQ 1520 B		165
-	*)	71	XQ 1410 L		111	XQ 1520 G		165
	*)	71	XQ 1410 R		111	XQ 1520 L		165
XQ 1070/02 B	*)	79	XQ 1413 R		121	XQ 1520 R		165
XQ 1070/02 G	*)	79	XQ 1415 L		121	XQ 1523 R		177
XQ 1070/02 L	*)	79	-			XQ 1525 L		177
XQ 1070/02 R	*)	79	XQ 1415 R		121	XQ 1525 R		177
XQ 1071	*)	83	XQ 1427		131			1,,
XQ 1071 B	*)	83	XQ 1427 B		131	XQ 2070/02	*)	189
XQ 1071 G	*)	83	XQ 1427 G		131	XQ 2070/02 B	*)	189
XQ 1071 R	*)	83	XQ 1427 R		131	XQ 2070/02 G	*)	189
XQ 1071/01	*)	83	XQ 1427 K XQ 1428		139	XQ 2070/02 R	*)	189
XQ 1071/01 B	*)	83	•			XQ 2070/03	*)	189
XQ 1071/01 G	*)	83	XQ 1428 B		139	XQ 2070/03 B	*)	189
	' .	,,	XQ 1428 G		139	1.Q 2010/03 B	,	107

Fortsetzung siehe nächste Seite

19. 9. 1988 11

^{*)} Nicht für Neuentwicklungen

Typenverzeichnis

Тур		Seite	Тур	Seite	Тур	Seite
XQ 2070/03 G	*)	189	XQ 3073/02 R	239	XQ 3467 R	287
XQ 2070/03 R	*)	189	XQ 3075/02 R	239	XQ 4187	295
XQ 2073/02 R	*)	199			XQ 4187 B	295
XQ 2073/03 R	*)	199	XQ 3427	249	XQ 4187 G	295
XQ 2075/02 R	*)	199	XQ 3427 B	249	XQ 4187 R	
XQ 2075/03 R	*)	199	XQ 3427 G	249	XQ4167 K	295
			XQ 3427 R	249	Fokussier- und Able	nkeinheiten
XQ 2172/02		209				
XQ 2172/03		209	XQ 3440	259	AT 1109/01 S	309
XQ 2172/03 X		209	XQ 3440 B	259	AT 1109/01 T	309
			XQ 3440 G	259	AT 1109/10 S	313
XQ 2427	*)	219	XQ 3440 L	259	AT 1109/10 T	313
XQ 2427 B	*)	219	XQ 3440 R	259	AT 1109/16 S	317
XQ 2427 G	*)	219	XQ 3443 R	269	AT 1109/16 T	317
XQ 2427 R	*)	219	XQ 3445 R	269	AT 1116 S	321
XQ 2428	*)	229			AT 1126/03 S	325
XQ 2428 B	*)	229	XQ 3457	279	AT 1126/03 T	325
XQ 2428 G	*)	229	XQ 3457 B	279		
XQ 2428 R	*)	229	XQ 3457 G	279	AT 1130/02 S	329
-	·		XQ 3457 R	279	AT 1130/02 T	329
XQ 3070/02		231			KV 4722	333
XQ 3070/02 B		231	XQ 3467	287		
XQ 3070/02 G		231	XQ 3467 B	287	KV 4736-9 AS	335
XQ 3070/02 R		231	XQ 3467 G	287	KV 4736-9 AT	335
• • • • • • • • • • • • • • • • • • • •		- ··			KV 4780	339

^{*)} Nicht für Neuentwicklungen

^{19. 9. 1988} 12

PLUMBICON® - Kameraröhren

Fokussier- und Ablenkeinheiten

Тур	Durchmesser	Ausführung	Anwendungsbereich	Ausführung der fotoleitenden Schicht	Anwendung für Fernseh- kameras
	2/3" 1" 30 mm	LOC HS	Medi- Stu- Indu- zin dio strie	S HA ER ER (IR)	SW Farbe RGBL
XQ 1022	•		•	•	
XQ 1070 XQ 1070/01 XQ 1070/02 XQ 1071 XQ 1071/01	•			•	• • • • • • • • • • • • • • • • • • • •
XQ 1072	•		•	•	
XQ 1073	•		•	•	•
XQ 1073 X	•		•	•	
XQ 1074	•		•	•	•
XQ 1075 XQ 1075/02 XQ 1076	• • •		•	• • •	•
XQ 1410 XQ 1413 XQ 1415	•		•	•	• • • • •
XQ 1427 XQ 1428	•		•	• 4	
XQ 1500 XQ 1503 XQ 1505	• • •		•	•	• • • • • •
XQ 1520 XQ 1523 XQ 1525	•		•	•	• • • • •
XQ 2070/02 XQ 2070/03	•		•	•	• • • • •
XQ 2073/02 XQ 2073/03	•		•	•	•
XQ 2075/02 XQ 2075/03	•		•	•	•

Ausführung der fotoleitenden Schicht

Grenzwellenlänge ca. 650 nm

S = Standard HA = mit hoher Auflösung ER = mit erweiterter Rotempfindlichkeit

ca. 650 nm ca. 900 nm

ER (IR) = mit erweiterter Rotempfindlichkeit und

IR-Sperrfilter auf der Antireflexionsplatte ...ca. 750 nm

■ fotoleitende Schicht HA oder ER, ▲ fotoleitende Schicht ER nur für R-Röhren

6. 10. 1988

14

Fokussierung	Ablenkung	Anti-	Licht-	ACT-	Dioden-	keramischer	H	Ieizun	g
magne- elektro- tisch statisch	magne- elektro- tisch statisch	refle- xions- platte	leiter	Elektr system	elektroden- system für DBC	Zentrierring für genaue optische	6,3	V	8,7 V
dischi statisch	liscii statiscii	prane			MIT DBC	Anpassung	190 mA	95 mA	53 mA
•	•						•		
•	•	•						•	
		•	•	:		•		•	
•	•	•						•	
•	•							•	
•	•	•						•	
•	•	•	7					•	
•	•	•						•	****
•			•			•			
•	•	•	•				•		
	•						•		
•	•	•						•	
•	•	•	•	•		•	•		
•	•		•	:			•		
•	•	•	•	•			•		
	•								
•	•	•	•		•	•		•	
•	•	•	•		•	•		•	
•	•	•	•		•	•		•	
•	•	•	•		•			•	

Fortsetzung siehe nächste Seite

6. 10. 1988 **15**

Тур	Durchmesser	Ausführung	Anwendungsbereich	Ausführung der fotoleitenden Schicht	Anwendung für Fernseh- kameras
	2/3" 1" 30 mm	LOC HS	Medi- Stu- Indu- zin dio strie	S HA ER ER (IR)	SW Farbe RGBL
XQ 2172/02 XQ 2172/03 XQ 2172/03 X	•		•	•	
XQ 2427 XQ 2428	:		•	• 4	= 4=0
XQ 3070/02 XQ 3073/02 XQ 3075/02	•	•	•	•••	• • • •
XQ 3427	•	• .	•	• 🛦	- 4
XQ 3440 XQ 3443 XQ 3445	•	•	•	•••	• • • • •
XQ 3457	•	•	•	• •	• 4••
XQ 3467	•		•	• 4	- 450
XQ 4187	• .	• •	•	• 🛦	• 4••

Ausführung der fotoleitenden Schicht

Grenzwellenlänge

S HA = Standard

ca. 650 nm ca. 650 nm

= mit hoher Auflösung = mit erweiterter Rotempfindlichkeit

ER (IR)

= mit erweiterter Rotempfindlichkeit und

ca. 900 nm

IR-Sperrfilter auf der Antireflexionsplatte ca. 750 nm

■ fotoleitende Schicht HA oder ER, ▲ fotoleitende Schicht ER nur für R-Röhren

6. 10. 1988

16

Fokussierung magne-elektro- tisch statisch	Ablenkung magne- elektro- tisch statisch	Anti- refle- xions- platte	Licht- leiter	ACT- Elektr system	Dioden- elektroden- system für DBC	keramischer Zentrierring für genaue optische	6,3	leizun V	g 8,7 V
usch statisch	tisch statisch	pratte			IUI DBC	Anpassung	190 mA	95 mA	53 mA
•	•	•	•		•	•	• •		
•	•	•	•		•		•		
•	•	•			•			•	
•	•	•	•		•	•		•	
•	•	•			•	•		•	
-							_		
							•		
•	•	•			•			•	
•	•	•						•	
•	•	•			•				•

Röhren- durch- messer	Тур	selek- tiertes Tripel	Video- Vorver- stärker	Zen spulen	trier- magnete	Röhre vom rückwärtigen Ende einsetzbar
30 mm (1 1/4 ")	AT 1130/02 S AT 1130/02 T	•	•	•		•
25 mm	AT 1116 S			•		
(1 ")	AT 1126/03 S		•	•		•
	AT 1126/03 T	• .	•	•		•
	AT 1109/01 S				•	•
	AT 1109/01 T	•			•	•
18 mm	AT 1109/10 S		•		•	•
(2/3 ")	AT 1109/10 T	•	•		•	•
	AT 1109/16 S		•	•		•
	AT 1109/16 T	•	•	•		•
	KV 4722				•	
	KV 4736-9 AS 1)				•	
	KV 4736-9 AT 2)	•			•	
	KV 4780 3)				•	

¹⁾ für MS-LOC-Röhren mit magnetischer Fokussierung und elektrostatischer Ablenkung

²⁾ für HS-LOC-Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung

³⁾ für Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung

Indukti Horizontal-	Vertikal-	Horizontal-		Fokussier-	Strom (S Horizontal- spule	pitze-Spitze Vertikal- spule	e-Wert) Fokussier- spule
spule mH	spule mH	spule Ω	spule Ω	spule Ω	mA	mA	mA
0,84	5,5	2,1	14,5	1125	180	55	35
0,79	28	2,2	62	140	280	34	108
0,80	4,4	2,2	10	1300	230	80	30
0,91	2,8	3,8	12,7	60	260	114	120
0,91	2,8	3,8	12,7	60	230	104	115
0,91	2,8	3,8	12,7	60	230	104	115
				22,7			201
1,15	2,41	4,5	15,4	99	185	95	20
1,17	5,3	5,03	33		175	30	

Formelzeichen Erläuterungen

FORMELZEICHEN

1. Formelzeichen der Elektroden und Elektrodenanschlüsse

A, a Anode, Signalelektrode

F, f Heizfaden

G, g Gitter

i.V. innere Verbindung, darf nicht beschaltet werden

K, k Katode

M, m äußere Abschirmung

S, s innere Abschirmung

Bei Anwendung der Elektrodenzeichen als Indizes für Spannungen, Ströme und Leistungen kennzeichnen Großbuchstaben Größen vom Wert Null aus gemessen, Kleinbuchstaben Werte vom arithmetischen Mittelwert aus gemessen; dieser Wert wird häufig als Arbeitspunkt bezeichnet.

Bei Anwendung als Indizes für Widerstände und Kapazitäten usw. kennzeichnen Großbuchstaben Gleichwerte bzw. Großsignalwerte, Kleinbuchstaben kennzeichnen Wechselwerte bzw. Kleinsignalwerte.

Die Gitter werden von der Katode ausgehend numeriert, z.B. G1, G2.

Gleichwertige Elektroden einer Röhre mit zwei oder mehreren gleichen Systemen werden durch eine entsprechende Anzahl von Strichen unterschieden, z.B. G' und G". Mit der höchsten Strichzahl wird das System gekennzeichnet, bei dessen Zuführungen sich der Sockelstift mit der niedrigsten Nummer befindet. Mehreren Systemen gemeinsame Sockelstifte werden hierbei außer Betracht gelassen.

2. Formelzeichen für Spannungen und Ströme

Bezugspunkt für Elektrodenspannungen ist im allgemeinen die Katode. Das Formelzeichen enthält dann im Index nur das Formelzeichen der betreffenden Elektrode.

Wird nicht die Spannung einer Elektrode gegen Katode, sondern gegen eine andere Elektrode angegeben, so erscheinen die Formelzeichen beider Elektroden im Index.

Bei der Angabe der Spannung zwischen Heizfaden und Katode wird ebenfalls der Index K für Katode hinzugefügt, erforderlichenfalls mit Kennzeichnung der Polarität des Heizfadens.

 $\mathbf{U}_{\mathtt{A}}$ Anodenspannung, Signalelektrodenspannung

U_R Speisespannung

 $\mathbf{U}_{\mathbf{F}}$ Heizspannung

 $\mathbf{U}_{\mathbf{FK}}$ Spannung zwischen Heizfaden und Katode

Formelzeichen

2. Formelzeichen für Spannungen und Ströme (Fortsetzung)

3. Formelzeichen für Widerstände und Kapazitäten

R. äußerer Widerstand in einer Anodenleitung

-A	auditer withersound in einer Anodenierbung
R _{FK}	äußerer Widerstand zwischen Heizfaden und Katode
R_{G}	äußerer Widerstand in einer Gitterleitung
R_{K}	äußerer Widerstand in einer Katodenleitung
R ₂	Arbeitswiderstand im Anodenkreis
c	Röhrenkapazität
с	äußere Kapazität
c x	Kapazität der Elektrode X gegen alle übrigen Elektroden und leitenden Teile der Röhre
c _x	

Bei Kapazitäten zwischen zwei oder mehreren Elektroden sind alle betreffenden Elektroden im Index vermerkt, z.B. cgk, cg3g5/m usw. Alle übrigen Elektroden und leitenden Teile, die nicht mit einer der betreffenden Elektroden verbunden sind, sind hierbei geerdet.

4. Formelzeichen verschiedener Größen

```
B ...... Bandbreite
E ..... Beleuchtungsstärke
f ..... Frequenz
L ..... Leuchtdichte
n ..... Brechungsindex
s ..... spektrale Empfindlichkeit
S ..... fotometrische Empfindlichkeit
th .... Vorheizzeit
Z<sub>FK</sub> .... Impedanz zwischen Heizfaden und Katode
γ ..... γ-Wert, Steigung der Übertragungskennlinie
8 kolb ... Kolbentemperatur
9 S .... Lagerungstemperatur
9 U .... Umgebungstemperatur
λ ..... Frontplattentemperatur
λ ..... Wellenlänge
φ ..... Reflexionsfaktor
```

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN

VON KAMERARÖHREN

1	411~	
1.	ALIE	emeines

- 1.1 Aufbau und Wirkungsweise
- 1.1.1 Elektrodensystem
- 1.1.2 Ablenkspulen
- 1.1.3 Speicherplattensystem
- 1.2 Konstruktionsmerkmale
- 1.2.1 Getrenntes Feldnetz
- 1.2.2 Elektrostatische Fokussierung
- 1.2.3 ACT-Elektrodensystem
- 1.2.4 Dioden-Elektrodensystem
- 1.3 Auswahlgesichtspunkte
- 1.3.1 Empfindlichkeit
- 1.3.2 Spektrale Empfindlichkeit
- 1.3.3 Auflösung
- 1.3.4 Trägheit
- 1.4 Speicherschichtausführungen
- 1.4.1 PLUMBICON R -Kameraröhre
- 1.5 Allgemeine Hinweise zum Betrieb von Kameraröhren und zur Kamerakonstruktion

Erläuterungen

- 2. PLUMBICON ® -Kameraröhren
- 2.1 Eigenschaften der fotoleitenden Schicht
- 2.1.1 Empfindlichkeit
- 2.1.2 Spektrale Empfindlichkeit
- 2.1.3 Auflösung
- 2.1.4 Trägheit
- 2.1.5 Streulicht
- 2.1.6 ACT-Elektrodensystem, ACT-Betrieb und Spitzlichtverarbeitung
- 2.1.7 Dioden-Elektrodensystem, DBC-Betrieb und Spitzlichtverarbeitung
- 2.1.8 LOC-PLUMBICON ® -Kameraröhren
- 2.1.9 Einbrennen
- 2.1.10 Temperaturabhängigkeit
- 2.2 Betriebshinweise
- 2.3 Meßbedingungen und Spezifikationen für maximal zulässige Bildfehler bei PLIMBICON -Kameraröhren
- 2.3.1 Meßbedingungen
- 2.3.2 Definitionen
- 2.3.3 Anzahl, Größe, Lage und Modulationstiefe von Bildfehlern
- 2.4 Trägheitsverminderung durch feste oder einstellbare Vorbelichtung bei 30 mm PLUMBICON B-Kameraröhren
- 2.4.1 Einstellbare Vorbelichtung (über den Pumpstutzen)
- 2.4.2 Fest eingestellte Vorbelichtung (über den Pumpstutzen)
- 2.4.3 Vorbelichtung über das optische System
- 2.4.4 Betrieb ohne Vorbelichtung
- 2.4.5 Hinweise zum Betrieb der Vorbelichtungslampe 56 106
- 2.5 Durchlässigkeitskurven der Filter für PLUMBICON®-Kameraröhren

1. Allgemeines

1.1 Aufbau und Wirkungsweise

Ein im Fernsehen zu übertragendes optisches Bild wird mit Hilfe eines Objektivs auf der Frontplatte der Kameraröhre abgebildet.

In der fotoleitenden Schicht auf der Frontplatte erfolgt die Umsetzung des optischen Bildes in ein elektrisches Ladungsbild.

Durch einen feinen Elektronenstrahl wird das Ladungsbild zeilenweise abgetastet und in ein elektrisches Signal umgewandelt.

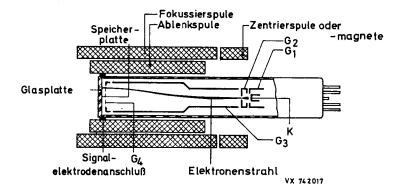


Abb. 1.1

Die Abb. 1.1 zeigt den schematischen Aufbau einer Kameraröhre des Vidikon- bzw. Plumbicon-Typs mit magnetischer Fokussierung und Ablenkung. Der Aufbau besteht im wesentlichen aus drei Teilen:

1.1.1 Elektrodensystem

Das Elektrodensystem besitzt eine indirekt geheizte Katode, ein Gitter zur Steuerung des Strahlstromes, eine Beschleunigungselektrode \mathbf{G}_2 , die auch zur Begrenzung des Strahlquerschnittes dient. Nach dem Verlassen des Gitters \mathbf{G}_2 durchläuft der Elektronenstrahl die lange, zylindrische Elektrode \mathbf{G}_3 , die am schirmseitigen Ende durch die Netzelektrode \mathbf{G}_4 abgeschlossen ist. Die Netzelektrode \mathbf{G}_4 erzeugt ein gleichförmiges Bremsfeld vor der Speicherplatte.

Erläuterungen

1.1.2 Ablenkspulen

Die Ablenkspulen erzeugen die erforderlichen Magnetfelder, um mit einem Elektronenstrahl die fotoleitende Schicht der Speicherplatte zeilenweise abtasten zu können.

Die Fokussierspule erzeugt ein axiales Magnetfeld, das bei entsprechender Spannung an ${\bf G}_3$ die Elektronen in einer Schraubenlinie auf die Speicherplatte fokussiert.

Die Fokussierung erfolgt durch Einstellung der Spannung an ${\tt G}_3$ und/oder durch Verändern des Fokussierspulenstromes.

Der Abtaststrahl soll senkrecht auf die Speicherplatte auftreffen. Um dieses in der Mitte der abgetasteten Fläche zu erreichen, wird der Strahl mit Hilfe zweier Zentrierspulen, die ein transversales Magnetfeld erzeugen, parallel zur Röhrenachse zentriert.

An Stelle der Ablenkspulen können auch kleine Dauermagnete verwendet werden.

1.1.3 Speicherplattensystem

Die folgenden Abb. 1.2 und 1.3 zeigen schematisch den Aufbau und die Wirkungsweise der Speicherplattenanordnung.

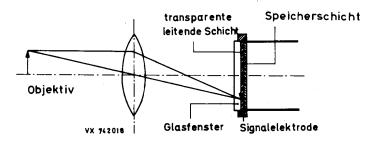


Abb. 1.2

Das System besteht von außen gesehen aus einem optisch planen Glasfenster, auf dessen Innenseite eine transparente, leitende Schicht aufgebracht ist. Diese Schicht ist elektrisch mit dem Signalelektrodenanschluß verbunden, von dem über einen Federkontakt das Videosignal abgenommen wird. Auf der leitenden Schicht wiederum ist als eigentliches Speicherelement eine dünne, fotoelektrisch leitende Schicht aufgebracht. Diese Schicht besitzt bei Dunkelheit einen hohen spezifischen Widerstand, der aber mit steigender Beleuchtungsstärke abnimmt.

Zur Verdeutlichung der Wirkungsweise kann man sich die Speicherschicht unterteilt denken in viele einzelne, voneinander unabhängige Speicherelemente, die mit der gleichen Anzahl von Bildelementen korrespondieren. Ein solches Speicherelement denke man sich als Parallelschaltung einer kleinen Kapazität ce und eines Fotowiderstandes re, deren eine Seite an die transparente leitende Schicht angeschlossen ist und deren andere Seite durch den Elektronenstrahl abgetastet wird.

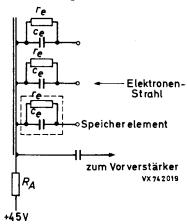


Abb. 1.3

Legt man die Signalelektrode über einen Arbeitswiderstand $R_{\tilde{A}}$ an eine Spannung von beispielsweise + 45 V und tastet die Speicherplatte mit dem Elektronenstrahl ab, so wird deren Oberfläche annähernd auf Katodenpotential stabilisiert. Es stellt sich eine Potentialdifferenz über der fotoleitenden Schicht ein, d.h. jede Elementarkapazität wird entsprechend dem Signalelektrodenpotential aufgeladen. Dieser Vorgang wird als Katodenpotential-Stabilisierung bezeichnet. Bei Dunkelheit stellt die fotoleitende Schicht nahezu einen Isolator dar, so daß nur eine sehr geringe Entladung über $r_{\rm e}$ zwischen aufeinanderfolgenden Abtastungen auftritt. Die ursprüngliche Aufladung wird durch den Abtaststrahl wieder hergestellt, und der resultierende Strom an der Signalelektrode bildet den Dunkelstrom.

Wenn nun ein optisches Bild auf der Speicherplatte abgebildet wird, wird infolge der Beleuchtung das Material der Speicherschicht fotoelektrisch leitend, und die einzelnen Speicherelemente werden entsprechend der vorhandenen Beleuchtungsstärke teilweise entladen. D.h.
auf der gesamten Speicherplatte entsteht eine Ladungsverteilung, die
der Helligkeitsverteilung des Bildes entspricht.

Durch den abtastenden Elektronenstrahl werden die Speicherelemente wieder auf Katodenpotential aufgeladen, und der daraus resultierende

Erläuterungen

kapazitive Strom über die Signalelektrode verursacht einen Spannungsabfall am Arbeitswiderstand $R_{\mathbf{A}}$. Diese Spannung geht als Videosignal zum Vorverstärker.

Eine Kameraröhre ist stabilisiert, wenn die Größe des Strahlstroms ausreicht, alle Speicherelemente, auch bei Spitzlichtern, wieder auf Katodenpotential aufzuladen.

1.2 Konstruktionsmerkmale

1.2.1 Getrenntes Feldnetz

Die allgemein verwendeten Fokussierspulen haben in der Nähe der Speicherplatte keinen idealen Feldverlauf. Dadurch entstehen Landefehler der Elektronen des Abtaststrahls, die unter anderem Auflösungsund Verzeichnungsfehler am Bildrand, sowie Signalungleichmäßigkeit hervorrufen. Diese Landefehler können durch elektronenoptische Mittel korrigiert werden.

Eine Linse wird für diesen Zweck durch Anordnung und Betriebsdaten der Zylinderelektrode \mathbf{G}_3 und der Netzelektrode \mathbf{G}_4 gebildet. Die Netzelektrode soll gegenüber der Zylinderelektrode positiv sein. Die Wirkung der Linse wird von der Potentialdifferenz zwischen \mathbf{G}_3 und \mathbf{G}_4 bestimmt. Die optimale Potentialdifferenz ist von der Konstruktion des Elektrodensystems und dem verwendeten Spulensatz abhängig.

Alle in diesem Handbuch aufgeführten Plumbicon-Röhren verfügen über diese getrennte Feldnetzkonstruktion.

Im Vergleich zu Kameraröhren mit verbundenem Feldnetz (Zylinderelektrode \mathbf{G}_3 und Netzelektrode \mathbf{G}_4 sind intern verbunden) zeigen Röhren mit herausgeführtem Feldnetz bessere Auflösung als Röhren mit intern verbundener Zylinder- und Netzelektrode, weil sich im feldfreien Raum in der Nähe der Netzelektrode Raumladungen bilden können, welche die Auflösung nachteilig beeinflussen und auch zu geometrischen Verzeichnungen führen können. Da diese Raumladungen von der Höhe des Strahlstromes abhängig sind, können Röhren mit getrenntem Feldnetz mit einem höheren Strahlstrom betrieben werden als Röhren mit verbundenen Gittern 3 und 4.

1.2.2 Elektrostatische Fokussierung

Fokussierung und Ablenkung können bei entsprechender Röhrenkonstruktion auch mit elektrostatischen Mitteln realisiert werden. Die folgende Abb. 1.4 zeigt den schematischen Aufbau einer Kameraröhre mit elektrostatischer Fokussierung und magnetischer Ablenkung.

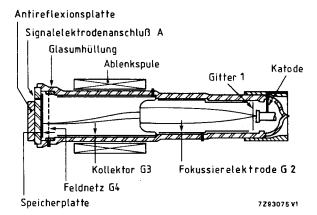


Abb. 1.4

Wie vorhergehend beschrieben, besitzt auch diese Röhre ein Elektrodensystem mit indirekt geheizter Katode, einem Steuergitter \mathbf{G}_1 , einer Fokussierelektrode \mathbf{G}_2 , einer zylinderförmigen Elektrode \mathbf{G}_3 und einer Netzelektrode \mathbf{G}_4 .

Falls keine Fokussierspule verwendet wird, ist die Leistungsaufnahme bei Betrieb mit elektrostatischer Fokussierung deutlich niedriger.

1.2.3 ACT-Elektrodensystem

Um Spitzlichter beherrschen zu können, bei denen Stabilisierung mit normalem Strahlstrom nicht zu erreichen ist, wurde eine spezielle Elektronenkanone mit ACT-Elektroden (Anti-Comet-Tail), entwickelt. Eine kurze Beschreibung dieses ACT-Systems ist unter 2.1.6 bei den PLUMBICON®-Kameraröhren zu finden.

1.2.4 Dioden-Elektrodensystem

Ein Dioden Elektrodensystem wird in Bezug zur Katode mit einer positiven Spannung an Gitter 1 betrieben. Die sich hieraus ergebende Veränderung des Elektronenstrahls erhöht die Strahlstromreserve, die zur Verarbeitung von Spitzlichtern eingesetzt werden kann.

Eine kurze Beschreibung dieses Dioden-Elektrodensystems ist unter 2.1.7 bei den PLUMBICON $^{\widehat{\mathbb{R}}}$ -Kameraröhren zu finden.

Erläuterungen

1.3 Auswahlgesichtspunkte

1.3.1 Empfindlichkeit

Die fotometrische Empfindlichkeit S einer Kameraröhre wird aus dem sich bei gleichmäßiger Beleuchtung der abzutastenden Fläche A mit der Beleuchtungsstärke $\mathbf{E_A}$ $(\mathrm{lm/m}^2)$ ergebenden mittleren Signalstrom $\mathbf{I_A}$ definiert.

$$S = \frac{I_A}{A \cdot E_A} \quad (\mu A / 1m)$$

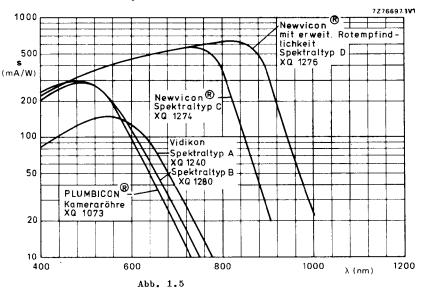
Der Signalstrom $\mathbf{I}_{\hat{\mathbf{A}}}$ einer Kameraröhre, bei der die fotoleitende Schicht gleichmäßig beleuchtet wird, ergibt sich aus:

$$I_A = \alpha \cdot E \cdot A$$

$$\mathbf{mit} \ \alpha = \frac{100}{100-B}$$

$$\beta$$
 = Gesamtaustastzeit (in %)
(beim CCIR-System ist α = 1,3)

Die Beleuchtungsstärke der Speicherplatte E_A steht bei Schwarzweiß-Kameras in folgender Beziehung zur Szenenbeleuchtung E_{SZ}:


$$E_{A} = E_{SZ} \frac{\varphi \cdot \tau}{4 A^{2} (M+1)^{2}}$$

- mit Ψ Reflexionsfaktor der Szene (entweder Mittelwert oder Wert des interessierenden Bildausschnittes)
 - T Durchlässigkeit der Linse
 - A Apertur der Linse
 - M Abbildungsmaßstab der Linse

Die Röhrentypen für die einzelnen Kanäle einer Farbkamera folgen einer ähnlichen Beziehung, bei der die unterschiedlichen Komponenten des gesamten Systems berücksichtigt werden müssen. Die Empfindlichkeit S einer Kameraröhre mit linearer Übertragungskennlinie ($\gamma=1$) wird im allgemeinen in $\mu A/\text{Lumen}$ ($\mu A/\text{lm}$) angegeben. Der auf die abgetastete Fläche fallende Lichtstrom ist E·A mit E als Beleuchtungsstärke (in lx) und A als abgetastete Fläche (in m^2)

1.3.2 Spektrale Empfindlichkeit

Die folgende Abb. 1.5 zeigt die spektrale Empfindlichkeit verschiedener Kameraröhren. Die Kennlinien sind vereinfacht dargestellt. Detailinformationen sind dem entsprechenden Datenblatt zu entnehmen.

Angegeben wird die spektrale Empfindlichkeit in mA/W. Die Beziehung zwischen der spektralen Empfindlichkeit s (in mA/W) und der fotometrischen Empfindlichkeit S (in µA/lm) bei einer gegebenen Wellenlänge

ist:
$$s(\lambda) = 0,680 V(\lambda) S(\lambda)$$

mit V (λ) als relative spektrale Empfindlichkeitsverteilung eines durchschnittlichen menschlichen Auges (Spitzenwert 1 bei 555 nm).

1.3.3 Auflösung

Die Auflösung einer Kameraröhre wird durch ihre typische Modulations-Übertragungsfunktion angegeben, die Aufschluß über das Übertragungsverhalten der Röhre bei der Darstellung von Bildern mit senkrechten schwarzen und weißen Balken gleichen Abstandes gibt. Solch ein Balkenmuster kann durch die zugehörige Videofrequenz, bzw. durch die zugehörige Anzahl von Zeilen (Zeilenzahl pro Bildhöhe) beschrieben werden.

Im CCIR-System (52 µs Abtastzeit) entspricht eine Videofrequenz von 5 MHz etwa 400 Zeilen. Ein Balken-Testbild kann auch durch die Anzahl der Linienpaare pro mm (Lp/mm) angegeben werden. Dieses ist die Angabe der Anzahl schwarzer und weißer Balken pro mm.

400 Zeilen entsprechen bei

Röhrendurchmesser und	_	Lp/mm
30 mm	12,84 x 17,12 mm ²	15,6
1"	9,6 x 12,8 mm ²	20,8
2/3"	6,6 x 8,8 mm ²	30,3

Der Grobkontrast bei 40 Zeilen (entsprechend 0,5 MHz) wird als 100 % betrachtet und die noch vorhandene Modulationstiefe bei 400 Zeilen, entsprechend 5 MHz, als Prozentwert davon angegeben.

Bei Röhren mit geringerer Auflösung (2/3"-Röhren) erfolgt die Angabe der Modulationstiefe bei 320 Zeilen, entsprechend 4 MHz.

Die in diesem Handbuch gemachten Angaben zur Modulationstiefe berücksichtigen den leichten Kontrastverlust bei Verwendung eines Objektivs mit Blende 5.6.

Der für Messungen zu verwendende Videoverstärker muß bis über 5 MHz einen linearen Verlauf haben.

1.3.4 Trägheit

Es werden bei Kamerarohren zwei Trägheitsarten unterschieden, nämlich Fotoleitungs- oder Schichtträgheit und Umladeträgheit.

Zwei Trägheitsmessungen werden im allgemeinen durchgeführt: Abfallträgheit und Anstiegsträgheit.

Die Abfallträgheit wird nach einer Beleuchtung der Speicherschicht von min. 5 s gemessen. Die Restsignalwerte werden in Prozent vom Anfangswert angegeben.

Die Messungen erfolgen 60 bzw. 200 ms nach Abschaltung der Beleuchtung.

Die Anstiegsträgheit wird nach 10 s Dunkelheit gemessen. Der Aufbauwert wird in Prozent vom Weißwert angegeben. Die Messungen erfolgen 60 bzw. 200 ms nach dem Einschalten der Beleuchtungsquelle.

1.4 Speicherschichtausführungen

1.4.1 PLUMBICON ® - Kameraröhre: Bleioxid-Speicherschicht

Die fotoleitende Schicht hat die Leiterstruktur einer PIN-Diode mit extrem niedrigem Dunkelstrom. Ihr lineares Übertragungsverhalten, hohe Empfindlichkeit, sehr kleine fotoleitende Trägheit, gute Auflösung und sehr geringe Einbrenngefahr machen sie besonders für den Einsatz in Farbfernsehkameras geeignet. Die Absorption von Bleioxid reicht bis 650 nm.

Durch Zusatz eines kleinen Schwefelanteils in das Schichtmaterial kann die spektrale Empfindlichkeit in Richtung IR-Bereich verschoben werden (erweiterte Rotempfindlichkeit).

1.5 Allgemeine Hinweise zum Betrieb von Kameraröhren und zur Kamerakonstruktion

- 1.5.1 Der Signalelektrodenanschluß soll mit einem Federkontakt ausgerüstet sein, der Bestandteil der Fokussierspule ist. Der Federkontakt muß am Signalelektrodenanschluß anliegen.
- 1.5.2 Die Ablenkschaltungen müssen für konstante Abtastgeschwindigkeiten ausgelegt sein, um eine gute Signalgleichmäßigkeit zu erhalten. Da das Signal zur Abtastgeschwindigkeit proportional ist, führt eine Änderung der Abtastgeschwindigkeit zu Fehlern im Ausgangssignal.
- 1.5.3 Eine elektrostatische Abschirmung der Signalelektrode ist erforderlich, um Überlagerungseffekte im Bild zu vermeiden.
 Wirksame Abschirmung läßt sich durch geerdete Abschirmungen am Frontplattenende der Fokussierspule und auf der Innenseite des Ablenkjochs erreichen.
- 1.5.4 Die Polung der Fokussierspule muß so sein, daß ein nordsuchender Pol (südsuchender Pol für 30 mm Kameraröhren) eines Indikators zum bildseitigen Ende der Spule zeigt, wenn der Indikator sich außerhalb der Fokussierspule am bildseitigen Ende befindet.
- 1.5.5 Die in den Datenblättern angegebene abzutastende Fläche der fotoleitenden Schicht soll stets voll ausgenutzt werden.

 Abtastung einer kleineren Fläche oder Fehler in der Ablenkung, auch für kurze Zeit, können zu Rastereinbrand führen, der bei späterer Abtastung des vollen Formats sichtbar ist.
- 1.5.6 Während des Bild- und Zeilenrücklaufs darf der Elektronenstrahl nicht auf die Speicherplatte auftreffen, da sonst Bildinformation verloren geht. Dieses kann entweder durch negative Austastimpulse

an \mathbf{G}_1 oder durch entsprechend positive Austastimpulse an der Katode erreicht werden.

1.5.7 Röhren mit getrenntem Feldnetz beinhalten die Möglichkeit einer Verbesserung der Auflösung in den Bildecken. Dieses geschieht durch entsprechend geformte Spannungsimpulse mit Zeilen- und Bildfrequenz an der Fokussierelektrode (dynamische Fokussierung).

Die Auflösung der meisten Kameraröhren mit fotoleitender Schicht nimmt mit Erhöhung der Spannung an G₃ und G₄ zu. Es ist aber zu berücksichtigen, daß eine Betriebsart mit höheren Spannungen auch höhere Ablenk- und Fokussierleistung erfordert (Wärmeentwicklung).

1.5.8 Bei Serienspeisung darf die Heizspannung einer Röhre 9,5 V (Effektivwert) beim Einschalten nicht überschreiten.

Zum Schutz der Röhre ist daher jeder Heizfaden mit einer Zenerdiode zu beschalten.

Bei Einsatz einer Katodenstromsteuerung zur Strahlstromstabilisierung ist eine Vorheizzeit von min. 1 min sicherzustellen, bevor ein Katodenstrom fließt.

1.5.9 Behandlung verbrauchter und defekter Kameraröhren

Kameraröhren mit fotoleitender Schicht enthalten in geringen Mengen toxische Stoffe (Schwermetall- und Bariumverbindungen). Bei der Vernichtung verbrauchter bzw. zerbrochener Röhren ist mit angemessener Sorgfalt vorzugehen, um Personenschäden (Schnittverletzungen, Einatmen von Partikeln) zu vermeiden.

2. PLUMBICON ® -Kameraröhren

2.1 Eigenschaften der fotoleitenden Schicht

Die fotoleitende Schicht von Plumbicon-Röhren besteht aus Bleioxyd. Röhren mit erweiterter Rotempfindlichkeit haben einen kleinen Schwefelanteil als Schichtzusatz.

2.1.1 Empfindlichkeit

Da bei Plumbicon-Röhren zwischen Signalstrom und Lichtstrom Proportionalität besteht, kann die Empfindlichkeit der Schicht durch den Betrag des Signalstroms (in μA) pro Lumen angegeben werden. Die Empfindlichkeit einer Standard-Schicht (ohne erweiterte Rotempfindlichkeit) gemessen mit einer Wolframlampe (Farbtemperatur 2856 K) beträgt etwa 400 $\mu A/lm$.

Niedrige Signalelektrodenspannung verringert die Empfindlichkeit. Bei der empfohlenen Spannung von 45 V an der Signalelektrode ist die Empfindlichkeit nahe der Sättigung. Sie nimmt bei Erhöhung der Signalelektrodenspannung nur noch wenig zu.

Der Signalstrom einer Röhre ist bei gleichbleibender Szenenbeleuchtung nur von der abgetasteten Fläche abhängig. Es zeigt sich, daß Röhren mit linearer Übertragungskennlinie, aber unterschiedlichen Durchmessern, unter der Voraussetzung, daß Brennweite und Bildwinkel gleich sind, die gleiche Empfindlichkeit haben.

2.1.2 Spektrale Empfindlichkeit

Die folgende Abb. 2.1 zeigt die spektrale Empfindlichkeit verschiedener 30 mm Plumbicon-Röhren.

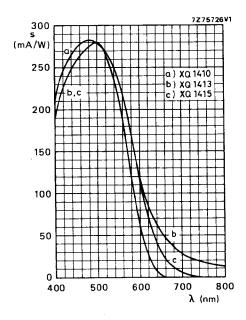


Abb. 2.1

Kurve (a) zeigt die hoch auflösende Standard-Schicht, wie sie z.B. in der XQ 1410 verwendet wird. Kurve (b) gehört zur Speicherschicht mit erweiterter Rotempfindlichkeit wie z.B. in der XQ 1413. Für gute Farbwiedergabe liegt die Empfindlichkeit der XQ 1413 zu weit im infraroten Bereich. Es ist daher zu empfehlen, das Farbverhalten durch Verwendung eines Infrarot-Sperrfilters zu korrigieren.

In der Plumbicon-Röhre XQ 1415 ist die auf die Frontplatte geklebte Anti-Reflexionsplatte mit einem derartigen Filter ausgerüstet. Kurve (c) zeigt die spektrale Empfindlichkeit einer Röhre mit erweiterter Rotempfindlichkeit und aufgedampftem Infrarot-Sperrfilter.

2.1.3 Auflösung

Die Auflösung einer Speicherschicht für erweiterte Rotempfindlichkeit ist höher als bei einer Ausführung mit Standardschicht, wie sie z.B. in der XQ 1020 *) verwendet wird.

Die übrigen Typen haben eine hochauflösende Speicherschicht, die nahezu die Auflösung einer Schicht für erweiterte Rotempfindlichkeit erreicht.

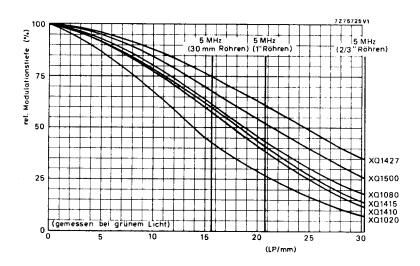


Abb. 2.2

^{*)} Die Kameraröhren der Serien XQ 1020 und XQ 1410 wurden durch die Serien XQ 1080 und XQ 1500 ersetzt.

Die Abb. 2.2 zeigt die Modulationsübertragungsfunktion verschiedener Plumbicon-Röhren als Funktion der Anzahl Linienpaare pro mm.

Die vertikalen gestrichelten Linien im Diagramm entsprechen 400 Zeilen für 30 mm-(15,6 Lp/mm), 1"-(20,8 Lp/mm) und 2/3"-(30,3 Lp/mm) Röhren. Es ist ersichtlich, daß bei 400 Zeilen (ca. 5 MHz) die Auflösung mit Zunahme des Speicherplattendurchmessers zunimmt (Vergrößerung der abgetasteten Fläche).

Für eine gegebene Anzahl von Lp/mm hat die kleinste Röhre die höchste Auflösung.

Röhrentyp

XQ 1020

- Standard-Speicherschicht

XQ 1415, XQ 1427

- Speicherschicht mit erweiterter Rotempfindlichkeit

XQ 1080, XQ 1410, XQ 1500 - Speicherschicht mit hoher Auflösung

Durch ein modifiziertes Elektrodensystem ist die Auflösung der Röhre XQ 1500 beträchtlich höher gegenüber XQ 1080.

2.1.4 Trägheit

Die Schichtträgheit einer Bleioxyd-Schicht ist praktisch vernachlässigbar. Die Umladeträgheit von Plumbicon-Röhren ist bei normalem Signalstrom, durch eine relativ dicke fotoleitende Schicht (kleine Kapazität durch 10...18 µm, abhängig vom Typ der Röhre) sehr klein. Bedeutung bekommt die Umladeträgheit bei geringer Szenenbeleuchtung, wenn nur ein kleiner Signalstrom fließt. Diese Trägheitserscheinung beruht auf Speicherkapazität und Strahlwiderstand. Bei Einsatz einer Vorbelichtung nimmt der effektive Strahlwiderstand ab und vermindert damit die Umladeträgheit.

Die folgende Abb. 2.3 zeigt den Verlauf der Abfallträgheit bei Auflicht für die 30 mm Kameraröhre XQ 1410.

Einige Röhren-Familien haben Lichtleiter zur Auflichterzeugung von der Rückseite der fotoleitenden Schicht (innere Vorbelichtung). Die folgende Abb. 2.4 zeigt den schematischen Aufbau eines solchen Lichtleitersystems.

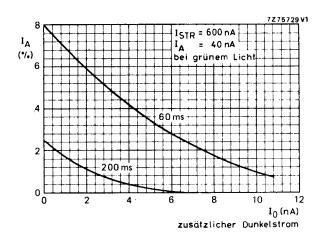


Abb. 2.3

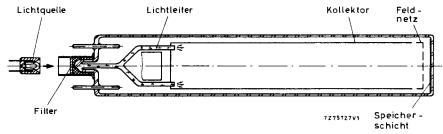


Abb. 2.4

Eine kleine Lichtquelle ist an der Röhrenfassung angebracht, von wo aus das Licht über ein Blau-Grün-Filter auf den Pumpstutzen der Röhre fällt. Von dort wird es über gabelförmige Lichtleiter bis in den Kollektor geführt (siehe auch 2.4 Trägheitsverminderung durch Vorbelichtung).

2.1.5 Streulicht

Reflexionen auf der Speicherschicht sind nicht zu vernachlässigen, sie sind im roten Teil des Spektralbereiches besonders ausgeprägt. Diffus reflektiertes Licht kann von der Frontplatte eingefangen werden und zu Streulicht führen. Zur Verminderung dieser Erscheinung ist eine Anti-Reflexionsplatte, siehe die folgende Abb. 2.5, auf die Frontplatte aufgeklebt.

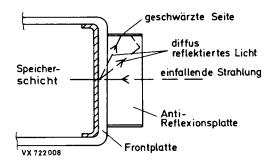


Abb. 2.5

Eine weitere Reduzierung von Störeffekten durch Streulicht läßt sich durch Aufsetzen einer Maske auf die Anti-Reflexionsplatte erreichen. Die rechteckige Öffnung der Maske muß etwas größer sein als die zu nutzende Abtastfläche.

2.1.6 ACT-Elektrodensystem, ACT-Betrieb und Spitzlichtverarbeitung

Das Übertragungsverhalten von Plumbicon-Röhren ist praktisch linear bis zu dem Punkt, der durch den maximalen Strahlstrom gegeben ist und der den dynamischen Bereich begrenzt.

Örtliche Spitzlichter auf der Frontplatte rufen Störeffekte wie Detailverlust, Blooming, Beam-Bending sowie Verlust der Stabilisierung hervor.

Falls nach einem Spitzlicht einige Abtastungen bis zur Wiederherstellung der Stabilisierung erforderlich sind, kann es bei bewegten Objekten zum Nachziehen eines Schweifes kommen (Fackeleffekt, Comet-Tail).

Das ACT-Verfahren (Anti-Comet-Tail) wurde entwickelt, um diese Erscheinungen zu reduzieren. In Röhren mit einem ACT-Elektrodensystem wird der Strahlstrom während des Zeilenrücklaufs erheblich erhöht und

die meisten Speicherelemente im Bereich des Spitzlichtes wieder aufgeladen. Die folgenden Abb. 2.6a und 2.6b zeigen das Funktionsprinzip eines ACT-Systems.

Bei einem ACT-System ist die auf die Steuerelektrode \mathbf{G}_1 folgende Beschleunigungselektrode in zwei Elektroden \mathbf{G}_2 (Beschleunigungselektrode) und \mathbf{G}_4 (Begrenzer) aufgeteilt, die leitend miteinander verbunden sind. Bei normaler Abtastung arbeitet \mathbf{G}_3 als Zusatzelektrode. Sie ist zwischen \mathbf{G}_2 und \mathbf{G}_4 eingefügt und liegt bei normaler Abtastung auf gleichem Potential. Der Abtaststrahl (Abb. 2.6a) ist dann auf die Speicherschicht fokussiert.

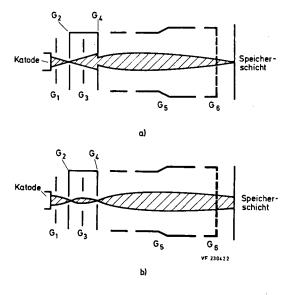


Abb. 2.6

Beim Zeilenrücklauf erhält die Zusatzelektrode G₃ einen negativ gerichteten Impuls, der den Abtaststrahl auf die Blende im Begrenzer G₄ fokussiert (Abb. 2.6b). Zur gleichen Zeit erhält die Steuerelektrode G₁ einen positiv gerichteten Impuls, mit dessen Hilfe der Strahlstrom, der durch die Elektrodenblende G₂ fließt, stark erhöht wird. Ein dritter positiver Impuls bringt die Katode während des Strahlrücklaufs auf ein positives Potential (ca. + 8 V). Auf diese Weise tastet

ein defokussierter Strahl mit einem großen Strom (ca. 100 µA) während des Strahlrücklaufs die fotoleitende Fläche ab. Dieser Strahl enthält genügend Energie zur Nachladung der von Spitzlichtern entladenen Flächen und bringt das Flächenpotential während des Rücklaufs wieder auf das angehobene Katodenpotential. Niedrigere Potentiale enthalten Bildinformation und werden nicht beeinflußt.

Daraus folgt, daß während des normalen Abtastens der Abtaststrahl keine Speicherplattenpotentiale antrifft, die höher als das Katodenpotential während des Rücklaufs sind. Darum ist überall Stabilisierung möglich und Blooming und Kometenschweifbildung sind stark reduziert.

2.1.7 Dioden-Elektrodensystem, DBC-Betrieb und Spitzlichtverarbeitung

Im konventionellen Trioden-Elektrodensystem werden die von der Katode emittierten Elektronen von Gitter 1 und Gitter 2 konvergiert, um einen Strahlknoten zu bekommen. Die gegenseitige Beeinflussung der Elektronen im Elektronenstrahl, besonders oberhalb des Strahlknotens, bewirkt eine differentielle Zunahme des Strahlwiderstandes und somit eine Zunahme der Umladeträgheit.

Das Dioden-Elektrodensystem wird, bezogen auf die Katode, mit einer positiven Spannung an Gitter 1 betrieben. Dies verhindert das Konvergieren des Elektronenstrahls und eliminiert den Strahlknoten. Hieraus ergibt sich eine Reduzierung des Strahlwiderstandes und eine größere Strahlstromreserve.

Diese konsequente Verminderung der Umladeträgheit erlaubt den Einsatz dünner fotoleitender Schichten zur Erhöhung der Auflösung (besonders in Kameraröhren mit kleinem Durchmesser für EAP-Fernsehkameras (Elektronische Außenproduktion)).

Die größere Strahlstromreserve des Dioden-Elektrodensystems bietet die Möglichkeit einer besseren Spitzlichtverarbeitung bei Einsatz einer DBC-Schaltung (Dynamic Beam Control).

Die folgende Abb. 2.7 zeigt das Prinzip der dynamischen Strahlstromsteuerung. Sobald ein Spitzlicht im Bild auftritt, steigt der Signalstrom $\mathbf{I}_{\mathbf{A}}$ an. Der verfügbare Strahlstrom einer Kameraröhre ohne Möglichkeit zur Spitzlichtverarbeitung reicht nicht aus, und die Stabilisierung der Speicherschicht dieses Bereiches geht an dieser Stelle verloren. Bei dem DBC-Verfahren erhöht sich durch einen Rückkopplungskreis mit Verstärkung das Potential der Steuerelektrode \mathbf{G}_1 . Dies führt zur

Erhöhung des Strahlstroms, so daß die Speicherschicht stabilisiert bleibt.

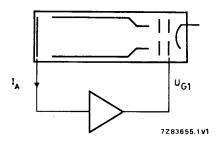


Bild 2.7

2.1.8 LOC-PLUMBICON ® -Kameraröhren

Ein wesentlicher Gesichtspunkt, der die Leistungsfähigkeit einer Fernsehkamera bestimmt, ist das Signal/Rausch-Verhältnis (S/N). Je höher der Wert dieses Verhältnisses, um so besser ist die Empfindlichkeit der Kamera im Betrieb. Eine Methode, das Signal/Rausch-Verhältnis zu verbessern, liegt in der Verringerung der gesamten Ausgangskapazität cavon Röhre und Spuleneinheit innerhalb der Kamera.

Die LOC-Plumbicon-Röhren (<u>Low Output Capacitance</u>) sind mit einer verkleinerten transparenten, leitenden Schicht auf der Speicherplatte versehen, um die Röhrenausgangskapazität und die Streukapazität zwischen Speicherschicht und Spulensystem zu verringern.

2.1.9 Einbrennen

Die Schicht einer Plumbicon-Röhre ist widerstandsfähig gegen Einbrennen. Einbrennmöglichkeit besteht besonders bei Betrieb mit zu kleiner Signalelektrodenspannung.

2.1.10 Temperaturabhängigkeit

Plumbicon-Röhren vertragen kurzzeitigen Temperaturanstieg bis zu 70 °C, aber längerer Betrieb bei Temperaturen über 50 °C verkürzt die Lebensdauer der Röhre. Es ist daher sicherzustellen, daß bei Betrieb unter normaler Umgebungstemperatur die Frontplattentemperatur einer Plumbicon-Röhre in einer Fernsehkamera 50 °C nicht überschreitet.

- 2.2 Betriebshinweise
 - (siehe auch 1.5 allgemeine Hinweise zum Betrieb von Kameraröhren)
- 2.2.1 Bei Transport und Lagerung soll die Röhre waagerecht oder senkrecht mit dem Sockel nach unten gehalten und die Frontfläche der Röhre mit einer Kappe bedeckt werden.
- 2.2.2 Um Beschädigung der Sockelstifte an Plumbicon-Röhren zu vermeiden, sollen die Stifte keinen mechanischen Beanspruchungen, wie Stößen oder Biegekräften, ausgesetzt und stets vorsichtig in die Fassung gedrückt werden. Die Fassungskontakte müssen auch nach der Verdrahtung genügend Spiel in den Fassungskammern behalten.
- 2.2.3 Die Eigenschaften einer Kameraröhre können sich in Einzelfällen ändern, wenn sie über längere Zeit nicht in Betrieb genommen wird: z.B.:
 - a) zwischen der letzten Messung durch den Hersteller und der Auslieferung an den Kunden
 - b) zwischen dem Empfang der Röhre und der Inbetriebnahme
 - c) wenn die Kamera lange nicht in Betrieb war

Obwohl die Möglichkeiten solcher Veränderungen gering sind, ist es empfehlenswert, die Röhren in Zwischenräumen von nicht mehr als 4 Wochen einige Stunden in Betrieb zu nehmen. Folgendes Vorgehen wird empfohlen:

- a) Strahlstrom durch Anlegen einer entsprechend negativen Gitterspannung sperren
- b) eine Vorheizzeit der Katode von min. 1 min muß wie bei jeder Einschaltung eingehalten werden, bevor der gewünschte Strahlstrom eingestellt wird
- c) größeres Abtastfeld (overscan) einstellen
- d) mit gleichmäßiger Beleuchtung der Speicherschicht einen Signalstrom von etwa 0,15 μA und Strahlstrom für richtige Stabilisierung einstellen.

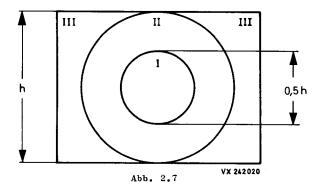
Da erfahrungsgemäß das Einsetzen in eine Farbfernsehkamera mit umfangreicher Abgleicharbeit verbunden ist und daher ein regelmäßiger Einsatz von Lagerröhren unterbleibt, kann ersatzweise die Röhre einmal monatlich während min. 10 min mit der normalen Heizspannung von 6,3 V aufgeheizt werden, damit das Getter aktiviert wird.

- 2.2.4 Bei längeren Lagerzeiten sollte die Umgebungstemperatur 30 °C nicht überschreiten.
- 2.2.5 Die Lichtübertragungsfunktion einer Plumbicon-Röhre hat einen Übertragungsexponenten γ nahe 1. Für Fernsehanwendungen ist eine γ-Korrektur im Videoverstärker notwendig, die zwischen 0,4 und 1 einstellbar ist.
- 2.2.6 Da bei Plumbicon-Röhren eine automatische Empfindlichkeitsregelung durch Regelung der Signalelektrodenspannung nicht möglich ist, muß dieses auf andere Weise, wie z.B. Blendensteuerung und Graufilter, erzielt werden.
- 2.2.7 Der Strahlstrom einer Plumbicon-Röhre ohne ACT-System wird im allgemeinen auf den doppelten Wert des zur Stabilisierung von Spitzen-Weiß erforderlichen Strahlstroms eingestellt.

Das Spitzlichtverhalten läßt sich durch den Einsatz eines höheren Strahlstromes verbessern.

Sehr hoch gewählter Strahlstrom führt zu erhöhter Trägheit, verminderter Auflösung, geometrischen Verzeichnungen und zu verkürzter Lebensdauer der Röhre.

- 2.2.8 Kleine Fehler in Röhre und Ablenksystem, verursacht durch elektrische bzw. mechanische Abweichungen, werden mit Strömen zur Strahlausrichtung korrigiert. Beeinflußbar sind:
 - Fokussierung in den Ecken, Geometrie, Strahlquerschnitt und Landefehler. Ein schlechter Abgleich kann die Ursache für Trägheitsprobleme und verschlechterte Bildqualität sein.
- 2.2.9 Eine Stand-by-Schaltung für eine Fernsehkamera sollte folgende Einstellungen beinhalten.
 - "Stand-by" . Schließen der Blende
 - . Strahlstrom sperren (Steuerung der Spannung an G_1 auf ihren neg. Maximalwert)
 - . Reduzierung der Heizspannung auf 4 V
 - "Betrieb"
- . Heizspannung auf 6,3 V erhöhen
- . Nach einer Heizzeit von min. 1 min (bei 6,3 V) Einstellung des erforderlichen Strahlstroms durch Steuerung der Spannung an G_1
- . Öffnen der Blende


2.3 Meßbedingungen und Spezifikationen für maximal zulässige Bildfehler bei PLUMBICON®-Kameraröhren

2.3.1 Meßbedingungen

Die Prüfung auf Bildfehler bei Plumbicon-Röhren wird vom Röhrenhersteller unter folgenden Bedingungen durchgeführt:

- Bei Studio- und Industrieausführungen wird eine Lichtquelle mit einer Farbtemperatur von 2856 K verwendet, bei Ausführungen für Röntgenkameraketten eine Lichtquelle mit einer spektralen Energieverteilung entsprechend einem P 20-Leuchtschirm.
- Die Ausführungen R/G/B für die Farbkanäle werden mit den in den Datenblättern angegebenen Filtern gemessen.
- 3. Ein Testdiapositiv wird auf der Speicherplatte mittels eines hochwertigen Objektivs so abgebildet, daß die nutzbare Bildfläche gleichmäßig beleuchtet ist.

Das Testbild für die Studio- und Industrieausführungen hat ein Seitenverhältnis von 3: 4 und ist unterteilt in drei Zonen entsprechend folgender Abb. 2.7

Das Testbild für die Röntgenausführungen ist rund und ebenfalls in drei Zonen entsprechend folgender Abb. 2.8 unterteilt.

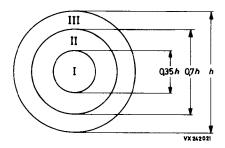


Abb. 2.8

- 4. Die Durchlaßkurve des Videoverstärkers ist bis 5 MHz flach und fällt bis 6 MHz auf Null ab.
- 5. Der Videoverstärker hat keine y- oder Apertur-Korrektur.
- 6. Der Strahlstrom der Röhre wird so eingestellt, daß er gerade einen Signalspitzenstrom in der Größe $I_{\mbox{STR}}$ entsprechend folgender Tabelle I stabilisiert.
- 7. Die Beleuchtungsstärke auf der Speicherschicht wird dann für einen Signalspitzenstrom I_Λ entsprechend folgender Tabelle I eingestellt.
- 8. Auf einem Monitor soll ein nicht überstrahltes, weißes Bild eingestellt werden.

Tabelle I für einzustellende Signal- und Strahlströme:

Röhrendurchme	esser		30 mm (:	1 1/4")	25 mm	(1")	18 mm	(2/3")
abgetastete I	Fläche		12,8 x	17,1 mm ²	9,6 x 12,8 mm ²		6,6 x 8,8 mm ²	
			Ι _Α (μΑ)	I _{STR} (μA)	Ι _Α (μΑ)	I _{STR} (μΑ)	Ι _Α (μΑ)	I _{STR} (μΑ)
Ausführungen in Studio- qualität	Grünkanal	R G B	0,3 0,15 0,3 0,15 0,3	0,6 0,3 0,6 0,3 0,6	0,2 0,1 0,2 0,1 0,2	0,4 0,2 0,4 0,2 0,4	0,15 0,075 0,15 0,075 0,15	0,3 0,15 0,3 0,15 0,3
Ausführungen in Industrie- qualität	Grünkanal	R G B	0,3 0,15 0,3 0,15	0,6 0,3 0,6 0,3	0,2 0,1 0,2 0,1	0,4 0,2 0,4 0,2	0,15 0,075 0,15 0,075	0,15 0,15 0,3 0,15

Röhrendurchmesser		30 mm (1 1/4")	25 mm (1")		
abgetastete Fl	getastete Fläche		18 mm Ø		mm Ø	
		¹ _Α (μΑ)	Ι _{STR} (μΑ)	Ι _Α (μΑ)	Ι _{STR} (μΑ)	
Ausführungen für Röntgen- kameraketten	Lichtquelle entsprechend P 20-Leuchtschirm	0,15	0,3	0,1	0,2	

Die Ablenkamplitude wird so eingestellt, daß die auf der Speicherschicht abgetastete Fläche als Kreisfläche auf dem Monitor abgebildet wird, wobei der Durchmesser der Abbildung der Bildhöhe des Monitors entspricht.

2.3.2 Definitionen

Bildfehler sind kleine Flächen ungleichmäßiger Modulationstiefe.

Bei Röhren in Studioqualität erfolgt eine Bildfehlerbewertung nach Fleckstörwerten. Diese werden in SNV (Spot Muisance Value) angegeben. Der SNV ist das Produkt aus mittlerem Fleckdurchmesser in % der Bildhöhe und der Störamplitude in % bezogen auf den Weißwert (Modulationstiefe).

Bei weißen Flecken in Röhren für Schwarzweißkameras, für den Luminanzsowie den Grünkanal in Farbkameras ist der errechnete SNV mit 2 zu multiplizieren und darf dann den zulässigen Höchstwert nicht überschreiten. Bei weißen Flecken mit dunklem Kern wird der Durchmesser der weißen Randzone mit der größeren der beiden Störamplituden multipliziert.

Bei Röhren für Röntgenkameraketten werden Bildfehler unterschieden in scharf und unscharf begrenzte Flecken. Ein scharf begrenzter Fleck ist definiert als ein Bildfehler mit einer linearen Ausdehnung in jeder Richtung von max. 0,7 % der Bildhöhe. Unscharf begrenzte Flecken sind Bildfehler geringer Modulationstiefe, deren lineare Ausdehnung in jeder Richtung 0,7 % der Bildhöhe überschreiten darf.

Bei Röhren in Industriequalität werden Bildfehler ebenfalls unterschieden in scharf und unscharf begrenzte Flecken. Ein scharf begrenzter Fleck ist definiert als ein Bildfehler mit einer linearen Ausdehnung in jede Richtung von max. 1 % der Bildhöhe und einer Modulationstiefe > 10 % (Signalstrom entsprechend Tab. I im Abschnitt 2.3.1).

Die Modulationstiefe wird auf einem Video-Oszilloskop mit einer Bandbreite von 5,5 MHz gemessen. Der Schwarzwert ist definiert als 0 % Modulationstiefe. Der Fleck wird mit einer Meßschablone ausgemessen.

2.3.3 Anzahl, Größe, Lage und Modulationstiefe von Bildfehlern

bei 18 mm-, 25 mm- und 30 mm-Röhren

A Röhren in Studioqualität

	Röhren für Schwarzweiß- kameras, für den Luminanz- (L) und Grünkanal (G)	Röhren für den Rotkanal (R)	Röhren für den Blaukanal (B)
nicht gezählte Flecken (Durchmesser in % der Bildhöhe)	≤ 0,2 %	≤ 0,2 %	≦ 0,2 %
nicht gezählte Flecken (Modulationstiefe in %)	≤ 5 %	≦ 8 %	≦ 8 %
weiße Flecken SNV für	errechneter Wert x 2	errechneter Wert	errechneter Wert
schwarze Flecken	errechneter Wert		
max. SNV	20	20	20

	Röhren für Schwarzweißkame- ras, für den Luminanz- (L), Rot- (R) und Grünkanal (G)				Röhren Blaukan	für den al (B)		
Zone	I	II	III	I+II+III	I	11	III	I+II+III
Zahl der Flecken	0	2	3	4	1	3	4	6
Gesamt-SNV	0	30	50	60	20	45	80	90

Bei geschlossener Blende sollen Bildfehler $\stackrel{>}{=} 0,2 \%$ der Bildhöhe nicht sichtbar sein.

Bildfehler ≤ 0,2 % der Bildhöhe werden nicht gezählt. Führt jedoch eine Anhäufung zu unsauberen Bildern, so wird die mittlere Modulationstiefe der Anhäufung gezählt.

Der Abstand zwischen zwei Flecken mit SNV $\stackrel{>}{=}$ 10 soll mindestens 5 % der Bildhöhe betragen.

Schwarze Flecken mit weißer Randzone bzw. weiße Flecken mit einem dunklen Kern haben auf dem Oszilloskop folgenden Kurvenverlauf:

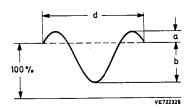


Abb. 2.9

Zur Bestimmung des SNV soll entweder für einen schwarzen Fleck SNV = b·d oder für einen weißen Fleck SNV = 1·a·d bzw 2·a·d gerechnet werden (siehe vorstehende Tabellen). Die größere Amplitude von a oder b bestimmt die Wertung als schwarzer oder weißer Fleck.

B Röhren für Industriequalität

nicht gezählte Flecken (Durchmesser in % der Bildhöhe)	≦ 0,2 %
nicht gezählte Flecken (Modulationstiefe in %)	≦ 10 %

Bildfehlergröße	zug	elassene Anza	hl von Bildfe	hlern	
in % der Bildhöhe	Zone I	Zone II	Zone III	Zone I+II+III	
> 2,0 %	0	0	0	0	
> 1,0 ≤ 2,0 %	0	1	2	2	
> 0,7 ≤ 1,0 %		•	2	_	
> 0,45≤ 0,7 %	1	2	4	4	
> 0,2≤ 0,45 %	2	4	6	6	
zugel. Gesamtzahl von Bildfehlern	2	4	6	6	

Bildfehler $\stackrel{>}{=}$ 1,0... $\stackrel{\leq}{=}$ 2,0 % der Bildhöhe sind nur bis zu einer Modulationstiefe $\stackrel{\leq}{=}$ 20 % zugelassen.

Bildfehler $\stackrel{\leq}{=} 0,2$ % der Bildhöhe werden nicht gezählt. Führt jedoch eine Anhäufung zu unsauberen Bildern, so wird die mittlere Modulationstiefe der Anhäufung gezählt.

Der Abstand zwischen 2 Flecken, die größer als 0,45~% der Bildhöhe sind, muß mindestens 5~% der Bildhöhe betragen.

C Röhren für Röntgenkameraketten

nicht gezählte Flecken (Durchmesser in % der Bildhöhe)		≤ 0,2 %
nicht gezählte Flecken	schwarze Flecken	≦ 6 %
(Modulationstiefe in %)	weiße Flecken	≦ 3 %

Bildfehlergröße	zugelass	ene Anzahl von Bil	dfehlern
in % der Bildhöhe	Zone I	Zone II	Zone III
> 0,7 %	0	0	0
> 0,45≤ 0,7 %	0	1	3
> 0,2 ≤ 0,45 %	2	3	6
zugel. Gesamtzahl von Bildfehlern	2		6

2.4 <u>Trägheitsverminderung durch feste oder einstellbare Vorbelichtung</u> bei 30 mm PLUMBICON -Kameraröhren

Kameraröhren vom Fotoleitungs-Typ mit kleinem Dunkelstrom, wie z.B. Plumbicon-Röhren, neigen bei geringer Szenenbeleuchtung zu erhöhter Umladeträgheit. Die Ansprechgeschwindigkeit dieser Röhren kann weitgehend durch Vorbelichtungsmaßnahmen verbessert werden.

Mit Hilfe eines diffusen Auflichtes wird ein künstlicher Dunkelstrom eingeführt. Dieser künstliche Dunkelstrom kann wie folgt erreicht werden:

- Zusatzlicht wird direkt auf die Frontplatte der Röhre geleitet oder über die Optik oder über den Farbteiler der Kamera.
- 2. Zusatzlicht einer internen oder externen Lichtquelle wird auf die Rückseite der fotoleitenden Schicht übertragen.

Röhren der Serien XQ 1410 und XQ 1520.

Bei diesen 30 mm Kameraröhren wird das Licht einer kleinen Glühlampe über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert und von dort über ein Lichtleitersystem auf die abgetastete Seite der Speicherschicht übertragen.

Röhren dieser Typen lassen 4 Betriebsarten zu:

- 1. Einstellbare Vorbelichtung
- 2. Feste Vorbelichtung
- 3. Vorbelichtung über das optische System
- 4. Ohne Vorbelichtung (nicht zu empfehlen)

2.4.1 Einstellbare Vorbelichtung (über den Pumpstutzen) 1)

Für diese Betriebsart gehört zum Lieferumfang jeder Röhre eine Vorbelichtungslampe des Typs 56 106 (Hinweise zum Betrieb dieser Lampe siehe 2.4.5).

Bei Schwarzweiß-Betrieb

Der Einsatz einer Vorbelichtung für Schwarzweiß-Anwendungen ist unkritisch (siehe Datenblätter) und soll einem künstlichen Dunkelstrom von 3 - 5 nA entsprechen. Der obere Wert wird durch akzeptablen Schwarzpegel bestimmt.

¹) Gilt auch für 1"-Röhren bei Verwendung einer Glühlampe (5 V, 110 mA, Best. Nr. 56 027), einsetzbar in die Spezialfassung 56 026.

Bei Farbfernsehkameras ohne Shading-Korrektur

Unter Berücksichtigung des Typs der Farbfernsehkamera und des subjektiven Empfindens des beurteilenden Betrachters, soll die Vorbelichtung auf 3 nA für Rot, 2 nA für Grün und 3,5 nA für Blau eingestellt werden. Auflicht mit $\lambda > 600$ nm ist zu vermeiden.

Vorgehen beim Einstellen der Kamera

Die Kamera wird auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 30 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Strom von max. 2 nA eingestellt. Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß ein Optimum zwischen Anstiegs- und Abfallträgheit, bei der Betrachtung nichtfarbiger Trägheitserscheinungen, auf einem Farbmonitor gefunden wird.

Bei Farbfernsehkameras mit Shading-Korrektur

Bei Kameras dieser Ausführung können höhere Vorbelichtungsströme, als vorhergehend genannt, eingestellt werden, um damit eine weitere Verbesserung des Trägheitsverhaltens zu erreichen.

2.4.2 Fest eingestellte Vorbelichtung (über den Pumpstutzen)

Zum Lieferumfang jeder Röhre gehört ein entsprechender Adapter, gekennzeichnet mit der Farbe des Farbkanals, für den die Röhre bestimmt ist. Beim Einsetzen wird der Adapter über die Röhrenstifte gegen den Röhrenkolben geschoben und nach dem Einstecken der Röhre in die Fassung zwischen Röhre und Fassung festgeklemmt.

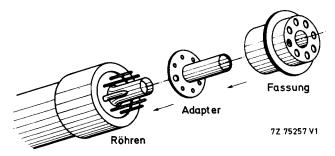


Abb. 2.10

Die Betriebsspannung der Lampe wird über einen in Serie geschalteten Widerstand von den Röhrenstiften für die Heizspannung abgegriffen.

Der durch Vorbelichtung erzeugte Dunkelstrom (Heizspannung 6,3 ± 0,05 V) beträgt ca.

- 4,5 nA für Schwarzweiß-Anwendungen
- 3 nA für den Rotkanal
- 2 nA für den Grün- und Luminanzkanal
- 3.5 nA für den Blaukanal

Die zusätzliche Belastung der Heizspannungsquelle liegt bei ca. 95 mA pro Röhre. Unter der Voraussetzung, daß die stabilisierte Heizspannung der Kamera noch durch Lampenstrom zusätzlich belastet werden kann, können Röhren der Typen XQ 1410 - XQ 1415 bei Betrieb mit Adapter als Alternative für Röhren der Typen XQ 1020 - XQ 1025, eingesetzt werden. Es ergibt sich eine deutliche Verbesserung des Trägheitsverhaltens (und der Auflösung).

Jedoch gilt, daß ein Optimum an Leistungsverbesserung hinsichtlich nichtfarbiger Trägheitserscheinungen nur mit einstellbarer Vorbelichtung zu erreichen ist.

2.4.3 Vorbelichtung (fest oder einstellbar) über das optische System

Obgleich ausgezeichnete Ergebnisse, unter Berücksichtigung der Ansprechgeschwindigkeit, erzielt werden können, kann es schwierig sein, eine hinlänglich gleichmäßige Vorbelichtung durch Induzieren eines künstlichen Dunkelstromes zu erreichen, d.h. in einer Farbfernsehkamera die Vorbelichtung so einzustellen, daß bei Übertragung bewegter Objekte ein neutrales Verhalten in Bezug auf nichtfarbige Trägheitserscheinungen erzielt wird.

2.4.4 Betrieb ohne Vorbelichtung

Hierbei gilt, daß akzeptable Bildqualität, unter Berücksichtigung der Ansprechgeschwindigkeit, nur bei ensprechender Beleuchtung der Szene erreicht werden kann.

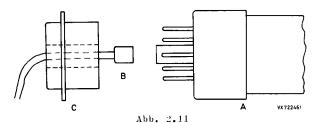
Die Röhrenkolben sind unter den Kunststoff-Sockeln geschwärzt, um eine direkte Übertragung der Vorbelichtung bei Betriebsart 1 und 2 zu verhindern. Eine direkte Übertragung durch den Röhrenkolben auf die fotoleitende Schicht führt zu störenden Aufhellungen des Schwarzwertes innerhalb der Bildecken.

Diese teilweise Schwärzung des Röhrenkolbens absorbiert auch die durch die Heizung der Katode erzeugte Vorbelichtung, die in Röhren der Typen XQ 1020 - XQ 1025 einen künstlichen Dunkelstrom bewirkt.

Das Fehlen dieses Heizfadenlichtes bewirkt eine leichte Zunahme der Umladeträgheit bei Röhren der Typen XQ 1410 - 1415.

Lebensdauer bei Vorbelichtungslampen

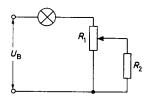
Die zu erwartende Brennzeit der Lampe Typ 56 106 und der Adapter ist bei Betrieb mit Nennspannung (5,5 V, 110 mA) > 2 x 10 4 Stunden und liegt damit deutlich über der zu erwartenden mittleren Lebensdauer-erwartung einer Kameraröhre.


2.4.5 Hinweise zum Betrieb der Vorbelichtungslampe 56 106

(Glühlampe 5 V, 110 mA) für einstellbare Vorbelichtung bei 30 mm Plumbicon-Röhren mit auf den Pumpstutzen aufgesetztem Metall-Röhrchen.

Einbau der Lampe

Bei Kameraröhren der Serien XQ 1410 und XQ 1520 wird folgender Installationsablauf beim Einsetzen der Vorbelichtungslampe empfohlen:


- 1. Röhre A in die Fokussier- und Ablenkeinheit einsetzen
- 2. Lampe B fest in das Röhrchen auf dem Pumpstutzen einschieben
- Fassung C mit dem Sockel der Röhre zusammenfügen und die Lampendrähte durch die Pumpstutzenöffnung der Fassung führen.

Versorgung der Vorbelichtungslampe

a) Für Schwarzweiß-Anwendungen

Extreme Stabilität der Versorgungsspannung ist nur in Sonderfällen erforderlich. Der Lampenstrom kann einer Gleich- oder Wechselspannungsquelle entnommen werden.

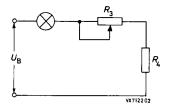


Abb. 2.12

Die Widerstände \mathbf{R}_2 bzw. \mathbf{R}_4 sollen den Lampenstrom auf maximal 110 mA bei 5 V begrenzen.

$$\frac{R_1 \cdot R_2}{R_4 + R_9} = \frac{U_B - 5 \text{ V}}{0.11 \text{ A}} \qquad \text{bzw.} \qquad R_4 = \frac{U_B - 5 \text{ V}}{0.11 \text{ A}}$$

Bei Serienschaltung der Widerstände R₁ bzw. R₃ mit der Lampe, sollen die Widerstände noch einen Vorbelichtungsstrom von 50 mA zulassen.

$$R_1 \stackrel{\leq}{=} \frac{U_B}{0.05 \text{ A}}$$
 bzw. $R_3 \stackrel{\leq}{=} \frac{U_B}{0.05 \text{ A}} - R_4$

b) Für Farbfernsehkameras

Der Betrieb der Vorbelichtungsschaltung mit einer stabilisierten Gleichspannung wird empfohlen. In Kameras mit Shading-Korrektur im Videoverstärker können auch die Schaltungen wie unter Schwarzweiß-Anwendungen eingesetzt werden.

Für Langzeitstabilität in Kameras ohne Shading-Korrektur muß beachtet werden, daß eine einem Signalstrom von 10 nA entsprechende Vorbelichtung sich um 0,5 nA bei einer Veränderung der Lampenspannung um 50 mV ändert. Die gleiche Änderung des Signalstroms tritt bei einer Änderung des Lampenstroms um 0,6 mA auf.

Bei der für Farbfernsehkameras empfohlenen Schaltung soll die Basisspannung des Transistors maximal 5,5 V betragen.

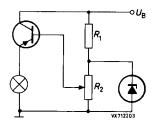
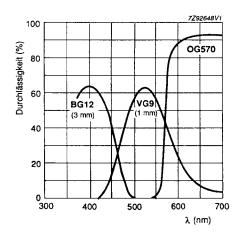
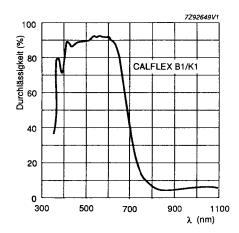




Abb. 2.13

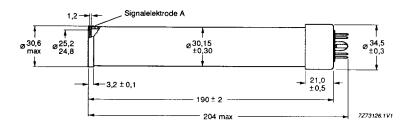
2.5 Durchlässigkeitskurven der Filter für PLUMBICON® - Kameraröhren

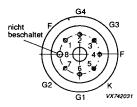
PLUMBICON®-Kameraröhren

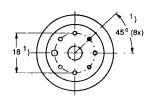
PLUMBICON®-Kameraröhren

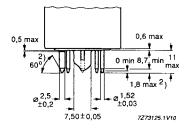
30 mm-PLUMBICON® - Kameraröhre

- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für Röntgenkameraketten


Kurzdaten


Heizung	UF	=	6,3	V
	I _F	=	190	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge	ca.		650	nm
Empfindlichkeit, P 20 Leuchtschirm			530	μA/lm
Auflösung bei 10,5 LP/mm (5 MHz)			55	%
Fokussierung	magne	tisch		
Ablenkung	magne	tisch		
Ausführung	ohne A	nti-Refl	exionspl	atte




Mechanische Daten

Abmessungen in mm

Zubehör

Fassung Fokussier- und Ablenk-Einheit	56 021 oder 56 603 AT 1130 S
Masse	ca. 100 g
Einbaulage	beliebig

¹⁾ Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von 8,230 ± 0,005 mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessern: 7 x 1,690 ± 0,005 mm und 1 x 2,950 ± 0,005 mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

26. 2. 1988

66

²⁾ Die Stiftenden sind spitzzulaufend und / oder abgerundet.

Kenn- und Betriebsdaten 3)

Optische Daten

Durchmesser der nutzbaren

Bildfläche

18 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

ohne Antireflexionsplatte

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom

Heizspannung

 $U_{F} = 6.3 V \pm 5$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten. Für beste Eigenschaften wird Stabilisierung der Heizspannung

mA

empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$

I_F = 190

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

Austastspannung

an G1 an Katode $U_{G1 MM} = 50 \pm 10$ $U_{K MM} = 25$

≤

G2-Strom

bei normalem Strahlstrom

 I_{G2}

-U G1

1

30...100

mA

v

Fokussierung

magnetisch

Ablenkung

magnetisch

Kapazität

= 3...6

pF

a Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Kenn- und Betriebsdaten ³)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	UK	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4 (Feldnetz)	U_{G4}	=	675	V	
Spannung an G3 (Fokussierelektrode)	U _{G3}	=	600	v	
Spannung an G2 (Beschleunigungselektrode)	U $_{\rm G2}$	=	300	V	
Spannung an G1	U G1	=		v	4)
Austastspannung an G1	U _{G1 MM}	=	50 ± 10	v	
Strahlstrom	I STR				4)
Beleuchtungsstärke der Frontplatte	E	≈	2	lx	
Frontplattentemperatur	ϑA	=	2045	°C	
Speicherplatte			•		
Dunkelstrom	I 0	≤	3	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	n m	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K			175 (≥ 130)	μΑ/lm	5)
Empfindlichkeit (Lichtart P 20)			530 (≥ 395)	μA/lm	
Signalstrom, Spitzenwert bei E = 1 lx (P 20)			305 (≥ 230)	nA	6)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{29. 2. 1988}

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

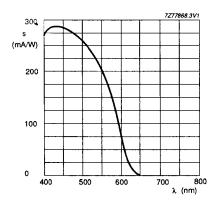
Auflösung			7)
Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang (10,5 LP/mm) abgetastete Fläche Ø 18 mm	55	%	
Trägheit (typische Werte)			
ausreichend klein für medizinische Zwecke in Verbindung mit Röntgen-Kameraketten; die Trägheit ist im wesentlichen unabhängig von der Beleuchtungsstärke.			
Restsignal nach Dunkelimpuls von 60 ms	5 (≤ 10)	%	
Restsignal nach Dunkelimpuls von 200 ms	2 (≤ 4)	%	
gemessen nach 5 s lang 100 % Weiß mit I _A = 100 nA, I _{STR} für einwandfreie Stabilisierung I _A eingestellt und einer Lichtquelle mit einer spektralen Energieverteilung gemäß P 20-Leuchtschirm.			

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

$U_{\mathbf{A}}$	= max.	50	v	1	U _{+FK M}	= max.	50	V	
U_{G4}	= max.	1100	V		U .FK M	= max.	50	v	
U_{G3}	= max.	800	V		t _h	= min.	1	min	
$U_{\rm G4G3}$	= max.	350	v		ϑ_U , ϑ_A	= max.	+50	°C	1)
$U_{\;G2}$	= max.	350	v			= min.	-30	°C	
P_{G2}	= max.	1	w		Е	= max.	500	lx	2)
+U _{G1}	= max.	0	v						
-U _{G1}	= max.	125	v						

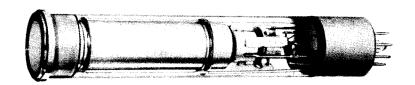
Warnhinweis


Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

Anmerkungen siehe nächste Seite dieses Datenblattes

- 2) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 3) gemessen mit der Fokussier- und Ablenkeinheit AT 1130. Daten siehe unter Zubehör. Die Amplitude der Abtastung ist so einzustellen, daß bei einer nutzbaren Bildfläche von ø 18 mm ein Kreis, entsprechend der Rasterhöhe auf einem Röntgen-Monitor dargestellt wird.
- 4) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 600 nA entsteht. Der Strahlstrom wird als der Strom definiert der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren (siehe auch Anmerkung 6)).
- Meßbedingungen: gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und Filter Schott VG 9 im optischen System
- 6) Die Signalspitzenströme werden mit einem Video-Oszilloskop am Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der ø 18 mm Fläche, gemessen. Bei Messung mit einem integrierenden Meßinstrument sind die Signalelektrodenströme kleiner:


 a) um einen Faktor α (α = 100/100-β; β ist die Gesamtaustastzeit in %); beim CCIR-System ist α = 0,75
 bum einen Faktor δ, (δ ist das Verhältnis der genutzten Abtastfläche (Kreis mit ø 18 mm) zur Fläche, die den eingestellten Abtastamplituden (18 mm x 24,6 mm) entspricht), hier ergibt sich das Verhältnis δ = 0,59.
 Das gesamte Verhältnis des integrierten Signalstromes I A zum Signalspitzenstrom I A M beträgt α x δ = 0,44.
- 7) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, sinusförmiger Helligkeitsverteilung des Meßrasters bei 400 Zeilen, Blende 5,6. Der publizierte Wert von 55 % ist unkorrigiert. Die wirkliche Auflösung der Röhre ist höher. Gemessen bei I A = 100 nA und I STR = 500 nA. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

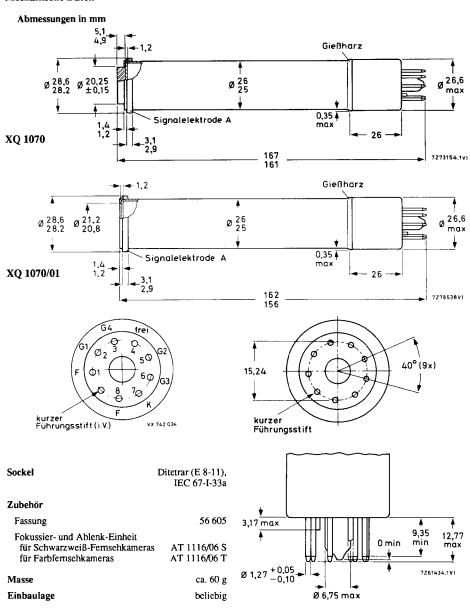
Grenzwert für die Kamerakonstruktion.
 Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

1"-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität
- · mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz

XQ 1070/01 S	erie erie	ohne Antireflexionsplatte
XQ 1070	XQ 1070/01	für Schwarzweiß Fernsehkameras
XQ 1070 R	XQ 1070/01 R	für den Rotkanal in Farbfemsehkameras
XQ 1070 G	XQ 1070/01 G	für den Grünkanal in Farbfernsehkameras
XQ 1070 B	XQ 1070/01 B	für den Blaukanal in Farbfernsehkameras
XQ 1070 L	XQ 1070/01 L	für den Luminanzkanal in Farbfernsehkameras

Kurzdaten


Heizung	$U_F = I_F =$	6,3 V 95 m					
Maximum der spektralen Empfindlichkeit	ca.	450 ni	n				
Grenzwellenlänge	ca.	650 ni	n				
	XQ 1070 XQ 1070 L	XQ 1070 R	XQ 1070 G	XQ 1070 B			
Empfindlichkeit bei Farbtemperatur 2856 K	400	80	170	40	μΑ/lm		
Modulationstiefe bei 400 Zeilen (5 MHz)	40	35	40	50	%		
Fokussierung	magnetisch		•	•			
Ablenkung	magnetisch						
Ausführung mit	Anti-Reflexionsplatte (nur XQ 1070/01 Serie)						

XQ 1070 XQ 1070/01

Mechanische Daten

26. 2. 1988 **72**

Kenn- und Betriebsdaten 4)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

9.6 mm x 12.8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte (XQ 1070/01)

Dicke Brechungsindex $5 \pm 0.1 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_{F} = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1

bei $U_{G2} = 300 \text{ V}$

ohne Austastung Austastspannung -U _{G1}

35...100

W

an G1

an Katode

 $U_{G1 MM} = 50 \pm 10$ $U_{K MM} = 25$

=

≤

G2-Strom bei normalem

Strahlstrom

I G2

0.5

mΑ

Fokussierung

..........

magnetisch

Ablenkung

magnetisch

Kapazität

c _a =

3...5

pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c ...

XQ 1070 XQ 1070/01

Kenn- und Betriebsdaten 4)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	v	
Signalelektrodenspannung	U _A	=	45	v	
Spannung an G4	U _{G4}	=	960	v	
Spannung an G3	U $_{G3}$	=	600	v	
Spannung an G2	$U_{\;G2}$	=	300	v	
Spannung an G1	U_{G1}			v	5)
Austastspannung an G1	U_{G1MM}	=	50	V	
Strahlstrom	I _{STR}				5)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	6)
Frontplattentemperatur	ϑ_A	=	2045	°C	2)
Speicherplatte					
Dunkelstrom	Io		≤3	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					7)
XQ 1070, XQ 1070/01			400 (≥ 375)	μA/lm	
XQ 1070 R, XQ 1070/01 R			80 (≥ 70)	μA/lm	
XQ 1070 G, XQ 1070/01 G			170 (≥ 130)	μA/lm	
XQ 1070 B, XQ1070/01 B			40 (≥ 35)	μ A/l m	
XQ 1070 L, XQ 1070/01 L			400 (≥ 375)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{26. 2. 1988} 74

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 5)8)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 1070 XQ 1070 L XQ 1070 G XQ 1070/01 XQ 1070/01 L XQ 1070/01 G	XQ 1070 R XQ 1070/01 R	XQ 1070 B XQ 1070/01 B
Signalstrom I A (nA)	200	100	100
Strahlstrom I STR (nA)	400	200	200
Modulationstiefe bei 5 MHz (%)	40 (≥ 35)	35 (≥ 30)	50 (≥ 45)

Trägheit für dunkle Bildpartien (20 % Bildweiß) ⁹) (typische Werte)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstieg	strägheit	Abfallträgheit		
	I _A /I _{STR} =	20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1070, XQ 1070/01	95 %	≈ 100 %	9 %	3 %	
XQ 1070 R, XQ 1070/01 R	95 %	≈ 100 %	9%	3 %	
XQ 1070 G, XQ 1070/01 G	95 %	≈ 100 %	11 %	4 %	
XQ 1070 B, XQ 1070/01 B	90 %	≈ 100 %	11 %	4 %	
XQ 1070 L, XQ 1070/01 L	95 %	≈ 100 %	9 %	3 %	

GO

XQ 1070 XQ 1070/01

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

$\mathbf{U}_{\mathbf{A}}$	= max.	50	V	$U_{+FKM} = max.$ 50 V
U_{G4}	= max.	1100	v	U _{-FK M} = max. 125 V
U _{G4G3}	= max.	450	V	$Z_{FK} = min.$ $2 k\Omega$ ¹)
$\rm U_{G3}$	= max.	800	V	t _h = min. 1 min
$U_{\rm G2}$	= max.	350	V	$\vartheta_{\mathbf{U}}, \vartheta_{\mathbf{A}} = \max. +50 {}^{\circ}\mathbf{C}$
+U G1	= max.	0	V	= min30 °C
-U _{G1}	= max.	125	V	E = max. 500 lx 3

- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- gemessen mit der Fokussier- und Ablenkeinheit AT 1116. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 5) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 200 nA für R- und B-Röhren und 400 nA für Schwarzweiß-, L- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.

In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I $_{\rm A}/{\rm I}$ $_{\rm STR}=20$ nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.

Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Vidco-Oszilloskop gemessen werden, sind um Faktor $\,\alpha$ größer.

(α = 100/100-β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)

Orange de de la final de la

¹⁾ $U_{FKM} > 10 V$.

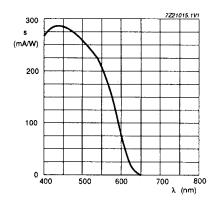
²⁾ Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

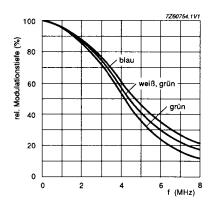
⁷) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 1070 R, XQ 1070/01 R	Schott OG 570	3
XQ 1070 G, XQ 1070/01 G	Schott VG 9	1
XQ 1070 B, XQ 1070/01 B	Schott BG 12	3

8) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters (400 Zeilen) und Blende 5,6 sowie den entsprechenden Filtern im optischen System.


Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.


9) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

24. 2. 1988

1"-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- · für Anwendungen mit hohen Anforderungen an Bildqualität

XQ 1070/02 R für den Rotkanal in Farbfernsehkameras

XQ 1070/02 G für den Grünkanal in Farbfernsehkameras

XQ 1070/02 B für den Blaukanal in Farbfernsehkameras

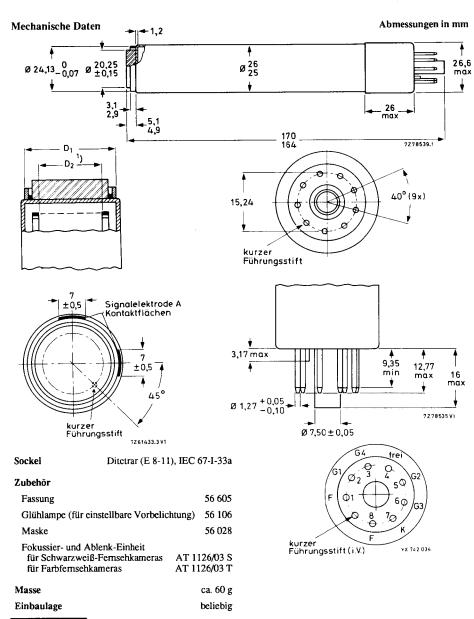
XQ 1070/02 L für den Luminanzkanal in Farbfernsehkameras

Die Röhren der XQ 1070/02 Serie sind elektrisch identisch mit denen der Serie XQ 1070. Mechanisch sind sie so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden können. Sie sind wahlweise einsetzbar für Röhren der Serie XQ 1080, wenn kein ACT-Betrieb gefordert ist.

Kurzdaten

Heizung

ricizung	υF	-	0,5	٧			
	I _F	=	95	mΑ			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
Grenzwellenlänge	ca.		650	nm			
	XQ 1	070/021	XQ 107	0/02R	XQ 1070/02G	XQ 1070/02	2B
Empfindlichkeit bei Farbtemperatur 2856 l	K 4	00	80		170	40	μΑ/lm
Modulationstiefe bei 400 Zeilen (5 MHz)	40	0	35		40	50	%
Fokussierung	magnet	isch	i		l	ı	
Ablenkung	magnet	isch					
Ausführung mit	Lichtle Anti-Re	item, eflexion	1) ²) splatte,				


keramischem Zentrierring

Anmerkungen siehe 3. Seite dieses Datenblattes

26. 2. 1988

70

^{*)} Die Differenz zwischen den Mittellinien der Durchmesser D $_1$ (Bezugsring) und D $_2$ (Feldnetz) ist < 100 μ m.

80

^{26. 2. 1988}

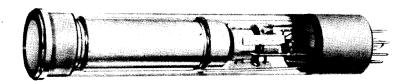
Kenn- und Betriebsdaten

Speicherplatte, Ergänzung zu den Daten der Serie XQ 1070

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12.5 %

3)


1) Einstellbare Vorbelichtung:

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden.

- 2) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Für Schwarzweiß Anwendungen genügt im allgemeinen eine Vorbelichtung, die einem zusätzlichen Dunkelstrom von 2...3 nA entspricht, um genügend kurze Ansprechzeiten zu erhalten.
 - b) Einstellbare Vorbelichtung für Farbfernsehkameras:
 - In Farbfemsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.
 - Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt
- 3) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 - Bei den typischen Einstellungen, wie in Anmerkung ²) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.

1"-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für industrielle Anwendungen
- · mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz

XQ 1071 Serie XQ 1071/01 Serie mit aufgeklebter Antireflexionsplatte

ohne Antireflexionsplatte

XQ 1071

XQ 1071/01

für Schwarzweiß Fernsehkameras

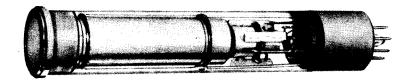
XQ 1071 R

XQ 1071/01 R

für den Rotkanal in Farbfernsehkameras

XQ 1071 G XQ 1071 B XQ 1071/01 G XQ 1071/01 B für den Grünkanal in Farbfernsehkameras für den Blaukanal in Farbfernsehkameras

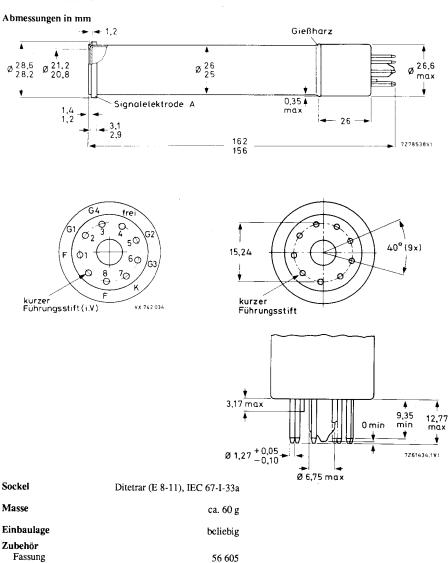
Die Röhren der Serien XQ 1071 und XQ 1071/01 sind elektrisch und mechanisch identisch mit denen der Serie XQ 1070 und XQ 1070/01, haben jedoch geringere Anforderungen in Bezug auf Bildfehler.


Kurzdaten

Heizung	UF	=	6,3	V			
	I _F	=	95	mΑ			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
Grenzwellenlänge	ca.		650	nm			
	XQ 10)71	XQ 107	1 R	XQ 1071 G	XQ 1071	В
Empfindlichkeit bei Farbtemperatur 2856	K 400)	80		170	40	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	40	ı	35		40	50	%
Fokussierung	magnet	isch	•			1	
Ablenkung	magnet	isch					
Ausführung mit	Anti-Reflexionsplatte (nur XQ 1071/01 Serie)						

1"-PLUMBICON® - Kameraröhre

- · getrenntes Feldnetz
- fotoleitende Schicht geringer Trägheit
- · für Röntgenkameraketten
- mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz


Kurzdaten

Heizung	UF	=	6,3	V
	I _F	=	95	mA
Maximum der spektralen Empfindlichkeit	ca.		470	nm
Grenzwellenlänge	ca.		650	nm
Empfindlichkeit, P20 Leuchtschirm			500	μA/lm
Auflösung bei 13 LP/mm (5 MHz)			70	%
Fokussierung	magnet	isch		
Ablenkung	magnet	tisch		

XQ 1072

Mechanische Daten

AT 1116 S

25. 1. 1988 86

Fokussier- und Ablenk-Einheit

Kenn- und Betriebsdaten 3)

Optische Daten

Durchmesser der nutzbaren

Bildfläche

15 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

ohne Antireflexionsplatte

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom

Heizspannung $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten. Für beste Eigenschaften wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$ $I_F = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung $-U_{G1} = 35...100 \text{ V}$

Austastspannung

an G1 $U_{G1 MM} = 50 \pm 10$ V an Katode $U_{KMM} = 25$ V

G2-Strom

bei normalem Strahlstrom $I_{G2} \leq 0,5$ mA

Fokussierung magnetisch

Ablenkung magnetisch

Kapazität $c_a = 3...5$ pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

XQ 1072

Kenn- und Betriebsdaten 3)

Elektrische Daten, Fortsetzung

	Spannung an Katode	$U_{\mathbf{K}}$	=	0	v	
	Signalelektrodenspannung	U A	=	45	v	
	Spannung an G4 (Feldnetz)	U_{G4}	=	960	v	
	Spannung an G3 (Fokussierelektrode)	U _{G3}	=	600	v	
	Spannung an G2 (Beschleunigungselektrode)	U _{G2}	=	300	v	
	Spannung an G1	U G1	=		v	4)
	Austastspannung an G1	U _{G1 MM}	=	50 ± 10	v	
	Strahlstrom	I _{STR}				4)
	Beleuchtungsstärke der Frontplatte	Е	~	1	lx	
	Frontplattentemperatur	θA	=	2045	°C	
Sp	peicherplatte					
	Dunkelstrom	I O	≤	3	nA	
	Maximum der spektralen Empfindlichkeit	ca.		470	nm	
	Grenzwellenlänge	ca.		650	nm	
	γ-Wert			0,95 + 0,05		
	Empfindlichkeit bei Farbtemperatur 2856 K			165 (≥ 130)	μ A/l m	5)

Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

500 (≥ 395)

 $200 \ (\geq 160)$

μA/lm

6)

nΑ

Anmerkungen siehe 6. Seite dieses Datenblattes

Empfindlichkeit (Lichtart P 20)

Signalstrom, Spitzenwert bei E = 1 lx (P 20)

26. 2. 1988

7)

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang (13 LP/mm) abgetastete Fläche Ø 15 mm

Modulations-Übertragungskurve

70 siehe nächste Seite

Trägheit (typische Werte)

ausreichend klein für medizinische Zwecke in Verbindung mit Röntgen-Kameraketten; die Trägheit ist im wesentlichen unabhängig von der Beleuchtungsstärke.

Restsignal nach Dunkelimpuls von 60 ms Restsignal nach Dunkelimpuls von 200 ms $4 \le 6$ $1.5 \le 2.5$

~

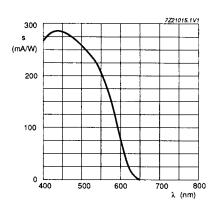
%

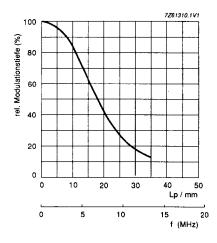
gemessen nach 5 s lang 100 % Weiß mit I $_{\rm A}$ = 200 nA, I $_{\rm STR}$ für einwandfreie

Stabilisierung I A eingestellt und einer

Lichtquelle mit einer spektralen Energieverteilung gemäß P 20-Leuchtschirm.

Grenzdaten (absolute Werte)


(Spannungen auf Katode bezogen, soweit nicht anders angegeben)


U A	= max.	50	v	1	U _{+FK M}	= max.	50	V	
U_{G4}	= max.	1100	v		U -FK M	= max.	125	v	
U_{G3}	= max.	800	V		Z_{FK}	= min.	2	$k\Omega$	$(U_{FKM} > 10 V)$
U G4G3	= max.	450	V		t _h	= min.	1	min	
U_{G2}	= max.	350	V		ϑ_U , ϑ_A	= max.	+50	°C	1)
P_{G2}	= max.	1	W			= min.	-30	°C	
+U G1	= max.	0	v		E	= max.	500	lx	2)
-U _{G1}	= max.	125	v						

GO

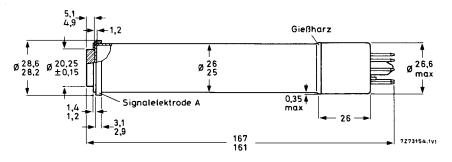
- Grenzwert für die Kamerakonstruktion.
 Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 2) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 3) gemessen mit der Fokussier- und Ablenkeinheit AT 1116 S. Daten siehe unter Zubehör. Die Amplitude der Abtastung ist so einzustellen, daß bei einer nutzbaren Bildfläche von ø 15 mm ein Kreis, entsprechend der Rasterhöhe auf einem Röntgen-Monitor dargestellt wird.
- 4) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 500 nA entsteht. Der Strahlstrom wird als der Strom definiert der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren (siehe auch Anmerkung 6)).
- 5) Meßbedingungen: gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und Filter Schott VG 9 im optischen System
- 6) Die Signalspitzenströme werden mit einem Video-Oszilloskop am Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der Ø 15 mm Fläche, gemessen. Bei Messung mit einem integrierenden Meßinstrument sind die Signalelektrodenströme kleiner:

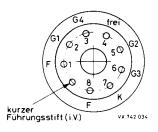
 a) um einen Faktor α (α = 100/100-β; β ist die Gesamtaustastzeit in %); beim CCIR-System ist α = 0,75
 b) um einen Faktor δ, (δ ist das Verhältnis der genutzten Abtastfläche (Kreis mit Ø 15 mm) zur Fläche, die den eingestellten Abtastamplituden (15 mm x 20 mm) entspricht), hier ergibt sich das Verhältnis δ = 0,59.
 Das gesamte Verhältnis des integrierten Signalstromes I A zum Signalspitzenstrom I A M beträgt α x δ = 0,44.
- 7) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, sinusförmiger Helligkeitsverteilung des Meßrasters bei 400 Zeilen, Blende 5,6. Der publizierte Wert von 70 % ist unkorrigiert. Die wirkliche Auflösung der Röhre ist höher. Gemessen bei I A = 100 nA und I STR = 500 nA. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

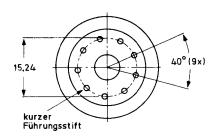
1"-PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

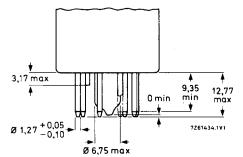
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- für den Rotkanal in Farbfernsehkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- · XQ 1075 R mit aufgedampftem Infrarot-Sperfilter auf der Antireflexionsplatte
- · mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz

Kurzdaten


Heizung	UF	=	6,3	V	
	I _F	=	95	m A	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge XQ 1073 R XQ 1075 R	ca.		850950 750	nm nm	
Empfindlichkeit bei Farbtemperatur 2856 K			110	μA / lm	
Modulationstiefe bei 400 Zeilen (5 MHz)			40	%	
Fokussierung	magne	tisch			
Ablenkung	magne	etisch			
Ausführung mit	aufgedampftem Infrarot-Sperrfilter auf d Anti-Reflexionsplatte (nur XQ 1075 R)				




XQ 1073 R XQ 1075 R


Mechanische Daten

Abmessungen in mm

Sockel Ditetrar (E 8-11), IEC 67-I-33a

Zubehör

Fassung 56 605

Fokussier- und Ablenk-Einheit

für Schwarzweiß-Femsehkameras AT 1116/06 S für Farbfemsehkameras AT 1116/06 T

Masse ca. 60 g

Einbaulage beliebig

26. 2. 1988

92

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

9.6 mm x 12.8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex

 $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex

 $5 \pm 0.1 \, \text{mm}$ n = 1.52

XQ 1075 R

aufgedampfter Infrarot-Sperrfilter

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom bei $U_F = 6.3 \text{ V}$

 $I_{F} = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

-U G1 ٧ 35...100

Austastspannung an G1

an Katode

U_{G1 MM} 50 ± 10 25 UKMM

G2-Strom bei normalem

Strahlstrom

 I_{G2} ≤ 0.5 mΑ

Fokussierung Ablenkung

magnetisch

magnetisch

Kapazität

3...5 pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c ...

XQ 1073 R XQ 1075 R

Kenn- und Betriebsdaten 4)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U $_{\mathrm{G4}}$	=	960	v	
Spannung an G3	U $_{\rm G3}$	=	600	V	
Spannung an G2	U $_{\rm G2}$	=	300	v	
Spannung an G1	U_{G1}			V	5)
Austastspannung an G1	U $_{\rm G1~MM}$	=	50	V	
Strahlstrom	I _{STR}				5)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	6)
Frontplattentemperatur	ϑA	=	2045	°C	2)
Speicherplatte					
Dunkelstrom	Ι 0		≤ 3	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
XQ 1073 R	ca.		850950	nm	
XQ 1075 R	ca.		750	nm	
γ-Wert			0,95 + 0,05		
•					

Empfindlichkeit bei Farbtemperatur 2856 K

7)

μA/lm

110 (≥ 75)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{20. 2. 1988}

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

5) 8)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

100 nΑ Signalstrom I A 200 nA Strahlstrom I STR % Modulationstiefe bei 5 MHz 40 (≥ 35)

Trägheit für dunkle Bildpartien (20 % Bildweiß) 9) (typische Werte)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anstieg	strägheit	Abfallträgheit		
	I _A /I _{STR} =	20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$		
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1073 R	85 %	≈ 100 %	11 %	4 %	
XQ 1075 R	85 %	≈ 100 %	11 %	4 %	

XQ 1073 R XQ 1075 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

UA	= max.	50	V	$U_{+FKM} = max.$ 50	v
U _{G4}	= max.	1100	V	$U_{.FKM} = max.$ 125	V
U _{G4G3}	= max.	450	V	$Z_{FK} = min.$ 2	kΩ ¹)
U $_{\mathbf{G3}}$	= max.	800	V	t _h = min. 1	min
$\text{U}_{\mathbf{G2}}$	= max.	350	v	$\vartheta_{U}, \vartheta_{A} = \max.$ +50	°C 2)
+U _{G1}	= max.	0	v	= min30	°C
-U _{G1}	= max.	125	v	E = max. 500	lx ³)

¹⁾ $U_{FKM} > 10 \text{ V}$

²⁾ Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

³⁾ für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrickt werden

⁴⁾ gemessen mit der Fokussier- und Ablenkeinheit AT 1116. Fokussier- und Ablenkeinheiten siehe unter Zubehör.

⁵⁾ Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 200 nA entsteht. Der Strahlstrom wird als der Strom definien, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht. Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. (α = 100/100-β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)

⁶⁾ Zur Erzielung der bei Modulationstiese angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 7)) erforderlich (Filter BG 12 = 1 mm).

7) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 1073 R	Schott OG 570 und Calflex B1/K1	3
XQ 1075 R	Schott OG 570	3

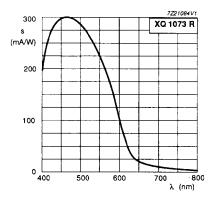
8) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters (400 Zeilen) und Blende 5,6 sowie den entsprechenden Filtern im optischen System.

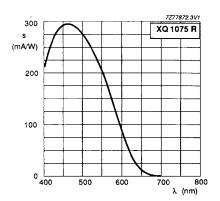
Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

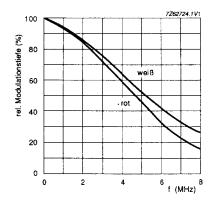
9) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

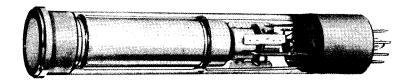

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


Warnhinweis


Gift

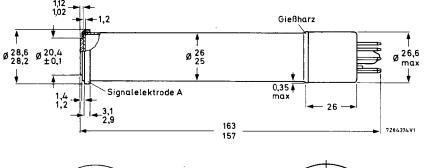
Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

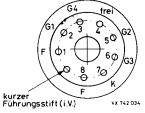
26. 2. 1988

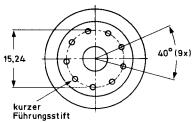


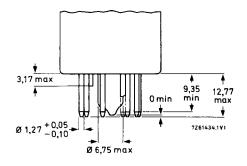
1"-PLUMBICON® - Kameraröhre

- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- Grünfilter zur Verringerung des Streulichtes
- für Röntgenröhren mit P20 Leuchtschirm
- mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz


Kurzdaten


Heizung	U_{F}	=	6,3	V	
	IF	=	95	mA	
Maximum der spektralen Empfindlichkeit	ca.		500	nm	
Grenzwellenlänge	ca.		650	nm	
Empfindlichkeit, P20 Leuchtschirm			485	μA/lm	
Auflösung bei 13 LP/mm (5 MHz)			75	%	
Fokussierung	magnetisch				
Ablenkung	magnet	isch			
Ausführung mit	Signalelektrodenring, Anti-Reflexionsplatte BG 18				




Mechanische Daten

Abmessungen in mm

Sockel	Ditetrar (E 8-11), IEC 67-I-33a
Masse	ca. 60 g
Einbaulage	beliebig
Zubehör Fassung Fokussier- und Able	56 605 nk-Einheit AT 1116 S

26. 1. 1988 100

Kenn- und Betriebsdaten 3)

Optische Daten

Durchmesser der nutzbaren

Bildfläche 15 mm

Lage der Bildfläche Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke $1,2 \pm 0,1 \text{ mm}$ Brechungsindex n = 1,49

Anti-Reflexionsplatte BG 18

Dicke 1,07 \pm 0,5 mm Brechungsindex n = 1,53

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom

Heizspannung $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten. Für beste Eigenschaften wird Stabilisierung der Heizspannung

empfohlen.

Heizstrom bei $U_F = 6.3 \text{ V}$ $I_F = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung $-U_{G1} = 35...100 \text{ V}$

Austastspannung

an G1 $U_{G1 MM} = 50 \pm 10$ an Katode $U_{K MM} = 25$

G2-Strom

bei normalem Strahlstrom $I_{G2} \leq 0.5$ mA

Fokussierung magnetisch

Ablenkung magnetisch

Kapazität $c_a = 3...5 pF$

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich $\, c_{a}$.

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 1073 X

Kenn- und Betriebsdaten 3)

Elektrische Daten, Fortsetz	tzung
-----------------------------	-------

	Spannung an Katode	U _K	=	0	V	
	Signalelektrodenspannung	U A	=	45	V	
	Spannung an G4 (Feldnetz)	U_{G4}	=	960	V	
	Spannung an G3 (Fokussierelektrode)	U $_{\rm G3}$	=	600	V	
	Spannung an G2 (Beschleunigungselektrode)	U $_{\rm G2}$	=	300	v	
	Spannung an G1	U G1	=		v	4)
	Austastspannung an G1	$\rm U_{G1MM}$	=	50 ± 10	V	
	Strahlstrom	I _{STR}				4)
	Beleuchtungsstärke der Frontplatte	E	~	1	lx	
	Frontplattentemperatur	θA	=	2045	°C	
Sı	peicherplatte					
	Dunkelstrom	I ₀	≤	3	nA	
	Maximum der spektralen Empfindlichkeit	ca.		500	nm	
	Grenzwellenlänge	ca.		650	nm	
	γ-Wert			0,95 + 0,05		
	Empfindlichkeit bei Farbtemperatur 2856 K			115 (≥ 90)	μΑ/lm	5)

Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

485 (≥ 400)

195 (≥ 160)

μA/lm

nΑ

6)

Anmerkungen siehe 6. Seite dieses Datenblattes

Empfindlichkeit (Lichtart P 20)

Signalstrom, Spitzenwert bei E = 1 lx (P 20)

4. 10. 1988

102

7)

%

%

%

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

Modulationstiefe bei 400 Zeilen (5 MHz),
in Bildmitte, unkompensierter Amplitudengan

Modulations-Übertragungskurve

in Bildmitte, unkompensierter Amplitudengang (13 LP/mm) abgetastete Fläche Ø 15 mm

75 siehe nächste Seite

4 (≤ 6)

 $1,5 (\leq 2,5)$

Trägheit (typische Werte)

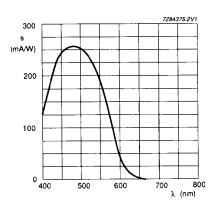
ausreichend klein für medizinische Zwecke in Verbindung mit Röntgen-Kameraketten; die Trägheit ist im wesentlichen unabhängig von der Beleuchtungsstärke.

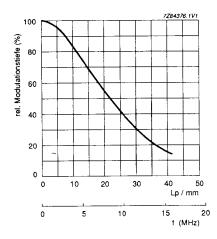
Restsignal nach Dunkelimpuls von 60 ms Restsignal nach Dunkelimpuls von 200 ms

gemessen nach 5 s lang 100 % Weiß mit I $_{\rm A}$ = 200 nA, I $_{\rm STR}$ für einwandfreie Stabilisierung I $_{\rm A}$ eingestellt und einer Lichtquelle mit einer spektralen Energieverteilung gemäß P 20-Leuchtschirm.

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)


U A	= max.	50	V		= max.			
U_{G4}	= max.	1100		U _{-FK M}				
U_{G3}	= max.	800	V					$(U_{FKM} > 10 V)$
$\rm U_{\rm G4G3}$	= max.	450	v	t _h	= min.	1	min	
U_{G2}	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	° C	1)
$P_{\rm G2}$	= max.	1	w		= min.	-30	°C	
+U G1	= max.	0	ν	E	= max.	100	lx	2)
-U G1	= max.	125	v					


Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 1073 X

- Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 2) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 3) gemessen mit der Fokussier- und Ablenkeinheit AT 1116 S. Daten siehe unter Zubehör. Die Amplitude der Abtastung ist so einzustellen, daß bei einer nutzbaren Bildfläche von ø 15 mm ein Kreis, entsprechend der Rasterhöhe auf einem Röntgen-Monitor dargestellt wird.
- 4) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 500 nA entsteht. Der Strahlstrom wird als der Strom definiert der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren (siehe auch Anmerkung ⁶)).
- 5) Meßbedingungen: gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und Filter Schott VG 9 im optischen System
- 6) Die Signalspitzenströme werden mit einem Video-Oszilloskop am Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der Ø 15 mm Fläche, gemessen. Bei Messung mit einem integrierenden Meßinstrument sind die Signalelektrodenströme kleiner:


 a) um einen Faktor α (α = 100/100-β; β ist die Gesamtaustastzeit in %); beim CCIR-System ist α = 0,75
 b) um einen Faktor δ, (δ ist das Verhältnis der genutzten Abtastfläche (Kreis mit Ø 15 mm) zur Fläche, die den eingestellten Abtastamplituden (15 mm x 20 mm) entspricht), hier ergibt sich das Verhältnis δ = 0,59.
 Das gesamte Verhältnis des integrierten Signalstromes I A zum Signalspitzenstrom I A M beträgt α x δ = 0,44.
- 7) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, sinusförmiger Helligkeitsverteilung des Meßrasters bei 400 Zeilen, Blende 5,6. Der publizierte Wert von 75 % ist unkorrigiert. Die wirkliche Auflösung der Röhre ist höher. Gemessen bei I A = 100 nA und I STR = 500 nA. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

1"-PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für industrielle Anwendungen
- XQ 1076 R mit aufgedampftem Infrarot-Sperfilter auf der Antireflexionsplatte
- · mechanisch austauschbar gegen 1"-Vidikons mit getrenntem Feldnetz

Die Röhren XQ 1074 und XQ 1076 sind elektrisch und mechanisch identisch mit den Röhren XQ 1073 und XQ 1075, haben jedoch geringere Anforderungen in Bezug auf Bildfehler.

Kurzdaten

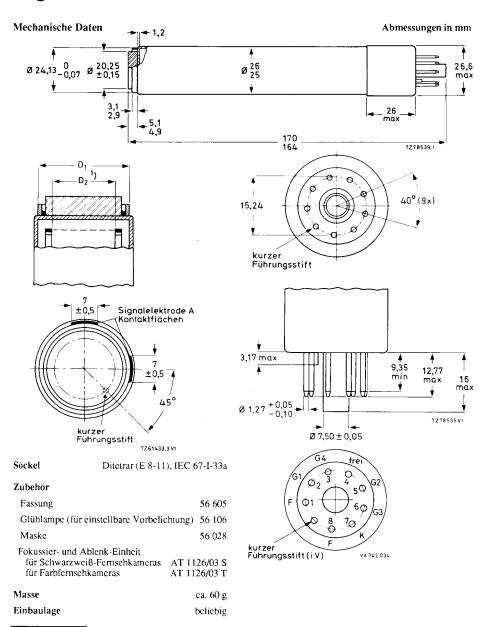
ricizung	υF	=	0,5	V
	ΙF	=	95	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge XQ 1074 R XQ 1076 R	ca.		850950 750	nm nm
Empfindlichkeit bei Farbtemperatur 2856 K			110	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)			45	%
Fokussierung	magne	tisch		
Ablenkung	magne	tisch		
Ausführung mit			em Infrarot-S onsplatte (nui	perrfilter auf der XQ 1076 R)

1"-PLUMBICON® - Kameraröhre mit erweiterter Rotempfindlichkeit

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- für den Rotkanal in Farbfemsehkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- · aufgedampfter Infrarot-Sperfilter auf der Antireflexionsplatte

Die Röhre XQ 1075/02 R ist elektrisch identisch mit XQ 1075 R Mechanisch ist sie so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden kann. Sie ist wahlweise einsetzbar für die Röhre XQ 1085 R, wenn kein ACT-Betrieb gefordert ist.

Kurzdaten


Heizung	U_F	= =	6,3 95	V mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge	ca.		750	nm
Empfindlichkeit bei Farbtemperatur 2856 K			110	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)			40	%
Fokussierung	magne	etisch		
Ablenkung	magno	etisch		
Ausführung mit	Lichtleitern, 1) 2) Anti-Reflexionsplatte, keramischem Zentrierring, aufgedampftem Infrarot-Sperrfilter auf Anti-Reflexionsplatte			

VAIVN

Anmerkungen siehe 3. Seite dieses Datenblattes

26. 2. 1988

107

¹⁾ Die Differenz zwischen den Mittellinien der Durchmesser D₁ (Bezugsring) und D₂ (Feldnetz) ist < 100 μm.

108

^{26. 2. 1988}

Kenn- und Betriebsdaten

Speicherplatte, Ergänzung zu den Daten XQ 1075 R

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12.5 %

3)

- 1) Einstellbare Vorbelichtung:
 - Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefen, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden.
- 2) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.
 - Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.
- 3) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 - Bei den typischen Einstellungen, wie in Anmerkung ³) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.

30 mm-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität

XQ 1410 für Schwarzweiß Fernschkameras
XQ 1410 R für den Rotkanal in Farbfernschkameras
XQ 1410 G für den Grünkanal in Farbfernschkameras
XQ 1410 B für den Blaukanal in Farbfernschkameras
XQ 1410 L für den Luminanzkanal in Farbfernschkameras

Die Röhren der Serie XQ 1410 sind austauschbar mit Röhren der Serie XQ 1020, haben jedoch eine erhöhte Auflösung. Sie sind vorgesehen für festes als auch einstellbares Auflicht zur Reduzierung der Trägheit bei geringer Szenenbeleuchtung.

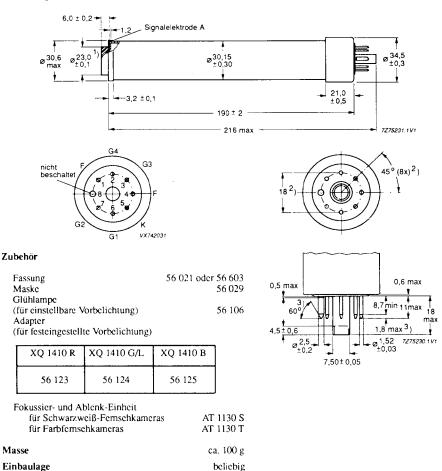
UF

Kurzdaten Heizung

	ΙF	=	190	mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
Grenzwellenlänge	ca.		650	nm			
	XQ 1 XQ 1	410 410 L	XQ 141	0 R	XQ 1410 G	XQ 1410 B	
Empfindlichkeit bei Farbtemperatur 2856 K	400)	80		170	40	μΑ / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	55		50		55	60	%
Fokussierung	magne	tisch	ı			l	

Ablenkung magnetisch

Ausführung mit Anti-Reflexionsplatte, fester oder einstellbarer Vorbelichtung 1)


Anmerkungen siehe 6. Seite dieses Datenblattes

1. 3. 1988 111

Mechanische Daten

Abmessungen in mm

 $^{^1)}$ Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0,2 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7,2 \pm 0,2 mm.

²⁾ Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von 8,230 ± 0,005 mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessern: 7 x 1,690 ± 0,005 mm und 1 x 2,950 ± 0,005 mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

^{1, 3, 1988}

¹¹²

Kenn- und Betriebsdaten 4)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

12,8 mm x 17,1 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$

n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $6 \pm 0.2 \text{ mm}$ n = 1,52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

UF

 $= 6.3 \text{ V} \pm 5$ %

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$ mit Adapter für Vorbelichtung

ΙF = I_{F(Ad)}

190 300

mΑ mΑ

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

-U G1

U_{K-MM}

30...100

ν

Austastspannung

an G1 an Katode U_{G1 MM} 50 ± 10 =

≤

25

G2-Strom bei normalem

Strahlstrom

I_{G2}

1

mA

Fokussierung

magnetisch

Ablenkung

magnetisch

Kapazität

C_a 3...6

pF Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten 4)

Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4 (Feldnetz)	U _{G4}	=	675	v	
Spannung an G3 (Fokussierelektrode)	U $_{\rm G3}$	=	600	v	
Spannung an G2 (Beschleunigungselektrode)	U G2	=	300	v	
Spannung an G1	U _{G1}	=		v	5)
Austastspannung an G1	U _{G1 MM}	=	50 ± 10	v	
Strahlstrom	I _{STR}				5)
Beleuchtungsstärke der Frontplatte	Е	=	010	lx	6)
Frontplattentemperatur	ϑA	=	2045	°C	
Speicherplatte					
Dunkelstrom (ohne Vorbelichtung)	I ₀		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					7)
XQ 1410, XQ 1410 L			400 (≥ 365)	μΑ/lm	
XQ 1410 R			80 (≥ 70)	μΑ/lm	
XQ 1410 G			170 (≥ 135)	μΑ/lm	

40 (≥ 35)

 $\mu A/Im$

XQ1410 B

Anmerkungen siehe 6. Seite dieses Datenblattes

^{1. 3. 1988} 114

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 1410 XQ 1410 L XQ 1410 G	XQ 1410 R	XQ 1410 B
Signalstrom I A (nA)	300	150	150
Strahlstrom I STR (nA)	600	300	300
Modulationstiefe bei 5 MHz (%)	55 (≥ 50)	50 (≥ 40)	60 (≥ 50)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

9)10)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstiegsträgheit		Abfallträgheit		
	I _A /I _{STR} =	= 20/300 nA	I _A /I _{STR} =	20/300 nA	
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1410, XQ 1410 L	98 %	≈ 100 %	7 %	2 %	
XQ 1410 R	98 %	≈ 100 %	8 %	3 %	
XQ 1410 G	98 %	≈ 100 %	7 %	2 %	
XQ 1410 B	95 %	≈ 100 %	11 %	3,5 %	

Anstiegs- und Abfallträgheit für dunkle Bildpartien bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit imDunkelstrom mit Vorbelichtung

12,5 %

11)

Anmerkungen siehe nächste Seite dieses Datenblattes

GO

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projizient wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden, (siehe auch Anmerkung 10)). Die Fassungen 56 021 bzw. 56 603 sind für den Einsatz einer Kameraröhre mit Vorbelichtungslampe geeignet.

1b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen.

Die Heizspannung soll auf 6.3 ± 0.1 V stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu liefern.

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert. Z.B. Rot für den Rotkanal, Grün für den Grün- oder Luminanzkanal in Farbfernsehkameras.

²) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 4) gemessen mit der Fokussier- und Ablenkeinheit AT 1130

1.3.1988

^{1a}) Einstellbare Vorbelichtung:

- 5) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 600 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.
 - In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I $_{\rm A}$ /I $_{\rm STR}$ = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
 - Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.
 - (α = 100/100-β; β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)
- 6) Zur Erzielung eines Signalstromes von 300 nA bei XQ 1410 und XQ 1410 L ist eine Beleuchtungsstärke von etwa 3,5 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 1410 R/G/B ist eine Beleuchtungsstärke von etwa 8,5 lx (2856 K) vor den entsprechenden Filtern (siehe auch Anmerkung 7)) erforderlich.
- 7) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

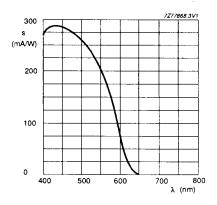
	Filter	Dicke (mm)
XQ 1410 R	Schott OG 570	3
XQ 1410 G	Schott VG 9	1
XQ 1410 B	Schott BG 12	3

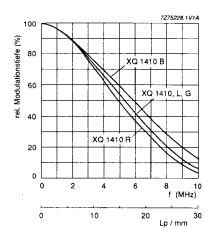
- 8) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.
 - Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 9) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

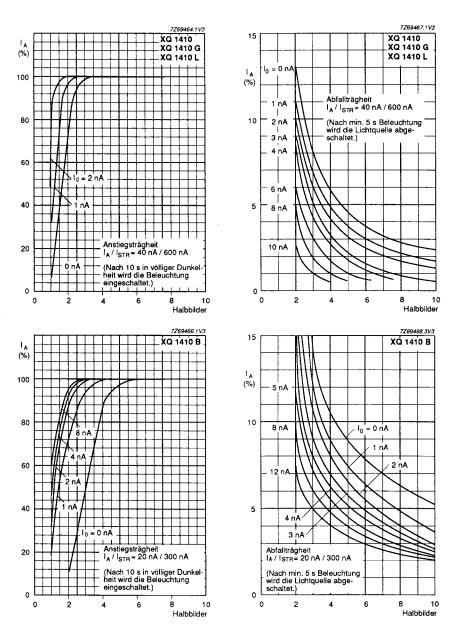

- 10) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Für Schwarzweiß Anwendungen genügt im allgemeinen eine Vorbelichtung, die einem zusätzlichen Dunkelstrom von 4,5 nA entspricht, um genügend kurze Ansprechzeiten zu erhalten.
 - b) Einstellbare Vorbelichtung für Farbfernsehkameras (siehe auch ^{1a})):
 - In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße


1.3.1988

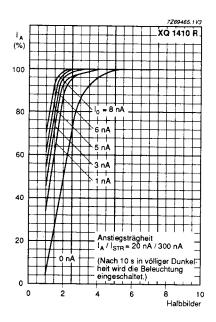
Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

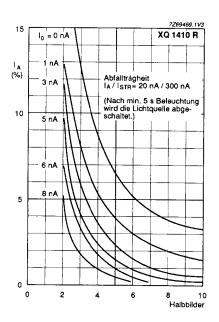
Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

- c) Fest eingestellte Vorbelichtung für Farbfernschkameras (siehe auch ^{1b})): Typische Werte für eine RGB-Kamera sind etwa 3 nA (R), 2 nA (G) und 3,5 nA (B). Die mit den Röhren gelieferten Adapter ergeben Vorbelichtungen in diesen Größenordnungen.
- 11) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an. Bei den typischen Einstellungen, wie in Anmerkung 10) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.


Warnhinweis

Cife


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!


1.3.1988

118

1. 3. 1988 119

30 mm-PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität
- · XQ 1415 Serie mit aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte

XQ 1413 R für den Rotkanal in Farbfernsehkameras

XQ 1415 L für den Luminanzkanal in Farbfernschkameras

XQ 1415 R für den Rotkanal in Farbfernsehkameras

Die Röhren der Serien XQ 1413 und XQ 1415 sind austauschbar mit Röhren der Serie XQ 1023 und XQ 1025, haben jedoch eine erhöhte Auflösung. Sie sind vorgesehen für festes als auch einstellbares Auflicht zur Reduzierung der Trägheit bei geringer Szenenbeleuchtung.

Kurzdaten

Heizung	UF	=	6,3	V
	ΙF	=	190	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm

	XQ 1413 R	XQ 1415 L	XQ 1415 R	
Grenzwellenlänge	850950	ca. 750	ca. 750	nm
Empfindlichkeit bei Farbtemperatur 2856 K	120	435	120	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	55	60	55	%

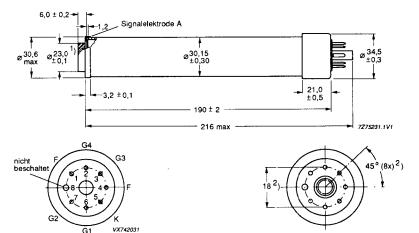
Fokussierung magnetisch

Ablenkung magnetisch

Ausführung mit Anti-Reflexionsplatte,

aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte (nur XQ 1415 Serie), fester oder einstellbarer Vorbelichtung

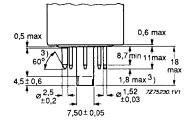
Anmerkungen siehe 6. Seite dieses Datenblattes


2. 3. 1988

121

Mechanische Daten

Abmessungen in mm



Zubehör

Fassung	56 021 oder 56 603
Maske	56 029
Glühlampe	
(für einstellbare Vorbelichtung)	56 106
Adapter	
(für festeingestellte Vorbelichtung)	

XQ 1413 R	XQ 1415 L	XQ 1415 R
56 123	56 124	56 123

Fokussier- und Ablenk-Einheit

für Schwarzweiß-Femsehkameras	AT 1130 S
für Farbfemsehkameras	AT 1130 T
1 asse	ca. 100 g

beliebig

Einbaulage

¹⁾ Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0,2 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7,2 ± 0,2 mm.

²) Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von 8,230 ± 0,005 mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessern: 7 x 1,690 ± 0,005 mm und 1 x 2,950 ± 0,005 mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

³⁾ Die Stiftenden sind spitzzulaufend und / oder abgerundet.

^{2. 3. 1988}

¹²²

Kenn- und Betriebsdaten 4)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3 : 4) 12,8 mm x 17,1 mm

Lage der Bildfläche Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke $1,2 \pm 0,1 \text{ mm}$ Brechungsindex n = 1,49

Anti-Reflexionsplatte

Dicke $6 \pm 0.2 \text{ mm}$ Brechungsindex n = 1.52

XO 1415 Serie aufgedampster Infrarot-Sperfilter

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom bei $U_F = 6.3 \text{ V}$

bei $U_F = 6.3 \text{ V}$ $I_F = 190 \text{ mA}$ mit Adapter für Vorbelichtung $I_{F(Ad)} = 300 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung $-U_{G1} = 30...100 \text{ V}$

Austastspannung

an G1 $U_{G1 MM} = 50 \pm 10 \quad V$ an Katode $U_{K MM} = 25 \quad V$

G2-Strom bei normalem

Strahlstrom $I_{G2} \leq 1 \text{ mA}$

Fokussierung magnetisch

Ablenkung magnetisch

Kapazität $c_a = 3...6$ pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten 4)

Elektrische Daten, Fortsetzung

Spannung an Katode	U K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4 (Feldnetz)	U _{G4}	=	675	v	
Spannung an G3 (Fokussierelektrode)	U _{G3}	=	600	v	
Spannung an G2 (Beschleunigungselektrode)	U _{G2}	=	300	v	
Spannung an G1	U G1	=		v	5)
Austastspannung an G1	U _{G1 MM}	=	50 ± 10	v	
Strahlstrom	I _{STR}				5)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	6)
Frontplattentemperatur	ϑA	=	2045	° C	

Speicherplatte			
Dunkelstrom (ohne Vorbelichtung)	r _o	≤ 2	nA
Maximum der spektralen Empfindlichkeit	ca.	450	nm
Grenzwellenlänge			
XQ 1413 R	ca.	850950	nm
XQ 1415 L, XQ 1415 R	ca.	750	nm
γ-Wert		0,95 + 0,05	

Empfindlichkeit bei Farbtemperatur 2856 K		
XQ 1415 L	435 (≥ 390)	μ A/l m
XQ 1413 R, XQ 1415 R	120 (≥ 110)	μ A/l m

7)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{2. 3. 1988}

¹²⁴

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 8)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 1415 L	XQ 1413 R XQ 1415 R
Signalstrom I A (nA)	300	150
Strahlstrom I STR (nA)	600	300
Modulationstiefe bei 5 MHz (%)	60 (≥ 50)	55 (≥ 45)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte) 9) 10)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anstieg	strägheit	Abfallträgheit		
:	I _A /I _{STR} =	= 20/300 nA	$I_{A}/I_{STR} =$	20/300 nA	
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1413 R	90 %	≈ 100 %	13 %	3,5 %	
XQ 1415 R	90 %	≈ 100 %	13 %	3,5 %	
XQ 1415 L	95 %	≈ 100 %	8 %	3 %	

Anstiegs- und Abfallträgheit für dunkle Bildpartien bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12.5 %

11)

Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 1413 R XQ 1415 L XQ 1415 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U _A	= max.	50	V	U _{+FK M}	= max.	50	V	
U_{G4}	= max.	1100	v	U .FK M	= max.	50	v	
U_{G3}	= max.	800	V	t h	= min.	1	min	
$\rm U_{\rm G4G3}$	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	°C	2)
U_{G2}	= max.	350	V		= min.	-30	°C	
$P_{\;G2}$	= max.	1	w	Е	= max.	500	lx	3)
+U _{G1}	= max.	0	v					
-U Gi	= max.	125	v					

Warnhinweis

Cift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden, (siehe auch Anmerkung ¹⁰)). Die Fassungen 56 021 bzw. 56 603 sind für den Einsatz einer Kameraröhre mit Vorbelichtungslampe geeignet.

1b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen. Die Heizspannung soll auf $6.3\pm0.1~V$ stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu liefern.

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert (z.B. rot für den Rotkanal).

²) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 4) gemessen mit der Fokussier- und Ablenkeinheit AT 1130

2. 3. 1988

126

^{1a}) Einstellbare Vorbelichtung:

- 5) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I _A/I _{STR} = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht. Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. (α = 100/100-β; β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)
- 6) Zur Erzielung der bei Modulationstiefe angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 8,5 lx (2856 K) vor den entsprechenden Filtern (siehe auch Anmerkung ⁷)) erforderlich.
- Meßbedingungen: gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in µA/Lumen bei weißem Licht vor dem Filter gemessen.

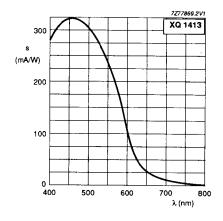
	Filter	Dicke (mm)
XQ 1413 R	Schott OG 570 und Calflex B1/K1	3
XQ 1415 R	Schott OG 570	3

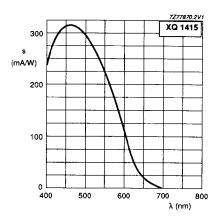
- 8) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meβrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.
 Des bei persettels Amplitudengeng kenn dusch gegignete Kompkrumgen unrhessert warden. Diese
 - Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 9) Anstiegsträgheit:

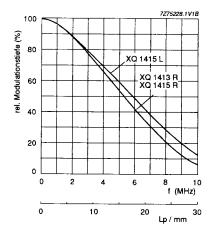
Nach 10 sin völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

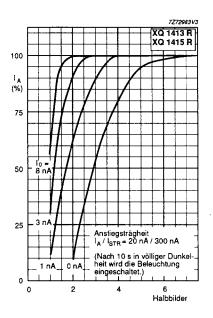
Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

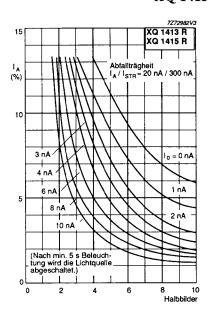

- 10) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Einstellbare Vorbelichtung für Farbfernsehkameras (siehe auch ^{1a})):

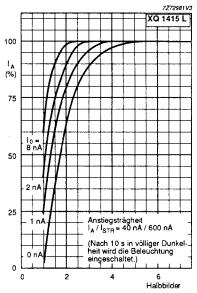

In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

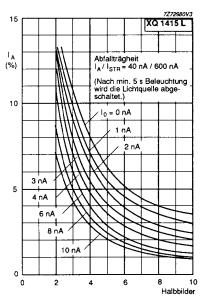

Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

b) Fest eingestellte Vorbelichtung: Durch die Verwendung des Adapters wird eine erhebliche Reduzierung der Anstiegs- und Abfallträgheit erreicht (siehe auch ^{1b})).

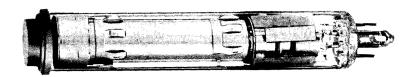

11) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
Bei den typischen Einstellungen, wie in Anmerkung 10) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.







2. 3. 1988 128



2. 3. 1988 129

2/3"-PLUMBICON® - Kameraröhren

- getrenntes Feldnetz
- fotoleitende Schicht geringer Trägheit
- für Anwendungen mit hohen Anforderungen an Bildqualität
- mechanisch austauschbar gegen 2/3"-Vidikons mit getrenntem Feldnetz

Die Plumbicon-Röhren der Serie XQ 1427 sind vorzugsweise geeignet zum Einsatz in EB- (Elektronische Berichterstattung) und EAP- (Elektronische Außenproduktion) Fernsehkameras.

XQ 1427	für Schwarzweiß Fernsehkameras	
---------	--------------------------------	--

XQ 1427 R für den Rotkanal in Farbfernsehkameras

XQ 1427 G für den Grünkanal in Farbfernsehkameras

XQ 1427 B für den Blaukanal in Farbfernsehkameras

Kurzdaten

Heizung	UF	=	6,3	V
-	I _F	=	95	mA
Maximum der spektralen Empfindlichkeit	ca		450	nm

Maximum der spektralen Empfindlichkeit 450

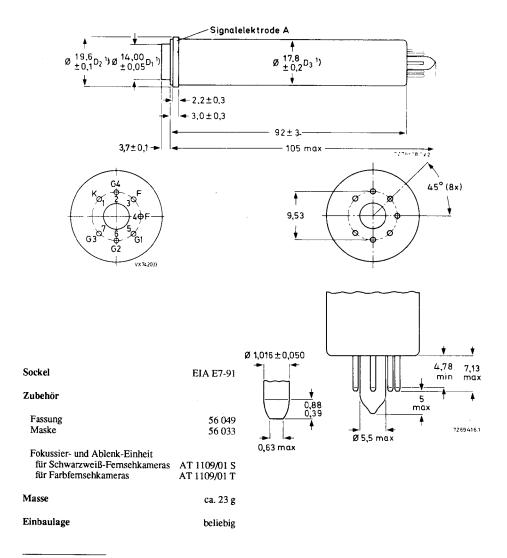
	XQ 1427	XQ 1427 R	XQ 1427 G	XQ 1427 B	
Grenzwellenlänge	650850	850	650850	650	nm
Empfindlichkeit bei Farbtemperatur 2856 K	365	100	140	40	$\mu A / lm$
Modulationstiefe bei 320 Zeilen (4 MHz)	60	52	60	65	%

Fokussierung

magnetisch

Ablenkung

magnetisch


Ausführung mit

Anti-Reflexionsplatte

Mechanische Daten

Abmessungen in mm

¹) Die Differenz zwischen den Mittellinien der Durchmesser D₁ (Anti-Reflexionsplatte), D₂ (Signalelektrode) und der Mittellinie des Durchmessers D₃ (Röhrenkolben) ist ≤ 200 µm.

^{9. 3. 1988} 132

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

6,6 mm x 8,8 mm

Lage der Bildfläche

Die Horizontalablenkung soll etwa parallel zur Ebene durch die Röhrenachse und den Zwischenraum zwischen Stift 1 und 7

verlaufen.

Frontplatte

Dicke Brechungsindex $2.3 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex

 $3.7 \pm 0.1 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_F = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

-U G1 = 30...80

Spannung an G1 bei

normaler Strahleinstellung

-U G1 30...10 =

Austastspannung

an G1

 $U_{G1MM} =$ 50 ± 10

UKMM 25

G2-Strom bei normalem

Strahlstrom

an Katode

I_{G2} ≤ 0.5

magnetisch

Fokussierung Ablenkung

magnetisch

1,5...3 Kapazität Ca

pF Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

mA

erhöht sich c ...

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten 4)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	ν	
Signalelektrodenspannung	U A	=	45	V	
Spannung an G4	$_{\mathrm{G4}}$	=	500 750	V	
Spannung an G3	U $_{\rm G3}$	=	285 430	v	6)
Spannung an G2	U _{G2}	=	300 300	V	
Spannung an G1	U_{G1}				5)
Austastspannung an G1	$U_{G1\;MM}$	=	50	V	
Strahlstrom	I STR				5)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	⁷)
Frontplattentemperatur	θA	=	2045	°C	
Speicherplatte					
Dunkelstrom	I _O		≤ 1,5	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	9)
Grenzwellenlänge	ca.		650850	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					8)
XQ 1427			365 (≥ 330)	μA/lm	
XQ 1427 R			100 (≥ 75)	μA/lm	
XQ 1427 G			140 (≥ 110)	μA/lm	
XQ 1427 B			40 (≥ 35)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{9. 3. 1988}

¹³⁴

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

10)

Modulationstiefe bei 320 Zeilen (4 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 1427 XQ 1427 G	XQ 1427 R	XQ 1427 B			
Signalstrom I A (nA)	150	75	75			
Strahlstrom I STR (nA)	300	150	150			
Modulationstiefe bei 4 MHz (%)						
U _{G4/G3} = 750/430 V	60 (≥ 55)	52 (≥ 47)	65 (≥ 60)			
U _{G4/G3} = 500/285 V	55 (> 45)	47 (> 40)	60 (>50)			

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

11) 12)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstieg	gsträgheit	Abfallträgheit		
	I _A /I _{STR} =	= 20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1427	90 %	≈ 100 %	9 %	3 %	
XQ 1427 R	90 %	≈ 100 %	9,5 %	4 %	
XQ 1427 G	90 %	≈ 100 %	9%	3 %	
XQ 1427 B	90 %	≈ 100 %	9,5 %	4 %	

Anmerkungen siehe nächste Seite dieses Datenblattes

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U	A	= max.	50	V 1)	U +FK M	= max.	50	V		
U	G4	= max.	1000	v	U .FK M	= max.	125	v		
U	G4G3	= max.	400	V	Z _{FK}	= min.	2	kΩ	(U _{FK M} > 10 V)	
U	G3	= max.	750	v	t _h	= min.	1	min		
U	G2	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	°C		2)
+L	J GI	= max.	0	v		= min.	-30	°C		
-U	Gl	= max.	200	v	E	= max.	500	lx		3)

- 1) Da bei PLUMBICON-Kameraröhren eine automatische Empfindlichkeitssteuerung durch Regelung der Signalelektrodenspannung nicht möglich ist, muß dies auf andere Weise, wie z.B. Blendeneinstellung oder Neutralfilter, erzielt werden.
 - Soll eine Röhre dieser Familis in eine Kamera, die für Vidikons entwickelt wurde, eingesetzt werden, so muß die Schaltung für die automatische Empfindlichkeitssteuerung außer Betrieb gesetzt und die Signalelektrodenspannung auf 45 V eingestellt werden.
- 2) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 4) gemessen mit der Fokussier- und Ablenkeinheit AT 1109. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 5) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 150 nA für R- und B-Röhren und 300 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.
 - In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
 - Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.
 - (α = 100/100-β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)

6) Das optimale Spannungsverhältnis U G4/U G3 zur Erzielung geringer Landefehler (vorzugsweise ≤ 1 V) hängt von der verwendeten Fokussier- und Ablenkeinheit ab. Für den Typ AT 1109 wird ein Spannungsverhältnis von 1,75 : 1 empfohlen.

In keinem Fall darf die Röhre mit einer Spannung U $_{\rm G4}$ (Feldnetz) < U $_{\rm G3}$ betrieben werden, da diese Betriebseinstellung die Speicherplatte beschädigt.

Spannungseinstellung U G4/U G3 für optimale Auflösung:

Die Auflösung der Kameraröhre nimmt mit Erhöhung der Spannung an G₃ und G₄ zu. Es ist aber zu berücksichtigen, daß eine Betriebsart mit höheren Spannungen auch höhere Ablenk- und Fokussierleistung erfordert.

Bei der Kameraentwicklung sind thermische Messungen (Luftkühlung, Wärmeableitung) durchzuführen, um die Einhaltung der max. Frontplattentemperatur von $+50~^{\circ}\mathrm{C}$ sicherzustellen, da sonst Leistung und Lebensdauer der Röhre eingeschränkt werden.

- 7) Zur Erzielung eines Signalstromes von 150 nA bei XQ 1427 ist eine Beleuchtungsstärke von etwa 7 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 1427 R/G/B ist eine Beleuchtungsstärke von etwa 19 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 8)) erforderlich. (BG 12 = 1 mm)
- 8) Meßbedingungen:

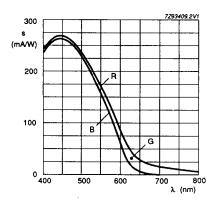
gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in µA/Lumen bei weißem Licht vor dem Filter gemessen.

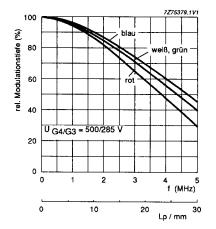
	Filter	Dicke (mm)
XQ 1427 R	Schott OG 570 und Calflex B1/K1	3
XQ 1427 G	Schott VG 9	1
XQ 1427 B	Schott BG 12	3

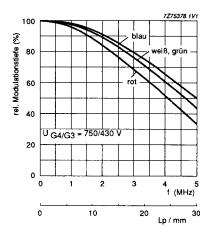
- 9) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 10) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 80 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters (400 Zeilen bei 6,6 mm x 8,8 mm Bildfläche) und Blende 5,6.

Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

11) Anstiegsträgheit:


Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.


Abfallträgheit:

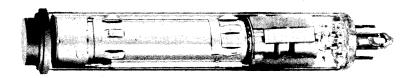

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

12) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.

9. 3. 1988

Warnhinweis

Gift


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

9.3.1988

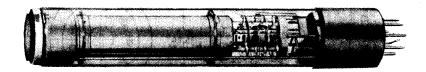
138

2/3"-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für industrielle Anwendungen
- mechanisch austauschbar gegen 2/3"-Vidikons mit getrenntem Feldnetz

Die Plumbicon-Röhren der Serie XQ 1428 sind elektrisch und mechanisch identisch mit denen der Serie XQ 1427, haben jedoch geringere Anforderungen in Bezug auf Bildfehler.

XQ 1428	für Schwarzweiß Fernschkameras
XQ 1428 R	für den Rotkanal in Farbfernschkameras
XQ 1428 G	für den Grünkanal in Farbfernsehkameras
XO 1428 B	für den Blaukanal in Farbfernsehkameras


Kurzdaten

Heizung	U _F I _F	=	6,3 95	V mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
	XQ 14	28	XQ 142	8 R	XQ 1428 G	XQ 1428 B	
Grenzwellenlänge	6508	50	850		650850	650	nm
Empfindlichkeit bei Farbtemperatur 2856 F	365		100		140	40	μA / lm
Modulationstiefe bei 320 Zeilen (4 MHz)	60		52		60	65	%
Fokussierung	magnetis	sch	•				
Ablenkung	magnetis	sch					
Ausführung mit	Anti-Ref	lexio	nsplatte				

1"-PLUMBICON® - Kameraröhren

- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · ACT-Betrieb für bessere Übertragung von Spitzlichtern
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- · niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- · für Anwendungen mit hohen Anforderungen an Bildqualität
- · austauschbar mit XQ 1080, jedoch mit 1,2 W Katode für verbesserte Auflösung

XQ 1500 für Schwarzweiß Fernsehkameras

XQ 1500 R für den Rotkanal in Farbfernsehkameras
XQ 1500 G für den Grünkanal in Farbfernsehkameras
XQ 1500 B für den Blaukanal in Farbfernsehkameras

XQ 1500 L für den Luminanzkanal in Farbfernsehkameras

Die Röhren der XQ 1500-Serie sind so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden können.

Kurzdaten

Heizung	U_F	=	6,3	V
	I _F	=	190	mΑ
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge	ca.		650	nm

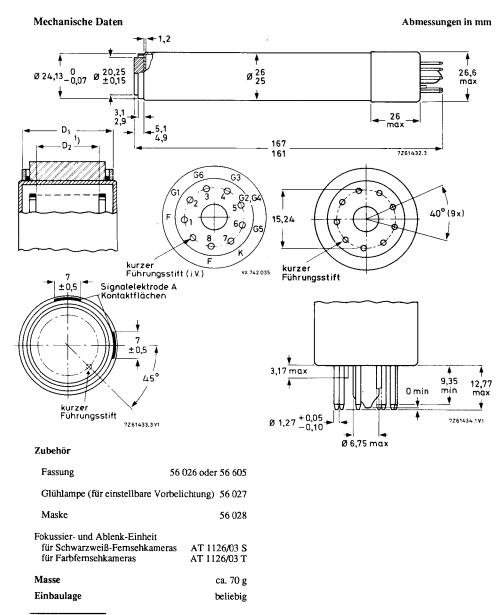
	XQ 1500 XQ 1500 L	XQ 1500 R	XQ 1500 G	XQ 1500 B	1
Empfindlichkeit bei Farbtemperatur 2856 K	375	80	160	40	μA/lm
Modulationstiefe bei 400 Zeilen (5 MHz)	50	40	50	55	%

Fokussierung magnetisch

Ablenkung magnetisch

Ausführung mit ACT-Elektrodensystem,

Lichtleitem, 1)
Anti-Reflexionsplatte,


keramischem Zentrierring

Anmerkungen siehe 6. Seite dieses Datenblattes

20. 2. 1988

141

 $^{^{1})}$ Die Differenz zwischen den Mittellinien der Durchmesser D $_{1}$ (Bezugsring) und D $_{2}$ (Feldnetz) ist < 100 μm_{\odot}

^{10. 2. 1988} 142

Kenn- und Betriebsdaten

5) mit ACT-Betrieb (ACT = Anti-Comet-Tail)

(Spannungen während des Abtastens auf Katode bezogen, soweit nicht anders angegeben) 6) 7) 8)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4) 9.6 mm x 12.8 mm

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse Lage der Bildfläche

und die seitliche Markierung am Sockel verlaufen

Frontplatte

 $1.2 \pm 0.1 \text{ mm}$ Dicke

n = 1.49Brechungsindex

Anti-Reflexionsplatte

 $5 \pm 0.1 \text{ mm}$ Dicke Brechungsindex n = 1,52

Elektrische Daten

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung Heizung

UF $6,3 \text{ V} \pm 5$ Heizspannung Die Heizspannung darf 9.5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

ΙE 190 mA bei $U_F = 6.3 \text{ V}$ =

Strahl-System

Sperrspannung an G1

bei $U_{G2G4/} = 300 \text{ V}$

ohne Austast- oder ACT-Impuls -U G1 40...110

Austastspannung an G1

 50 ± 10 12) bei $U_{G2G4/} = 300 \text{ V}$ U GL MM 13) G2G4-Strom I G2G4 < 0.2 mA

13) siehe G3-, G5- und G6-Strom

Abtastzeit und Anforderungen

8) an die Amplitude (ACT) siehe

Fokussierung magnetisch

magnetisch Ablenkung

2,5...3,5 pF Kapazität

> Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten

Elektrische Daten, Fortsetzung							
Spannung an Katode während des Abtastens		Uĸ	=		0	v	
bei ACT-Betrieb		UK	=	0.	15	v	
Signalelektrodenspannung		UA	=		45	v	
Spannung an G6 (Feldnetz)		U G6	=	7	'50	v	9)
Spannung an G5 (Kollektor)		U G5		4	175	V	,
Spannung an G2 und G4		U _{G2}		3	300	V	
Spannung an G3 (Hilfselektr. für ACT- während des Abtastens bei ACT-Betrieb	Betrieb)		sieh	e Anmerkung e Anmerkung			
Spannung an G1 (Steuerelektrode) während des Abtastens bei ACT-Betrieb			sieh	e Anmerkung e Anmerkung	8)		
Austastspannung an G1, Spitzenwert	•	U _{G1}	M =		50	V	
Beleuchtungsstärke der Frontplatte		E	=	0.	10	lx	11)
Frontplattentemperatur		θA	=	20	45	°C	2)
Typische Einstellungen für den Signalst Strahlstrom und die Spannungsimpulse							
			XQ 1500 XQ 1500 I		XQ 1500 G	XQ 1500 B	
Signalstrom, Spitzenwert	I _{AM}	(nA)	200	100	200	100	T
Strahlstrom, Spitzenwert	I STR M	(nA)	400	200	400	200	
Signalstrom bei ACT-Betrieb, Spw.	I ACT M	(nA)	280	140	280	140	
Impuls an Katode, Spitzenwert	$U_{\;K\;\;M}$	(V)	8	4	8	4	
Impuls an G1, Spitzenwert	U_{G1M}	(V)	28	24	28	24	
Impuls an G3, Spitzenwert	$U_{G3\ M}$	(V)		siel	ic ⁸)		
Speicherplatte							
Dunkelstrom		I_0	≤		1	nA	
Maximum der spektralen Empfindlichk	eit		ca.	4	50	nm	
Grenzwellenlänge			ca.	Ć	550	nm	
γ-Wert				0,95	+ 0,05		
Spitzlicht-Übertragung im Bereich			≥	5 B1	enden		15)
Empfindlichkeit bei Farbtemperatur 28: XQ 1500, XQ 1500 L XQ 1500 R XQ 1500 G XQ1520 B	56 K			375 (80 (160 ((≥ 330) (≥ 70) (≥ 130) (≥ 35)	μΑ/lm μΑ/lm μΑ/lm μΑ/lm	14)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{10.2.1988}

¹⁴⁴

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

16)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang, Blende 5,6

	XQ 1500 XQ 1500 L XQ 1500 G	XQ 1500 R	XQ 1500 B
Signalstrom I A (nA)	200	100	100
Strahlstrom I STR (nA)	400	200	200
Modulationstiefe bei 5 MHz (%)	50 (≥ 45)	40 (≥ 35)	55 (≥ 50)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt.

	Anstiegsträgheit I _A /I _{STR} = 20/300 nA		Abfallträgheit I A/I STR = 20/300 nA		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1500, XQ 1500 L	98 %	≈ 100 %	6 %	2 %	
XQ 1500 R	95 %	≈ 100 %	7 %	3 %	
XQ 1500 G	98 %	≈ 100 %	6%	2 %	
XQ 1500 B	95 %	≈ 100 %	9 %	3,5 %	

Trägheit (mit Vorbelichtung)

18)

Anstiegs- und Abfallträgheit für dunkle Bildpartien sowie Strahlstromeinstellungen bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

19)

Anmerkungen siehe nächste Seite dieses Datenblattes

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben.)

$U_{\mathbf{A}}$	= max.	50	V	U +FK M	= max.	50	V		
U $_{\rm G6}$	= max.	1100	V	U -FK M	= max.	50	v		
U _{G5}	= max.	800	V	z_{FK}	= max.	2	$k\Omega$	$(-U_{FKM} > 10 \text{ V})$	
$U_{\rm \ G6G5}$	= max.	350	V	t h	= min.	1	min		
U _{G2G4/}	= max.	350	V	ϑ _U , ϑ _A	= max.	+50	°C		2)
U $_{\rm G3}$	= max.	350	V		= min.	-30	°C		
+U Gi	= max.	0	V	E	= max.	500	lx		3)
-U _{G1}	= max.	200	V						

¹⁾ Für die Spezialfassung 56 026 ist eine Glühlampe (5 V, 110 mA, Best.-Nr. 56 027) lieferbar, deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird.
Das Licht wird über dünne Glasstäbe (Lichtleiter) geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden (siehe auch Anmerkung 18)).

²⁾ Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

³⁾ für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.

⁴⁾ gemessen mit der Fokussier- und Ablenkeinheit AT 1126

- 5) Bei Verwendung der Röhre ohne ACT-Betrieb muß G₃ mit G₂ und G₄ verbunden sein, und es darf kein ACT-Impuls an Katode und G₁ gegeben werden. Dann ergeben sich die beschriebenen Röhreneigenschaften mit Ausnahme des Verhaltens gegenüber Spitzlichtern.
- 6) a) Für einen ordnungsgemäßen Ablauf bei ACT-Betrieb muß die Gleichspannungs- oder Impulsversorgung der einzelnen Elektroden eine genügend kleine Impedanz haben (siehe auch Anmerkung ¹³).
 - b) Videovorverstärker:

Beim Auftreffen von Spitzlichtern können Signalspitzensströme I A M in der Größenordnung von 15 bis 45 µA während des Strahlrücklaufs an den Vorverstärker gelangen. Zum Schutz gegen zeitweilige Überlastung müssen im Vorverstärker entsprechende Maßnahmen getroffen werden.

7) a) Normale Abtastung:

reine Abtastzeit = gesamte Dauer einer Zeilenperione minus Zeilenaustastzeit; nach dem CCIR-System erhält man $64 \, \mu s$ - $12 \, \mu s$ = $52 \, \mu s$ für die reine Abtastzeit.

b) ACT-Betrieb:

Die Dauer der ACT-Impulse liegt innerhalb der Zeilenaustastung und ist gleich der Zeilen-Rücklaufzeit oder geringfügig größer.

8) Impulsfolge (CCIR-System) und Amplituden für ACT-Betrieb

(Austastung an Gitter 1 siehe Anmerkung 12)

Zum Betrieb des ACT-Systems werden drei Impulse benötigt und zwar:

- a) Ein positiv gerichteter Impuls U $_{K\,M}$ an der Katode mit einer einstellbaren Amplitude von 0...20 V. Die Dauer des Impulses kann so gewählt werden, daß sie genau mit der Kameraaustastzeit (ca. 11 μ s) übereinstimmt. Die Impulsamplitude bestimmt den ACT-Begrenzungsschwellwert und kann allgemein für S/W-, R-, G- und B-Röhren auf 8, 4, 8 bzw 4 V voreingestellt werden.
- Eine Amplitude von 20 V sollte zur Einstellung von I $_{\rm A}/{\rm I}$ $_{\rm STR}$ zur Verfügung stehen (siehe Anmerkung 10)).
- b) Ein positiv gerichteter Impuls an G_1 mit einer Amplitude $U_{G1\ M}=20\ V+U_{K\ M}$. Die Dauer des Impulses sollte so gewählt werden, daß sie gerade die Zeilenrücklaufzeit (ca. 5 μ s) mit einschließt (z.B. 6 μ s).
- c) Ein negativ gerichteter Impuls U $_{G3\,M}$ an G $_3$ mit entweder einer einstellbaren Amplitude und einer festen Grundspannung von 250...300 V oder mit einer festen Amplitude und einer einstellbaren Grundspannung von 250...300 V. In beiden Fällen ist die Einstellung so, daß U $_{G3}$ um 8,5 \pm 0,5 V höher liegt als U $_{K}$ bei ACT-Betrieb.

Dieser Strom sorgt dafür, daß ein ausreichender Strahlstrom aus dem Katodenstrom entnommen wird. Dauer und Steuerung des Impulses sollten mit denen des Impulses an G $_{\rm I}$ übereinstimmen.

- Ein entsprechendes Impulsfolge- und Amplitudenprogramm ist der nachfolgenden Grafik zu entnehmen.
- 9) ACT-Betrieb mit U $_{G6} \ge 750$ V ist nicht zu empfehlen, da dieses erhöhten Dunkelstrom hervorrufen kann.
- 10) Eingestellt mit abgeschaltetem ACT-Betrieb, z.B. durch einen Katodenimpuls von 20 V; die Spannung an G₁ wird so eingestellt, daß ein Strahlstrom I _{STR M} erzeugt wird, der gerade ausreicht, um einen Signalspitzenstrom I _{A M} vom zweifachen typischen Wert zu ermöglichen.

Der Signalspitzenstrom wird auf einem Video-Oszilloskop beobachtet und gemessen.

Die Signalströme werden mit einem integrierenden Meßinstrument am Signalelektroden-Anschluß bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche gemessen.

Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. ($\alpha = 100/100$ - β ; wobei β die Gesamtaustastzeit in % ist; beim CCIR-System ist $\alpha = 1,3$)

11) Zur Erzielung eines Signalstromes von 200 nA bei XQ 1500 und XQ 1500 L ist eine Beleuchtungsstärke von etwa 4,3 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 1500 R/G/B ist eine Beleuchtungsstärke von etwa 11 lx (2856 K) vor den entsprechenden Filtem (siehe auch Anmerkung 14)) erforderlich.

12) Austastung kann auch über die Katode erfolgen:

ohne ACT-Betrieb: erforderlicher Katodenimpuls = 25 V

mit ACT-Betrieb: Steuerung, Polarität und Amplitude des ACT-Impulses müssen angepaßt sein.

13) Die Gleichspannung oder Impulsversorgung der einzelnen Elektroden muß eine genügend kleine Impedanz haben, um Verzerrungen zu vermeiden, die durch die Spitzenströme während des ACT-Betriebes entstehen. Diese Spitzenströme können folgende Werte annehmen:

I_{KM}	≈	2	mA
I_{G1M}	~	0	mA
I _{G2G4 M}	~	1	mA
I_{G3M}	~	150	μΑ
I _{G5 M}	~	300	μΑ
I _{G6 M}	≈ '	300	μA

Die Katodenimpedanz sollte vorzugsweise $\leq 300 \Omega$ gewählt werden.

14) McBbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 1500 R	Schott OG 570	3
XQ 1500 G	Schott VG 9	1
XQ 1500 B	Schott BG 12	3

- 15) Mit den Impulsen entsprechend Anmerkung 8) verarbeitet die Röhre Spitzlicht mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 32fachen Wert für Bildweiß entspricht.
- 16) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende 5,6 sowie den entsprechenden Filtern im optischen System.
 Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

17) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit

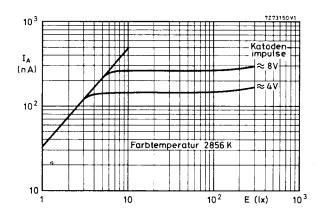
Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 18) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Für Schwarzweiß Anwendungen genügt im allgemeinen eine Vorbelichtung, die einem zusätzlichen Dunkelstrom von 2...3 nA entspricht, um genügend kurze Ansprechzeiten zu erhalten.

10.2.1988

148

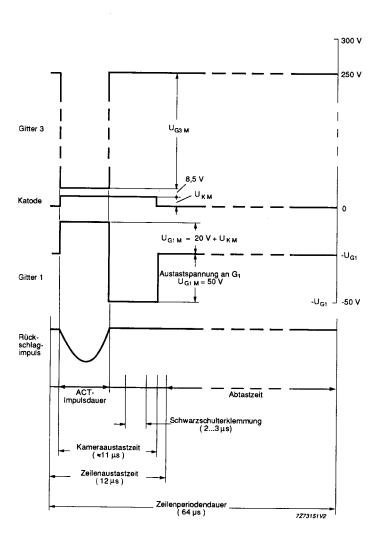
b) Einstellbare Vorbelichtung für Farbfernsehkameras:

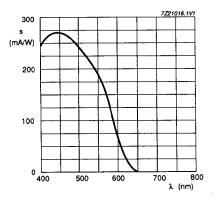

In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

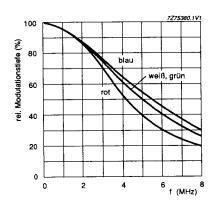
Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

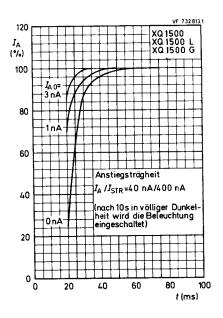
Typische Werte für eine RGB-Kamera sind etwa 3 nA (R), 2 nA (G) und 3,5 nA (B)

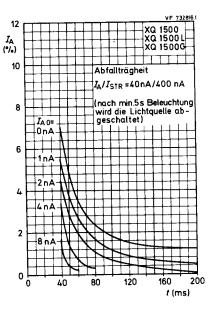
19) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.

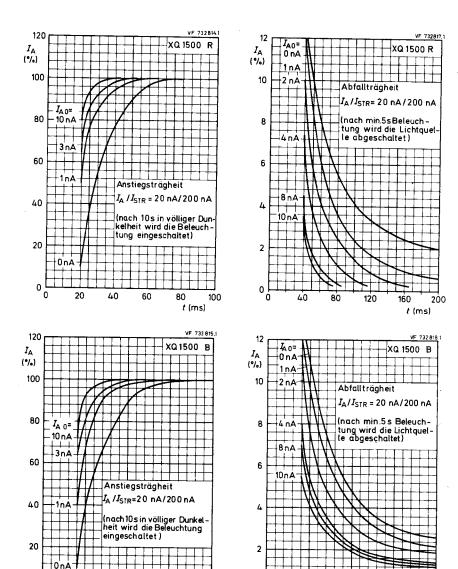

Bei den typischen Einstellungen, wie in Anmerkung ¹⁸) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.




Warnhinweis


Gift


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!



t (ms)

10. 2. 1988

t (ms)

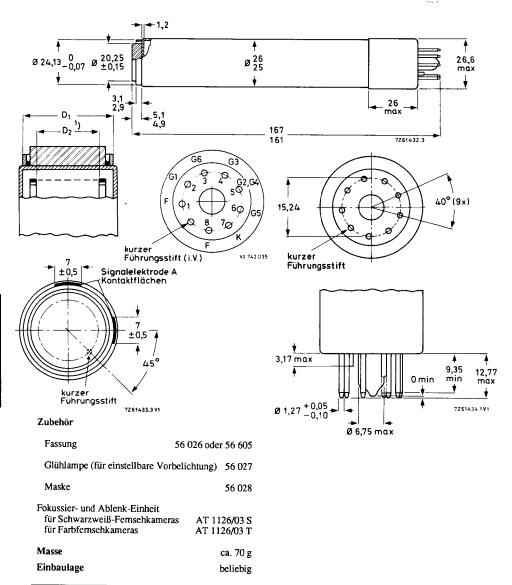
1"-PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · ACT-Betrieb für bessere Übertragung von Spitzlichtern
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- · niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- für den Rotkanal in Farbfernsehkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- · XQ 1505 R mit aufgedampftem Infrarot-Sperfilter auf der Antireflexionsplatte
- austauschbar mit XQ 1083 R bzw. XQ 1085 R, jedoch mit 1,2 W Katode für verbesserte Auflösung

Die Röhren XQ 1503 R und XQ 1505 R sind so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden können.

Kurzdaten

Heizung	UF	=	6,3	V
	IF	=	190	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge XQ 1503 R XQ 1505 R	ca.		850950 750	nm nm
Empfindlichkeit bei Farbtemperatur 2856 K			100	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)			50	%
Fokussierung	magn	etisch		
Ablenkung	magn	etisch		
Ausführung mit	ACT-Elektrodensystem, Lichtleitern, 1) aufgedampftem Infrarot-Sperrfilter auf de Anti-Reflexionsplatte (nur XQ 1525 R), keramischem Zentrierring			


Anmerkungen siehe 6. Seite dieses Datenblattes

20. 2. 1988 153

Mechanische Daten

Abmessungen in mm

 $^{^{1}}$) Die Differenz zwischen den Mittellinien der Durchmesser D $_{1}$ (Bezugsring) und D $_{2}$ (Feldnetz) ist < 100 $\mu m.$ 10. 2. 1988 154

Kenn- und Betriebsdaten

mit ACT-Betrieb (ACT = Anti-Comet-Tail)

(Spannungen während des Abtastens auf Katode bezogen, soweit nicht anders angegeben) 6) 7) 8)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4) 9.6 mm x 12.8 mm

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse Lage der Bildfläche

und die seitliche Markierung am Sockel verlaufen

Frontplatte

Dicke $1.2 \pm 0.1 \text{ mm}$ n = 1.49Brechungsindex

Anti-Reflexionsplatte

XQ 1525 R

 $5 \pm 0.1 \, \text{mm}$ Dicke n = 1.52Brechungsindex

aufgedampfter Infrarot-Sperrfilter

Elektrische Daten

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung Heizung

Heizspannung UF $= 6.3 V \pm 5$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

190 mA bei $U_F = 6.3 \text{ V}$ ΙE

Strahl-System

Sperrspannung an G1 bei $U_{G2G4/} = 300 \text{ V}$

ohne Austast- oder ACT-Impuls

-U G1 40...110

Austastspannung an G1 bei $U_{G2G4/} = 300 \text{ V}$

 50 ± 10 12) U G1 MM _ 13) G2G4-Strom I G2G4 < 0.2 mA

13) G3-, G5- und G6-Strom siche

Abtastzeit und Anforderungen

8) an die Amplitude (ACT) siehe

Fokussierung magnetisch

magnetisch Ablenkung

2,5...3,5 pF Kapazität C_a

> Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 1503 R XQ 1505 R

Kenn- und Betriebsdaten

Elektrische Daten, Fortsetzung					
Spannung an Katode während des Abtastens			0	.,	
bei ACT-Betrieb	U _K U _K	=	015	V V	
Signalelektrodenspannung	U _A	=	45	v	
Spannung an G6 (Feldnetz)	U _{G6}	=	750	v	9)
Spannung an G5 (Kollektor)	U _{G5}	=	475	v	
Spannung an G2 und G4	U _{G2G4/}	=	300	v	
Spannung an G3 (Hilfselektr. für ACT-Betrieb) während des Abtastens bei ACT-Betrieb)	siche Anr			8) 8)
Spannung an G1 (Steuerelektrode) während des Abtastens bei ACT-Betrieb		siche Anr			10 ₎ 8)
Austastspannung an G1, Spitzenwert	U_{G1M}	=	50	v	
Beleuchtungsstärke der Frontplatte	E	=	010	lx	11)
Frontplattentemperatur	ϑA	=	2045	°C	2)
Typische Einstellungen für den Signalstrom, Strahlstrom und die Spannungsimpulse					8)10)
Signalstrom, Spitzenwert	IAM	=	100	nA	
Strahlstrom, Spitzenwert	I STR M	=	200	nA	
Signalstrom bei ACT-Betrieb, Spitzenwert	I ACT M	=	140	nA	
Impuls an Katode, Spitzenwert	UKM	=	4	v	
Impuls an G1, Spitzenwert	U_{G1M}	=	24	v	
Impuls an G3, Spitzenwert	U $_{\rm G3~M}$	siehe Anr	nerkung		8)
Speicherplatte				*	
Dunkelstrom	I o	≤	1	nA	
Maximum der spektralen Empfindlichkeit		ca.	450	nm	
Grenzwellenlänge XQ 1503 R XQ 1505 R		ca.	850950 750	nm nm	
γ-Wert			0.95 + 0.05		
Spitzlicht-Übertragung im Bereich		≥	5 Blenden		15)
Empfindlichkeit bei Farbtemperatur 2856 K		=	100 (≥ 75)	μA/lm	14)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{10.2.1988}

¹⁵⁶

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 16)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang, Blende 5,6

	XQ 1503 R XQ 1505 R
Signalstrom I _A (nA)	100
Strahlstrom I STR (nA)	200
Modulationstiefe bei 5 MHz (%)	50 (≥ 45)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

17)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anstie	gsträgheit	Abfallträgheit		
	I _A /I _{STR} =	= 20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$		
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1503 R	95 %	≈ 100 %	7 %	3 %	
XQ 1505 R	95 %	≈ 100 %	7 %	3 %	

Trägheit (mit Vorbelichtung)

18)

Anstiegs- und Abfallträgheit für dunkle Bildpartien sowie Strahlstromeinstellungen bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

19)

Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 1503 R XQ 1505 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben.)

U A	= max.	50	V	1	U _{+FK M}	= max.	50	V		
$\rm U_{G6}$	= max.	1100	V		U _{-FK M}	= max.	50	v		
U $_{\mathrm{G5}}$	= max.	800	V	İ	Z_{FK}	= max.	2	$k\Omega$	$(-U_{FKM} > 10 V)$	
U_{G6G5}	= max.	350	V		t _h	= min.	1	min		
U _{G2G4/}	= max.	350	V		ϑ _U , ϑ _A	= max.	+50	°C		2)
U $_{\rm G3}$	= max.	350	V			= min.	-30	°C		
+U Gl	= max.	0	V		E	= max.	500	lx		3)
-U _{G1}	= max.	200	V							ĺ

Für die Spezialfassung 56 026 ist eine Glühlampe (5 V, 110 mA, Best.-Nr. 56 027) lieferbar, deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird.
Das Licht wird über dünne Glasstäbe (Lichtleiter) geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden (siehe auch Anmerkung 18)).

Grenzwert für die Kamerakonstruktion.
 Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

³⁾ für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.

⁴⁾ gemessen mit der Fokussier- und Ablenkeinheit AT 1126

- 5) Bei Verwendung der Röhre ohne ACT-Betrieb muß G₃ mit G₂ und G₄ verbunden sein, und es darf kein ACT-Impuls an Katode und G₁ gegeben werden. Dann ergeben sich die beschriebenen Röhreneigenschaften mit Ausnahme des Verhaltens gegenüber Spitzlichtern.
- 6) a) Für einen ordnungsgemäßen Ablauf bei ACT-Betrieb muß die Gleichspannungs- oder Impulsversorgung der einzelnen Elektroden eine genügend kleine Impedanz haben (siehe auch Anmerkung ¹³).
 - b) Videovorverstärker:

Beim Auftreffen von Spitzlichtem können Signalspitzensströme I A M in der Größenordnung von 15 bis 45 μA während des Strahlrücklaufs an den Vorverstärker gelangen. Zum Schutz gegen zeitweilige Überlastung müssen im Vorverstärker entsprechende Maßnahmen getroffen werden.

7) a) Normale Abtastung:

reine Abtastzeit = gesamte Dauer einer Zeilenperione minus Zeilenaustastzeit; nach dem CCIR-System erhält man 64 μ s - 12 μ s = 52 μ s für die reine Abtastzeit.

b) ACT-Betrieb:

Die Dauer der ACT-Impulse liegt innerhalb der Zeilenaustastung und ist gleich der Zeilen-Rücklaufzeit oder geringfügig größer.

8) Impulsfolge (CCIR-System) und Amplituden für ACT-Betrieb (Austastung an Gitter 1 siehe Anmerkung 12)

Zum Betrieb des ACT-Systems werden drei Impulse benötigt und zwar:

- a) Ein positiv gerichteter Impuls U $_{K\,M}$ an der Katode mit einer einstellbaren Amplitude von 0...20 V. Die Dauer des Impulses kann so gewählt werden, daß sie genau mit der Kameraaustastzeit (ca. 11 μ s) übereinstimmt. Die Impulsamplitude bestimmt den ACT-Begrenzungsschwellwert und kann allgemein für S/W-, R-, G- und B-Röhren auf 8, 4, 8 bzw 4 V voreingestellt werden. Eine Amplitude von 20 V sollte zur Einstellung von I $_{A}$ /I $_{STR}$ zur Verfügung stehen (siehe Anmerkung 10)).
- b) Ein positiv gerichteter Impuls an G_1 mit einer Amplitude $U_{G1 M} = 20 V + U_{KM}$. Die Dauer des Impulses sollte so gewählt werden, daß sie gerade die Zeilenrücklaufzeit (ca. 5 μ s) mit einschließt (z.B. 6 μ s).
- c) Ein negativ gerichteter Impuls U $_{G3~M}$ an G $_3$ mit entweder einer einstellbaren Amplitude und einer festen Grundspannung von 250...300 V oder mit einer festen Amplitude und einer einstellbaren Grundspannung von 250...300 V. In beiden Fällen ist die Einstellung so, daß U $_{G3}$ um 8,5 \pm 0,5 V höher liegt als U $_{K}$ bei ACT-Betrieb

Dieser Strom sorgt dafür, daß ein ausreichender Strahlstrom aus dem Katodenstrom entnommen wird. Dauer und Steuerung des Impulses sollten mit denen des Impulses an G 1 übereinstimmen. Ein entsprechendes Impulsfolge- und Amplitudenprogramm ist der nachfolgenden Grafik zu entnehmen.

- ACT-Betrieb mit U G6 ≥ 750 V ist nicht zu empfehlen, da dieses erhöhten Dunkelstrom hervorrufen kann.
- 10) Eingestellt mit abgeschaltetem ACT-Betrieb, z.B. durch einen Katodenimpuls von 20 V; die Spannung an G₁ wird so eingestellt, daß ein Strahlstrom I _{STR M} erzeugt wird, der gerade ausreicht, um einen Signalspitzenstrom I _{A M} vom zweifachen typischen Wert zu ermöglichen.

Der Signalspitzenstrom wird auf einem Video-Oszilloskop beobachtet und gemessen.

Die Signalströme werden mit einem integrierenden Meßinstrument am Signalelektroden-Anschluß bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche gemessen.

Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. ($\alpha = 100/100$ - β ; wobei β die Gesamtaustastzeit in % ist; beim CCIR-System ist $\alpha = 1,3$)

XQ 1503 R XQ 1505 R

- 11) Zur Erzielung der bei Modulationstiefe angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 11 Ix (2856 K) vor den entsprechenden Filtem (siehe auch Anmerkung 14)) erforderlich.
- 12) Austastung kann auch über die Katode erfolgen:

 ohne ACT-Betrieb: erforderlicher Katodenimpuls = 25 V

 mit ACT-Betrieb: Steuerung, Polarität und Amplitude des ACT-Impulses müssen angepaßt sein.
- 13) Die Gleichspannung oder Impulsversorgung der einzelnen Elektroden muß eine genügend kleine Impedanz haben, um Verzerrungen zu vermeiden, die durch die Spitzenströme während des ACT-Betriebes entstehen. Diese Spitzenströme können folgende Werte annehmen;

IKM	≈	2	mA
I _{GLM}	==	0	mA
$L_{G2G4\ M}$	≈	1	mA
I_{G3M}	≈	150	μА
$I_{G5 M}$	≈	300	μA
I_{G6M}	*	300	μA

Die Katodenimpedanz sollte vorzugsweise $\leq 300 \,\Omega$ gewählt werden.

14) McBbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μA/Lumen bei weißem Licht vor dem Filter gemessen.

Filter	Dicke (mm)					
XQ 1503 R	Schott OG 570 Calflex B1/K1	3				
XQ 1505 R	Schott OG 570	3				

- 15) Mit den Impulsen entsprechend Anmerkung 8) verarbeitet die Röhre Spitzlicht mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 32fachen Wert für Bildweiß entspricht.
- 16) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende 5,6 sowie den entsprechenden Filtern im optischen System. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

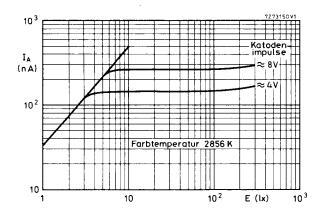
17) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

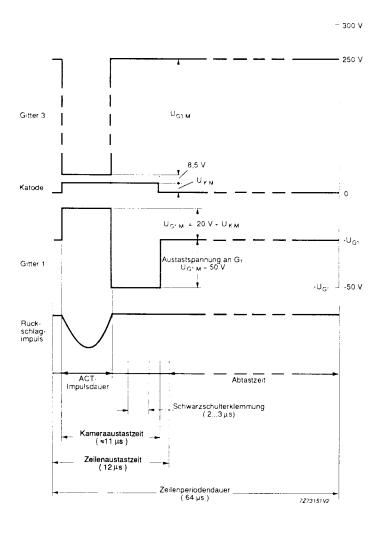
18) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.

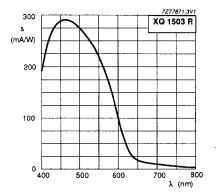

In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

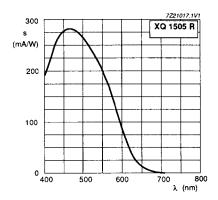
Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

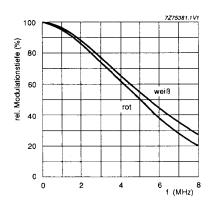
Typische Werte für eine RGB-Kamera sind etwa 3 nA (R), 2 nA (G) und 3,5 nA (B)

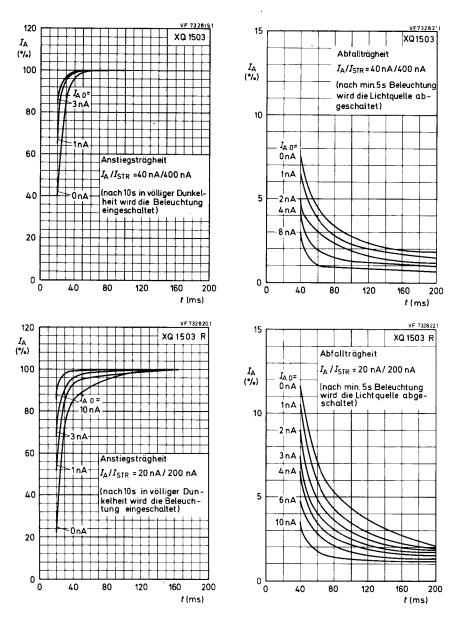
19) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.


Bei den typischen Einstellungen, wie in Anmerkung ¹⁸) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.


Warnhinweis


Gift


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!


XQ 1503 R XQ 1505 R

XQ 1503 R XQ 1505 R

10. 2. 1988 **164**

30 mm-PLUMBICON® - Kameraröhren

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · ACT-Betrieb für bessere Übertragung von Spitzlichtem
- · Lichtleiter zur Verminderung der Trägheit
- · hohe Auflösung
- · für Anwendungen mit hohen Anforderungen an Bildqualität

XQ 1520	für Schwarzweiß Fernsehkameras
XQ 1520 R	für den Rotkanal in Farbfernsehkameras
XQ 1520 G	für den Grünkanal in Farbfernsehkameras
XQ 1520 B	für den Blaukanal in Farbfernsehkameras
XQ 1520 L	für den Luminanzkanal in Farbfernsehkameras

Kurzdaten

	XQ 1	520 520 T	VO 1520	ا م
Grenzwellenlänge	ca.		650	nm
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Heizung	U _F I _F	= =	6,3 190	V mA

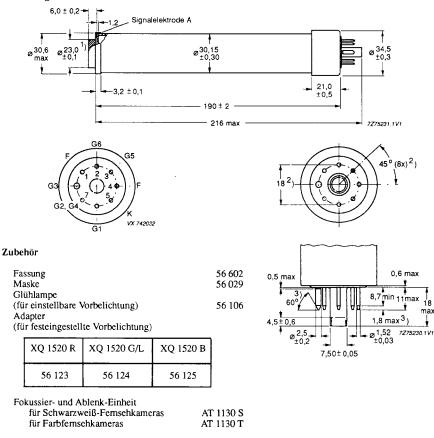
	XQ 1520 XQ 1520 L	XQ 1520 R	XQ 1520 G	XQ 1520 B
Empfindlichkeit bei Farbtemperatur 2856 K	400	80	170	40 μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	55	50	55	60 %

Fokussierung magnetisch Ablenkung magnetisch

Ausführung mit ACT-Elektrodensystem, Anti-Reflexionsplatte,

fester oder einstellbarer Vorbelichtung 1)

Anmerkungen siehe 6. Seite dieses Datenblattes


3.3.1988

165

Mechanische Daten

Abmessungen in mm

ca. 100 g

beliebig

Masse

Einbaulage

 $^{^{1}}$) Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0 ,2 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7 ,2 \pm 0,2 mm.

²⁾ Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von 8,230 ± 0,005 mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessem: 7 x 1,690 ± 0,005 mm und 1 x 2,950 ± 0,005 mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

Kenn- und Betriebsdaten 4) 5) 6) 7) 8)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4) 12.8 mm x 17.1 mm

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse Lage der Bildfläche

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

 $1.2 \pm 0.1 \text{ mm}$ Dicke n = 1.49Brechungsindex

Anti-Reflexionsplatte

 $6 \pm 0.2 \text{ mm}$ Dicke Brechungsindex n = 1.52

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung UF $= 6.3 \text{ V} \pm 5$ % Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$ 190 mΑ I_F mit Adapter für Vorbelichtung 300 mA I_{F(Ad)}

Strahl-System

Sperrspannung an G1 bei $U_{G2G4/} = 300 \text{ V}$

ohne Austast- oder ACT-Impuls

-U _{G1} 40...110 ν

Austastspannung an G1

 50 ± 10 12) bei $U_{G2G4/} = 300 \text{ V}$ U_{G1 MM} =

G2G4-Strom I_{G2G4} 0.2 mA

G3-, G5- und G6-Strom 13) siehe

Abtastzeit und Anforderungen

7) an die Amplitude (ACT) siehe

Fokussierung magnetisch

Ablenkung magnetisch

3...6 Kapazität C_a ρF

> Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

13)

Kenn- und Betriebsdaten

Elektrische Daten, Fortsetzung								
Spannung an Katode								
während des Abtastens		UK		=		0	V	
bei ACT-Betrieb		UK		=		.15	V	
Signalelektrodenspannung		U _A		=	4	15	V	
Spannung an G6 (Feldnetz)		U_{G6}		=	6	75	V	
Spannung an G5 (Kollektor)		U G5		=	6	00	V	
Spannung an G2 und G4		U_{G2}	G4/	=	3	00	V	
Spannung an G3 (Hilfselektr. für ACT-	Betrieb)							
während des Abtastens					Anmerkung			
bei ACT-Betrieb				siehe	Anmerkung	8)		
Spannung an G1 (Steuerelektrode)								
während des Abtastens					Anmerkung	,		
bei ACT-Betrieb				siehe	Anmerkung	8)		
Austastspannung an G1, Spitzenwert		U_{G1}	М	=	5	50	V	
Beleuchtungsstärke der Frontplatte		E		=	0	10	lx	11)
Frontplattentemperatur		ϑ_A		=	20	45	°C	2)
Typische Einstellungen für den Signals								
Strahlstrom und die Spannungsimpulse	;							
			XQ XQ 1:		XO 1520 R	XQ 1520 G	XQ 1520 B	
Signalstrom, Spitzenwert	IAM	(nA)	3(150	300	150	\dashv
Strahlstrom, Spitzenwert	ISTRM		60	00	300	600	300	
Signalstrom bei ACT-Betrieb, Spw.		-	4(00	200	400	200	1
Impuls an Katode, Spitzenwert	UKM			7	3,5	7	3,5	
Impuls an G1, Spitzenwert	UGLM		2		23,5	27	23,5	
Impuls an G3, Spitzenwert	U G3 M				sieh	a 8)		
impuis an O3, spitzenweit	○ G3 M	(*)			SICII	· ,		
Speicherplatte								

impuls an G3, Spitzenweit G3	M(V)		siene ")		
Speicherplatte					
Dunkelstrom	I ₀	≤	1	nA	
Maximum der spektralen Empfindlichkeit		ca.	450	nm	
Grenzwellenlänge		ca.	650	nm	
γ-Wert			0,95 + 0,05		
Spitzlicht-Übertragung im Bereich		≥	5 Blenden		15)
Empfindlichkeit bei Farbtemperatur 2856 K					14)
XQ 1520, XQ 1520 L			400 (≥ 365)	μ A/lm	
XQ 1520 R			80 (≥ 70)	μ A/lm	
XQ 1520 G			170 (≥ 135)	μA/lm	
XQ1520 B			40 (≥ 35)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{3. 3. 1988}

¹⁶⁸

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 16)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang, Blende 5,6

	XQ 1520 XQ 1520 L XQ 1520 G	XQ 1520 R	XQ 1520 B
Signalstrom I A (nA)	300	150	150
Strahlstrom I _{STR} (nA)	600	300	300
Modulationstiefe bei 5 MHz (%)	55 (≥ 50)	50 (≥ 40)	60 (≥ 50)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(ohne Vorbelichtung, typische Werte)

17)

Lichtan: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt)

	Anstie	gsträgheit	Abfallträgheit	
	I _A /I _{STR}	= 20/300 nA	$I_{A}/I_{STR} =$	20/300 nA
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms
XQ 1520, XQ 1520 L	95 %	≈ 100 %	9 %	3 %
XQ 1520 R	85 %	≈ 100 %	13 %	3,5 %
XQ 1520 G	95 %	≈ 100 %	9 %	3 %
XQ 1520 B	70 %	≈ 100 %	15 %	5,5 %

Trägheit (mit Vorbelichtung)

18)

Anstiegs- und Abfallträgheit für dunkle Bildpartien sowie Strahlstromeinstellungen bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

19)

Anmerkungen siehe nächste Seite dieses Datenblattes

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V	U _{+FK M}	= max.	50	v	
U_{G6}	= max.	1100	V	U -FK M	= max.	50	v	
U_{G5}	= max.	800	V	t h	= min.	1	min	
U _{G6G5}	= max.	350	v	ϑυ, ϑ _Α	= max.	+50	°C	2)
U _{G2G4/}	= max.	350	V		= min.	-30	°C	
U _{G3}	= max.	350	V	E	= max.	500	lx	3)
+U G1	= max.	0	V					
-U _{G1}	= max.	200	v					

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden, (siehe auch Anmerkung ¹⁸)).

1b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen. Die Heizspannung soll auf 6,3 ± 0,1 V stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu liefern.

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert. Z.B. Rot für den Rotkanal, Grün für den Grün- oder Luminanzkanal in Farbfernsehkameras.

²) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 4) gemessen mit der Fokussier- und Ablenkeinheit AT 1130

^{1a}) Einstellbare Vorbelichtung:

- 5) Bei Verwendung der Röhre ohne ACT-Betrieb muß G₃ mit G₂ und G₄ verbunden sein, und es darf kein ACT-Impuls an Katode und G₁ gegeben werden. Dann ergeben sich die beschriebenen Röhreneigenschaften mit Ausnahme des Verhaltens gegenüber Spitzlichtern.
- 6) a) Für einen ordnungsgemäßen Ablauf bei ACT-Betrieb muß die Gleichspannungs- oder Impulsversorgung der einzelnen Elektroden eine genügend kleine Impedanz haben (siehe auch Anmerkung ¹³).
 - b) Videovorverstärker:

Beim Auftreffen von Spitzlichtern können Signalspitzensströme I A M in der Größenordnung von 15 bis 45 µA während des Strahlrücklaufs an den Vorverstärker gelangen. Zum Schutz gegen zeitweilige Überlastung müssen im Vorverstärker entsprechende Maßnahmen getroffen werden.

7) a) Normale Abtastung:

reine Abtastzeit = gesamte Dauer einer Zeilenperione minus Zeilenaustastzeit; nach dem CCIR-System erhält man $64 \,\mu s$ - $12 \,\mu s$ = $52 \,\mu s$ für die reine Abtastzeit.

b) ACT-Betrieb:

Die Dauer der ACT-Impulse liegt innerhalb der Zeilenaustastung und ist gleich der Zeilen-Rücklaufzeit oder geringfügig größer.

- 8) Impulsfolge (CCIR-System) und Amplituden für ACT-Betrieb (Austastung an Gitter 1 siehe Anmerkung 12)
 - Zum Betrieb des ACT-Systems werden drei Impulse benötigt und zwar:
 - a) Ein positiv gerichteter Impuls U $_{K\,M}$ an der Katode mit einer einstellbaren Amplitude von 0...20 V. Die Dauer des Impulses kann so gewählt werden, daß sie genau mit der Kameraaustastzeit (ca. 11 μ s) übereinstimmt. Die Impulsamplitude bestimmt den ACT-Begrenzungsschwellwert und kann allgemein für S/W-, R-, G- und B-Röhren auf 7, 3,5, 7 bzw 3,5 V voreingestellt werden.

Eine Amplitude von 20 V sollte zur Einstellung von I A/I STR zur Verfügung stehen (siehe Anmerkung 10)).

- b) Ein positiv gerichteter Impuls an G_1 mit einer Amplitude $U_{G1\ M} = 25\ V + U_{K\ M}$. Die Dauer des Impulses sollte so gewählt werden, daß sie gerade die Zeilenrücklaufzeit (ca. 5 µs) mit einschließt (z. B. 6 µs).
- c) Ein negativ gerichteter Impuls U $_{G3~M}$ an G $_3$ mit entweder einer einstellbaren Amplitude und einer festen Grundspannung von 250...300 V oder mit einer festen Amplitude und einer einstellbaren Grundspannung von 250...300 V. In beiden Fällen ist die Einstellung so, daß U $_{G3}$ um 8,5 \pm 0,5 V höher liegt als U $_{K}$ bei ACT-Betrieb.

Dieser Strom sorgt dafür, daß ein ausreichender Strahlstrom aus dem Katodenstrom entnommen wird. Dauer und Steuerung des Impulses sollten mit denen des Impulses an G_1 übereinstimmen.

Ein entsprechendes Impulsfolge- und Amplitudenprogramm ist der nachfolgenden Grafik zu entnehmen.

- 9) ACT-Betrieb mit U _{G6} ≥ 750 V ist nicht zu empfehlen, da dieses erhöhten Dunkelstrom hervorrufen kann.
- 10) Eingestellt mit abgeschaltetem ACT-Betrieb, z.B. durch einen Katodenimpuls von 20 V; die Spannung an G₁ wird so eingestellt, daß ein Strahlstrom I _{STR M} erzeugt wird, der gerade ausreicht, um einen Signalspitzenstrom I _{A M} vom zweifachen typischen Wert zu ermöglichen.

Der Signalspitzenstrom wird auf einem Video-Oszilloskop beobachtet und gemessen.

Die Signalströme werden mit einem integrierenden Meßinstrument am Signalelektroden-Anschluß bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche gemessen.

Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. ($\alpha = 100/100$ - β ; wobei β die Gesamtaustastzeit in % ist; beim CCIR-System ist $\alpha = 1,3$)

11) Zur Erzielung eines Signalstromes von 300 nA bei XQ 1520 und XQ 1520 L ist eine Beleuchtungsstärke von etwa 3,5 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 1520 R/G/B ist eine Beleuchtungsstärke von etwa 8,5 lx (2856 K) vor den entsprechenden Filtern (siehe auch Anmerkung 14)) erforderlich.

12) Austastung kann auch über die Katode erfolgen: ohne ACT-Betrieb: erforderlicher Katodenimpuls ≈ 25 V

mit ACT-Betrieb: Steuerung, Polarität und Amplitude des ACT-Impulses müssen angepaßt sein.

13) Die Gleichspannung oder Impulsversorgung der einzelnen Elektroden muß eine genügend kleine Impedanz haben, um Verzerrungen zu vermeiden, die durch die Spitzenströme während des ACT-Betriebes entstehen. Diese Spitzenströme können folgende Werte annehmen:

IKM	~	2	mA
I _{G1 M}	~	0	mA
I_{G2G4M}	~	1	mA
I G3 M	~	150	μΑ
I_{G5M}	~	300	μΑ
I G6 M	≈ '	300	μA

Die Katodenimpedanz sollte vorzugsweise $\leq 300 \Omega$ gewählt werden.

14) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in µA/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 1520 R	Schott OG 570	3
XQ 1520 G	Schott VG 9	1
XQ 1520 B	Schott BG 12	3

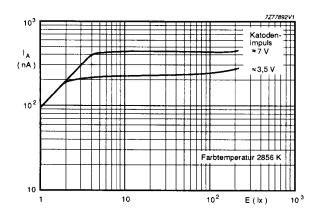
- 15) Mit den Impulsen entsprechend Anmerkung 8) verarbeitet die Röhre Spitzlicht mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 32fachen Wert für Bildweiß entspricht.
- 16) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.
 Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenz-

auflösung. 17) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

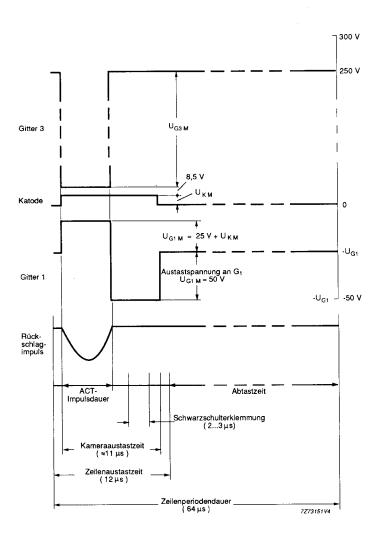
Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

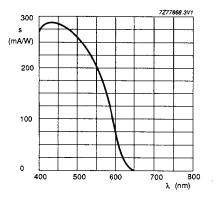

- 18) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Für Schwarzweiß Anwendungen genügt im allgemeinen eine Vorbelichtung, die einem zusätzlichen Dunkelstrom von 4,5 nA entspricht, um genügend kurze Ansprechzeiten zu erhalten.
- 3, 3, 1988

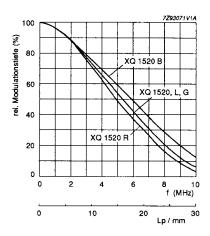
b) Einstellbare Vorbelichtung für Farbfernsehkameras (siehe auch ^{1a})):

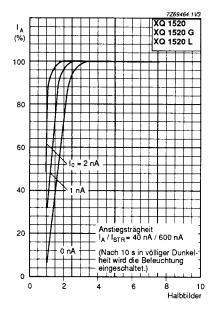
In Farbfemsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

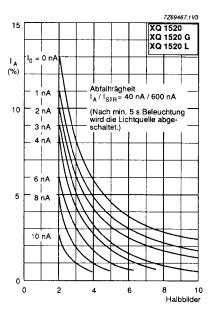
Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

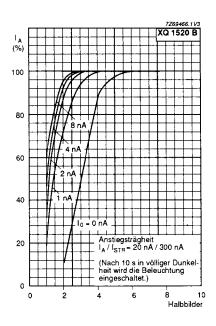

- c) Fest eingestellte Vorbelichtung für Farbfernsehkameras (siehe auch ^{1b})): Typische Werte für eine RGB-Kamera sind etwa 3 nA (R), 2 nA (G) und 3,5 nA (B). Die mit den Röhren gelieferten Adapter ergeben Vorbelichtungen in diesen Größenordnungen.
- 11) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 Bei den typischen Einstellungen, wie in Anmerkung ¹⁸) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.

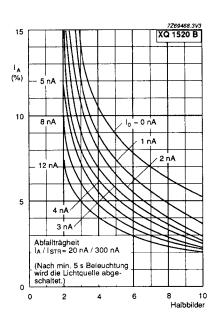


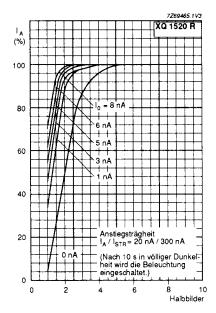

Warnhinweis

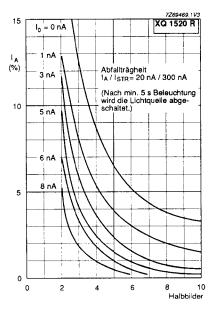

Cife


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!









3. 3. 1988 175

3. 3. 1988 **176**

30 mm-PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

- getrenntes Feldnetz
- fotoleitende Schicht geringer Trägheit
- · ACT-Betrieb für bessere Übertragung von Spitzlichtern
- · Lichtleiter zur Verminderung der Trägheit
- hohe Auflösung
- · für Anwendungen mit hohen Anforderungen an Bildqualität
- · XQ 1415 Serie mit aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte

fester oder einstellbarer Vorbelichtung 1)

XQ 1523 R

für den Rotkanal in Farbfernsehkameras

XQ 1415 L

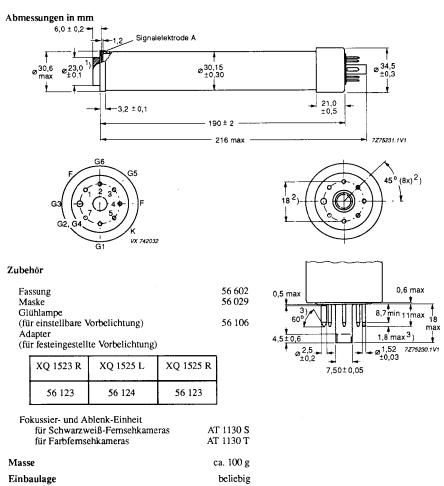
für den Luminanzkanal in Farbfernsehkameras

XQ 1415 R

für den Rotkanal in Farbfernsehkameras

Kurzdaten Heizung

Heizung	U_F	= =	6,3 190	V mA		
Maximum der spektralen Empfindlichkeit	ca.		450	nm		
	XQ 1	523 R	XQ 152	5 L	XQ 1525 R	
Grenzwellenlänge	8509	50	ca. 75	0	ca. 750	nm
Empfindlichkeit bei Farbtemperatur 2856 k	120		435		120	$\mu A / lm$
Modulationstiefe bei 400 Zeilen (5 MHz)	55		60		55	%
Fokussierung	magne	tisch	!	,		
Ablenkung	magne	tisch				
Ausführung mit	ACT-Elektrodensystem, Anti-Reflexionsplatte, aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte (nur XQ 1525 Serie),					


Anmerkungen siehe 7. Seite dieses Datenblattes

4.3.1988

177

Mechanische Daten

¹) Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0,2 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7,2 ± 0,2 mm.

²⁾ Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von $8,230\pm0,005$ mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessem: $7\times1,690\pm0,005$ mm und $1\times2,950\pm0,005$ mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

Kenn- und Betriebsdaten 4) 5) 6) 7) 8)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3 : 4) 12,8 mm x 17,1 mm

Lage der Bildfläche Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke $1,2 \pm 0,1 \text{ mm}$ Brechungsindex n = 1,49

Anti-Reflexionsplatte

Dicke $6 \pm 0.2 \text{ mm}$ Brechungsindex n = 1,52

XQ 1525 Serie aufgedampfter Infrarot-Sperrfilter

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung $U_F = 6.3 \text{ V} \pm 5 \%$ Die Heizspannung darf 9.5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei U $_{\rm F}$ = 6,3 V I $_{\rm F}$ = 190 mA mit Adapter für Vorbelichtung I $_{\rm F(Ad)}$ = 300 mA

Strahl-System

Sperrspannung an G1

bei $U_{G2G4/} = 300 \text{ V}$

ohne Austast- oder ACT-Impuls $-U_{G1} = 40...110$ V

Austastspannung an G1

bei U $_{G2G4/} = 300 \text{ V}$ $U_{G1 \text{ MM}} = 50 \pm 10 \text{ V}$ 12)

G2G4-Strom I_{G2G4} < 0,2 mA 13)

G3-, G5- und G6-Strom siehe ¹³)

Abtastzeit und Anforderungen

an die Amplitude (ACT) siehe ⁷)

Fokussierung magnetisch

Ablenkung magnetisch

Kapazität $c_a = 3...6$ pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c_a .

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten

Elektrische Daten, Fortsetzung					
Spannung an Katode					
während des Abtastens	U K	=	0	V	
bei ACT-Betrieb	U _K	=	015	v	
Signalelektrodenspannung	U _A	=	45	v	
Spannung an G6 (Feldnetz)	$_{ m G6}$	=	675	V	
Spannung an G5 (Kollektor)	$_{\mathrm{G5}}$	=	600	V	
Spannung an G2 und G4	U _{G2G4/}	=	300	V	
Spannung an G3 (Hilfselektr. für ACT-Betri während des Abtastens bei ACT-Betrieb Spannung an G1 (Steuerelektrode)	eb)		merkung ⁸) merkung ⁸)		
während des Abtastens bei ACT-Betrieb			merkung ¹⁰) merkung ⁸)		
Austastspannung an G1, Spitzenwert	$U_{G1\ M}$	=	50	V	
Beleuchtungsstärke der Frontplatte	E	=	010	lx	11)
Frontplattentemperatur	θA	=	2045	°C	2)
Typische Einstellungen für den Signalstrom Strahlstrom und die Spannungsimpulse	,				
		_	VO 1525 I T VO	15100 D	7

		XQ 1525 L	XQ 15123 R XQ 1525 R
Signalstrom, Spitzenwert	I _{AM} (nA)	300	150
Strahlstrom, Spitzenwert	I _{STRM} (nA)	600	300
Signalstrom bei ACT-Betrieb, Spitzenwert	I _{ACT M} (nA)	400	200
Impuls an Katode, Spitzenwert	U _{KM} (V)	7	3,5
Impuls an G1, Spitzenwert	U_{G1M} (V)	27	23,5
Impuls an G3, Spitzenwert	U_{G3M} (V)		siehe 8)

I ₀	≤	1	nA	
	ca.	450	nm	
	ca.	850950 750	nm nm	
		0.95 + 0.05		
	≥	5 Blenden		1
		435 (≥ 390) 120 (≥ 110)	μΑ/lm μΑ/lm	1
	Ιο	ca.	ca. 450 850950 750 0,95 + 0,05 \geq 5 Blenden $435 (\geq 390)$	ca. 450 nm $ \begin{array}{cccccccccccccccccccccccccccccccccc$

Anmerkungen siehe 6. Seite dieses Datenblattes

^{4. 3. 1988}

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 16)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang, Blende 5,6

	XQ 1525 L	XQ 1523 R XQ 1525 R
Signalstrom I A (nA)	300	150
Strahlstrom I _{STR} (nA)	600	300
Modulationstiefe bei 5 MHz (%)	55 (≥ 50)	55 (≥ 45)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(ohne Vorbelichtung, typische Werte)

. 17)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anstieg	gsträgheit	Abfallträgheit		
	I _A /I _{STR} =	= 20/300 nA	$I_A/I_{STR} = 1$	20/300 nA	
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 1523 R	65 %	≈ 100 %	15 %	5 %	
XQ 1525 R	65 %	≈ 100 %	15 %	5 %	
XQ 1525 L	95 %	≈ 100 %	10 %	3 %	

Trägheit (mit Vorbelichtung)

18)

Anstiegs- und Abfallträgheit für dunkle Bildpartien

sowie Strahlstromeinstellungen bei Einsatz einer Vorbelichtung

siehe nachfolgende Diagramme

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

19)

Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 1523 R XQ 1525 L XQ 1525 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V	U +FK M	= max.	50	V	
U $_{\rm G6}$	= max.	1100	V	U .FK M	= max.	50	v	
U $_{\mathrm{G5}}$	= max.	800	v	t _h	= min.	1	min	
$U_{\rm G6G5}$	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	°C	2)
U _{G2G4/}	= max.	350	v		= min.	-30	°C	
U $_{\rm G3}$	= max.	350	v	E	= max.	500	lx	3)
+U G1	= max.	0	V					
-U _{G1}	= max.	200	v					

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projizient wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden, (siehe auch Anmerkung 18)).

1b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen. Die Heizspannung soll auf $6.3\pm0.1~V$ stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu liefern.

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert (z.B. Rot für den Rotkanal).

2) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 3) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 4) gemessen mit der Fokussier- und Ablenkeinheit AT 1130

4.3.1988

^{1a}) Einstellbare Vorbelichtung:

- 5) Bei Verwendung der Röhre ohne ACT-Betrieb muß G₃ mit G₂ und G₄ verbunden sein, und es darf kein ACT-Impuls an Katode und G₁ gegeben werden. Dann ergeben sich die beschriebenen Röhreneigenschaften mit Ausnahme des Verhaltens gegenüber Spitzlichtern.
- 6) a) Für einen ordnungsgemäßen Ablauf bei ACT-Betrieb muß die Gleichspannungs- oder Impulsversorgung der einzelnen Elektroden eine genügend kleine Impedanz haben (siehe auch Anmerkung ¹³).

b) Videovorverstärker:

Beim Auftreffen von Spitzlichtern können Signalspitzensströme I A M in der Größenordnung von 15 bis 45 µA während des Strahlrücklaufs an den Vorverstärker gelangen. Zum Schutz gegen zeitweilige Überlastung müssen im Vorverstärker entsprechende Maßnahmen getroffen werden.

7) a) Normale Abtastung:

reine Abtastzeit = gesamte Dauer einer Zeilenperione minus Zeilenaustastzeit; nach dem CCIR-System erhält man 64 μ s - 12 μ s = 52 μ s für die reine Abtastzeit.

b) ACT-Betrieb:

Die Dauer der ACT-Impulse liegt innerhalb der Zeilenaustastung und ist gleich der Zeilen-Rücklaufzeit oder geringfügig größer.

- 8) Impulsfolge (CCIR-System) und Amplituden für ACT-Betrieb (Austastung an Gitter 1 siehe Anmerkung ¹²) Zum Betrieb des ACT-Systems werden drei Impulse benötigt und zwar:
 - a) Ein positiv gerichteter Impuls U $_{KM}$ an der Katode mit einer einstellbaren Amplitude von 0...20 V. Die Dauer des Impulses kann so gewählt werden, daß sie genau mit der Kameraaustastzeit (ca. 11 μ s) übereinstimmt. Die Impulsamplitude bestimmt den ACT-Begrenzungsschwellwert und kann allgemein für S/W-, R-, G- und B-Röhren auf 7, 3,5, 7 bzw 3,5 V voreingestellt werden. Eine Amplitude von 20 V sollte zur Einstellung von I $_{A}I_{STR}$ zur Verfügung stehen (siehe Anmerkung 10)).
 - b) Ein positiv gerichteter Impuls an G_1 mit einer Amplitude $U_{G1\ M}=25\ V+U_{K\ M}$. Die Dauer des Impulses sollte so gewählt werden, daß sie gerade die Zeilenrücklaufzeit (ca. 5 μ s) mit einschließt (z.B. 6 μ s).
 - c) Ein negativ gerichteter Impuls U $_{G3~M}$ an G $_3$ mit entweder einer einstellbaren Amplitude und einer festen Grundspannung von 250...300 V oder mit einer festen Amplitude und einer einstellbaren Grundspannung von 250...300 V. In beiden Fällen ist die Einstellung so, daß U $_{G3}$ um 8,5 \pm 0,5 V höher liegt als U $_{K}$ bei ACT-Betrieb.

Dieser Strom sorgt dafür, daß ein ausreichender Strahlstrom aus dem Katodenstrom entnommen wird. Dauer und Steuerung des Impulses sollten mit denen des Impulses an G $_{\rm I}$ übereinstimmen. Ein entsprechendes Impulsfolge- und Amplitudenprogramm ist der nachfolgenden Grafik zu entnehmen.

- 9) ACT-Betrieb mit U _{G6} ≥ 750 V ist nicht zu empfehlen, da dieses erhöhten Dunkelstrom hervorrufen kann.
- 10) Eingestellt mit abgeschaltetem ACT-Betrieb, z.B. durch einen Katodenimpuls von 20 V; die Spannung an G_1 wird so eingestellt, daß ein Strahlstrom I $_{STR\ M}$ erzeugt wird, der gerade ausreicht, um einen Signalspitzenstrom I $_{A\ M}$ vom zweifachen typischen Wert zu ermöglichen.

Der Signalspitzenstrom wird auf einem Video-Oszilloskop beobachtet und gemessen.

Die Signalströme werden mit einem integrierenden Meßinstrument am Signalelektroden-Anschluß bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche gemessen.

Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. ($\alpha = 100/100$ - β ; wobei β die Gesamtaustastzeit in % ist; beim CCIR-System ist $\alpha = 1,3$)

XQ 1523 R XQ 1525 L XQ 1525 R

- 11) Zur Erzielung der bei Modulationstiefe angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 8,5 1x (2856 K) vor den entsprechenden Filtern (siehe auch Anmerkung 14)) erforderlich.
- 12) Austastung kann auch über die Katode erfolgen: ohne ACT-Betrieb: erforderlicher Katodenimpuls ≈ 25 V mit ACT-Betrieb: Steuerung, Polarität und Amplitude des ACT-Impulses müssen angepaßt sein.
- 13) Die Gleichspannung oder Impulsversorgung der einzelnen Elektroden muß eine genügend kleine Impedanz haben, um Verzerrungen zu vermeiden, die durch die Spitzenströme während des ACT-Betriebes entstehen. Diese Spitzenströme können folgende Werte annehmen:

I_{KM}	~	2	mA
I_{G1M}	~	0	mA
I_{G2G4M}	≈	1	mA
I_{G3M}	~	150	μΑ
I_{G5M}	~	300	μΑ
I_{G6M}	~	300	μΑ

Die Katodenimpedanz sollte vorzugsweise $\leq 300 \Omega$ gewählt werden.

14) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in µA/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 1523 R	Schott OG 570 und Calflex B1/K1	3
XQ 1525 R	Schott OG 570	3

- 15) Mit den Impulsen entsprechend Anmerkung 8) verarbeitet die Röhre Spitzlicht mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 32fachen Wert für Bildweiß entspricht.
- 16) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.

Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

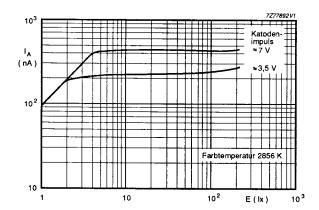
17) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

4. 3. 1988

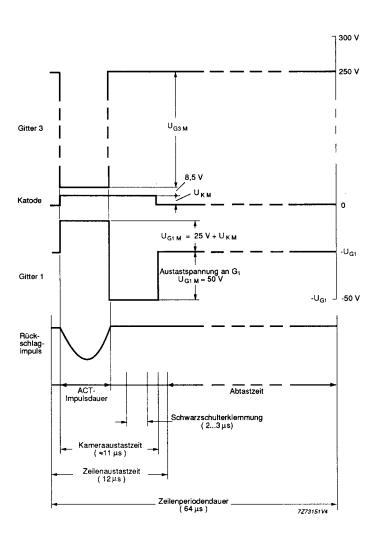

- 18) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Einstellbare Vorbelichtung für Farbfernsehkameras (siehe auch ^{1a})): In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

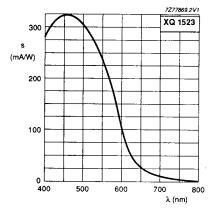
Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.

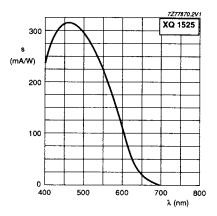
b) Fest eingestellte Vorbelichtung:

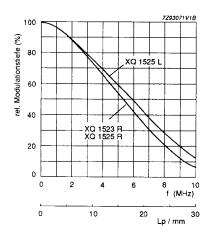
Durch die Verwendung des Adapters wird eine erhebliche Reduzierung der Anstiegs- und Abfallträgheit erreicht (siehe auch ^{1b})).

19) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
Bei den typischen Einstellungen, wie in Anmerkung 18) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.

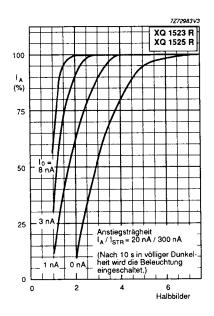

Warnhinweis

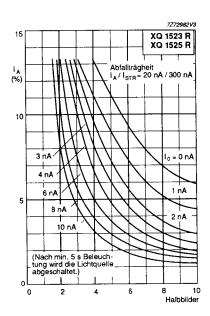

Cift

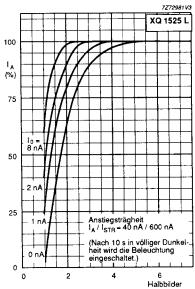

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Bertihren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

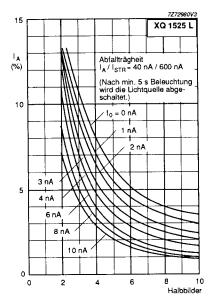

4.3.1988

185

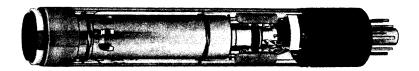








4. 3. 1988 **187**



4. 3. 1988 188

1"-PLUMBICON® - Kameraröhren

- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtern
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- keramischer Zentrierring für genaue optische Anpassung (Ausführung /02)
- · für Anwendungen mit hohen Anforderungen an Bildqualität

Die Plumbicon-Röhren der Scrie XQ 2070 eignen sich vorzugsweise für den Einsatz in Studio- und EAP-Fernsehkameras (Elektronische Außenproduktion). Sie sind mechanisch austauschbar gegen 1"-Plumbicon-Röhren.

XQ 2070/02 XQ 2070/03 für Schwarzweiß Fernsehkameras
XQ 2070/02 R XQ 2070/03 R für den Rotkanal in Farbfernsehkameras
XQ 2070/02 G XQ 2070/03 G für den Grünkanal in Farbfernsehkameras
XQ 2070/02 B XQ 2070/03 B für den Blaukanal in Farbfernsehkameras
Kurzdaten

Heizung	UF	=	6,3	V
i .	ΙF	=	95	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm

· · · · · · · · · · · · · · · · · · ·						
Grenzwellenlänge	ca.	650	nm			
	XQ 2070/0.	XQ 2070/	0. R	XQ 2070/0. G	XQ 2070/0.	В
Empfindlichkeit bei Farbtemperatur 2856 K	375	70		155	40	μA/lm
Modulationstiefe bei 400 Zeilen (5 MHz)	60	45		60	60	%
Fokussierung	magnetisch	l		l	ı	
Ablenkung	magnetisch					
Ausführung mit	Dioden-Elekti	rodensyster	n,	1) ²)		
	Lichtleitem,			4)		
	Anti-Reflexio					
	keramischem oder	Zentrierrin	g (Aı	usführung /02)	³)	

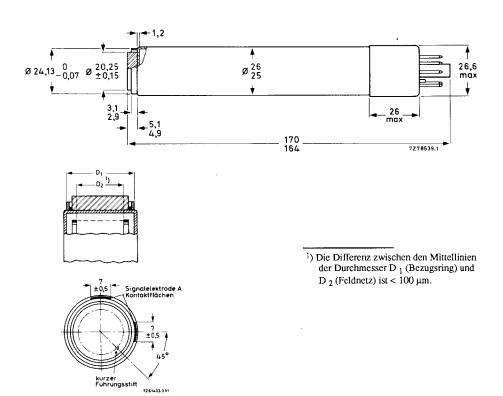
Signalelektrodenring

(Ausführung /03)

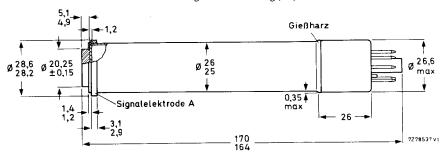
Anmerkungen siehe 7. Seite dieses Datenblattes

25, 2, 1988

189



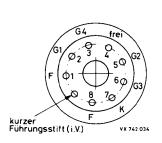
3)

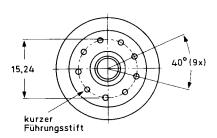

Mechanische Daten

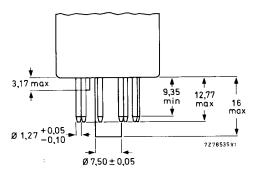
Abmessungen in mm

Röhre mit keramischem Zentrierring (/02)

Röhre mit Signalelektrodenring (/03)




25. 2. 1988 **190** Masse


ca. 70 g

Einbaulage

beliebig

Zubehör

Fassung 56 605

Glühlampe (für einstellbare Vorbelichtung)

56 106 ⁴)

Maske

56 028

Fokussier- und Ablenk-Einheit	Röhre mit keramischem Zentrierring (/02)	Röhre mit Signalelektrodenring (/03		
für Schwarzweiß-Fernsehkameras	AT 1126/03 S	AT 1116/06 S		
für Farbfernsehkameras	AT 1126/03 T	AT 1116/06 T		

XQ 2070/02 XQ 2070/03

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche (Verhältnis 3:4)

9,6 mm x 12,8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex

 $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $5 \pm 0.1 \, \text{mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

Die Heizspannung darf 9,5 V (150 mA) (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

Heizstrom bei $U_F = 6.3 \text{ V}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$ ohne Austastung

bei normaler Strahleinstellung

Austastspannung an G1 an Katode

G1-Strom bei normalem Strahlstrom

G2-Strom bei normalem Strahlstrom

Fokussierung Ablenkung

Kapazität

Ausführung /02 Ausführung /03 $U_F = 6.3 V \pm 5 \%$

wird Stabilisierung der Heizspannung empfohlen.

 $I_{F} = 95 \text{ mA}$

$$-U G1 = 10...0 V$$

 U_{G1} ≤ 15

U_{GLMM} 25 U_{KMM} 25 =

 I_{G1} mA^{-2} ≤ 1,5

≤ 0.1 mA^{-2} I_{G2}

magnetisch

magnetisch

2.5...4 C_a pF 3...5 c a pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit erhöht sich c a.

Anmerkungen siehe 7. Seite dieses Datenblattes

Kenn- und Betriebsdaten 6)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U _{G4}	=	960	v	
Spannung an G3	U _{G3}	=	600	v	
Spannung an G2	U $_{\rm G2}$	=	300	V	
Spannung an G1	U G1			v	7)
Austastspannung an G1	$U_{G1\text{MM}}$	=	25	V	
Strahlstrom	I _{STR}			nA	7)
Beleuchtungsstärke der Frontplatte	E	=	010	1x	8)
Frontplattentemperatur	ϑ A	=	2045	°C	
Speicherplatte					
Dunkelstrom	I 0		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
γ-Wert			0.95 + 0.05		
Empfindlichkeit bei Farbtemperatur 2856 K XQ 2070/0.			375 (≥ 300)	μ Α/ lm	10)
XQ 2070/0. R			70 (≥ 63)	μA/lm	
XQ 2070/0. G			155 (≥ 130)	μ A/ lm	

40 (≥ 35)

μA/lm

XQ 2070/0. B

Anmerkungen siehe 7. Seite dieses Datenblattes

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

7) 11)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 2070/0. XQ 2070/0. G	XQ 2070/0. R	XQ 2070/0. B
Signalstrom I A (nA)	200	100	100
Strahlstrom I _{STR} (nA)	400	200	200
Modulationstiefe bei 5 MHz (%)	60 (≥ 55)	45 (≥ 40)	60 (≥ 55)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

4) 12) 13)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstieg	gsträgheit	Abfallträgheit I _A /I _{STR} = 20/300 nA	
	I _A /I _{STR} =	= 20/300 nA		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms
XQ 2070/0.	95 %	. ≈ 100 %	9 %	2,5 %
XQ 2070/0. R	95 %	≈ 100 %	9 %	2,5 %
XQ 2070/0. G	95 %	≈ 100 %	9 %	2,5 %
XQ 2070/0. B	90 %	≈ 100 %	12 %	4 %

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung 12.5 %

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

Anmerkungen siehe nächste Seite dieses Datenblattes

25. 2. 1988

194

14)

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V	I $_{\mathrm{G1}}$	= max.	5	mA	(≈ I _K)	
U_{G4}	= max.	1100	V	I_{G1M}	= max.	8	mA	(mit DBC)	2)
$U_{\rm G4G3}$	= max.	450	V	Z_{FK}	= min.	2	$k\Omega$	$(U_{FKM} > 10 V)$	
U $_{\rm G3}$	= max.	800	V	t h	= min.	1	min		
U $_{\rm G2}$	= max.	340	V	ϑ_U , ϑ_A	= max.	+50	°C		9)
+U _{G1}	= max.	25	V		= min.	-30	°C		
-U _{G1}	= max.	200	V	Е	= max.	500	lx		5)
U +FK M	= max.	50	V						
U .FK M	= max.	125	V						

1) DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung:

Das "Dioden Flektrodensystem" ist ein als Diode arbeitendes Dreigle

Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtern positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

2) Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung ⁷) und dem daraus resultierenden Strom an Gitter 1 betrieben.

 $I_{G1 M} \le 1,5 \text{ mA}$ $I_{G1 M} \le 8 \text{ mA}$ ohne DBC mit DBC Betrieb mit Strahlaustastung,

gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1~M}$ = 7 V über der Einstellung für Bildweiß (s. Anmerkung 12)) und Spitzenströme I $_{G1~M}$ \leq 8 mA abgeben kann.

Der Betrieb mit U G1 M > 7 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

3) Röhren der Ausführung /02 (XQ 2070/02, XQ 2070/02 R, XQ 2070/02 G XQ 2070/02 B mit keramischem Zentrierring für genaue optische Anpassung) sind mechanisch austauschbar gegen Röhren der Serien XQ 1070/02, XQ 1080 und XQ 1500.

Röhren der Ausführung /03 (XQ 2070/03, XQ 2070/03 R, XQ 2070/03 G, XQ 2070/03 B mit Signal-elektrodenring) sind mechanisch austauschbar gegen Röhren der Serie XQ 1070.

Röhren mit keramischem Zentrierring (Ausführung /02) sind die zu bevorzugenden Röhren dieser Serie.

GO

XQ 2070/02 XQ 2070/03

4) Einstellbare Vorbelichtung:

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden. Für Schwarzweiß Anwendungen ist eine Vorbelichtung entsprechend 2 bis 3 nA zusätzlichem Dunkelstrom normalerweise ausreichend zur Beseitigung von Trägheitseffekten. In Farbfemsehkameras sollte die Vorbelichtung für jede Röhre unabhängig voneinander eingestellt werden. Eine typische Einstellung für eine RGB-Kamera ist 3 nA (R), 2 nA (G) und 6 nA (B). Auflicht mit λ > 600 nm ist zu vermeiden.

- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1126.bzw. AT 1116 Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 7) Die Spannung an G1 wird bei 1 Blende über Bildweiß so eingestellt, daß ein Strahlstrom von 200 nA für Rund B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
- 8) Zur Erzielung eines Signalstromes von 200 nA bei XQ 2070/0, ist eine Beleuchtungsstärke von etwa 4,6 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 2070/0, R/G/B ist eine Beleuchtungsstärke von etwa 11 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 10)) erforderlich. (Filter BG 12 = 1 mm)
- 9) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 10) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in µA/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 2070/0, R	Schott OG 570	3
XQ 2070/0. G	Schott VG 9	1
XQ 2070/0. B	Schott BG 12	3

- 11) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende 5,6 sowie den entsprechenden Filtern im optischen System. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 12) Eingestellt auf 3 nA für die Summe aus Dunkelstrom, Isolationsstrom und Vorbelichtungsstrom.

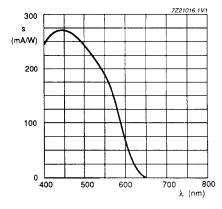
25. 2. 1988

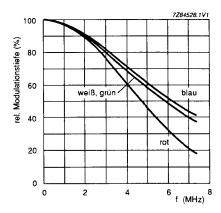
13) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


14) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.

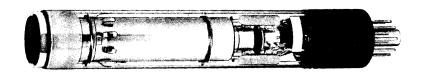

Die Signalungleichmäßigkeit setzt sich aus kleinen parabolischen und sägezahnförmigen Anteilen in horizontaler und vertikaler Richtung zusammen.

Sie können durch geeignete Störsignalkorrektur für Bildschwarz ausreichend kompensiert werden.

15a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.

15b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.

Warnhinweis


Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

1"-PLUMBICON $^{\circledR}$ - Kameraröhren mit erweiterter Rotempfindlichkeit

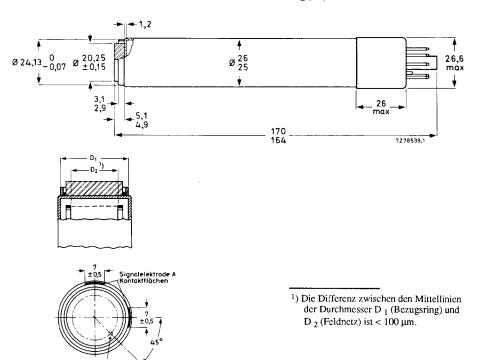
- · Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- Lichtleiter zur Verminderung der Trägheit
- keramischer Zentrierring für genaue optische Anpassung (Ausführung /02)
- für den Rotkanal in Farbfernschkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- · XO 2075/O. R Serie mit aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte

Die Plumbicon-Röhren der Serien XQ 2073 und XQ 2075 eignen sich vorzugsweise für den Einsatz in Studio- und EAP-Fernsehkameras (Elektronische Außenproduktion). Sie sind mechanisch austauschbar gegen 1"-Plumbicon-Röhren.

Kurzdaten

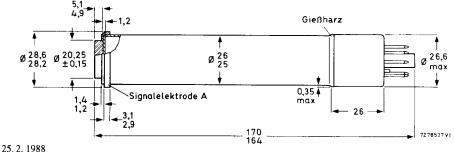
Heizung	$^{\mathrm{U}}_{\mathrm{F}}$	= =	6,3 95	V mA		
Maximum der spektralen Empfindlichkeit	ca.		450	nm		
Grenzwellenlänge XQ 2073/0. R XQ 2075/0. R	ca.		850950 750	nm nm		
Empfindlichkeit bei Farbtemperatur 2856 K			100	μA / lm		
Modulationstiefe bei 400 Zeilen (5 MHz)			55	%		
Fokussierung	magn	etisch				
Ablenkung	magn	etisch				
Ausführung mit	Dioden-Elektrodensystem, 1) 2) Lichtleitern, 4) aufgedampftem Infrarot-Sperrfilter auf der Anti-Reflexionsplatte (nur XQ 2075/0. R), keramischem Zentrierring (Ausführung /02) oder Signalelektrodenring (Ausführung /03)					

Anmerkungen siehe 7. Seite dieses Datenblattes



XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

Mechanische Daten

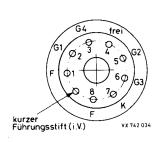

Abmessungen in mm

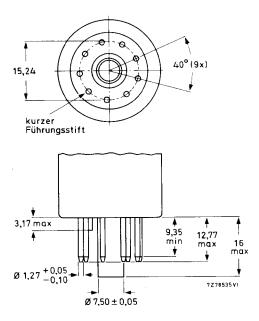
Röhre mit keramischem Zentrierring (/02)

Röhre mit Signalelektrodenring (/03)

7261433.3 VI

NICHT FÜR NEUENTWICKLUNGEN


XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R


Masse

ca. 70 g

Einbaulage

beliebig

Zubehör

Fassung

56 605

Glühlampe (für einstellbare Vorbelichtung)

56 106 ⁴)

Maske

56 028

Fokussier- und Ablenk-Einheit	Röhre mit keramischem Zentrierring (/02)	Röhre mit Signalelektrodenring (/03)		
für Schwarzweiß-Fernsehkameras	AT 1126/03 S	AT 1116/06 S		
für Farbfernschkameras	AT 1126/03 T	AT 1116/06 T		

Anmerkungen siehe 7. Seite dieses Datenblattes

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

NICHT FÜR NEUENTWICKLUNGEN

Kenn- und Betriebsdaten 6

Optische Daten

nutzbare Bildfläche (Verhältnis 3 : 4)

9.6 mm x 12.8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $5 \pm 0.1 \text{ mm}$ n = 1.52

XQ 2075/02 R aufgedampfter Infrarot-Sperrfilter

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (150 mA) (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung) wird Stabilisierung der Heizspannung empfohlen.

Heizstrom bei U $_{\rm F}$ = 6,3 V

 $I_F = 95 \text{ mA}$

Strahl-System

ohne Austastung bei normaler Strahleinstellung Austastspannung an G1 an Katode

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

 $^{-U}_{G1} = 10...0$ V $U_{G1} \le 15$ V $U_{G1MM} = 25$ V

G1-Strom bei normalem Strahlstrom

 $I_{G1} \leq 1,5 \quad mA^{-2}$

25

G2-Strom bei normalem Strahlstrom

 $I_{G2} \leq 0.1 \quad mA^{-2}$

Fokussierung Ablenkung magnetisch

 U_{KMM}

magnetisch

Kapazität

Ausführung /02 Ausführung /03 $c_a = 2,5...4 pF$ $c_a = 3...5 pF$

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit erhöht sich c ...

v

Anmerkungen siehe 7. Seite dieses Datenblattes

NICHT FÜR NEUENTWICKLUNGEN

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

Kenn- und Betriebsdaten ⁶)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U $_{\rm G4}$	=	960	v	
Spannung an G3	U _{G3}	=	600	V	
Spannung an G2	U $_{\rm G2}$	=	300	V	
Spannung an G1	U G1			v	7)
Austastspannung an G1	U _{G1 MM}	=	25	v	
Strahlstrom	I _{STR}			nA	7)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	8)
Frontplattentemperatur	ϑA	=	2045	°C	
Speicherplatte					
Dunkelstrom	Ι ο		≤2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
XQ 2073/0. R	ca.		850950	nm	
XQ 2075/0. R	ca.		750	nm	
γ-Wert			0.95 + 0.05		
Empfindlichkeit bei Farbtemperatur 2856 K			100 (≥ 80)	μA/lm	10)

Anmerkungen siehe 7. Seite dieses Datenblattes

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

NICHT FÜR NEUENTWICKLUNGEN

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 7) 11)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

Signalstrom I $_{A}$ = 100 nA Strahlstrom I $_{STR}$ = 200 nA Modulationstiefe bei 5 MHz = 55 (\geq 50) %

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte) 4) 12) 13)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anst	iegsträgheit	Abfallträgheit		
	I _A /I _{ST}	_R = 20/300 nA	I _A /I _{STR} = 20/300 nA		
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 2073/0. R	90 %	≈ 100 %	11 %	3 %	
XQ 2075/0. R	90 %	≈ 100 %	11 %	3 %	

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung 12,5 % 14)

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

Anmerkungen siehe nächste Seite dieses Datenblattes

NICHT FÜR NEUENTWICKLUNGEN

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V	1	I_{G1}	= max.	5	mA	(≈ I _K)	
U G4	= max.	1100	V		I_{G1M}	= max.	8	mA	(mit DBC)	2)
$\rm U_{\rm G4G3}$	= max.	450	V		Z_{FK}	= min,	2	$\boldsymbol{k}\Omega$	$(U_{FKM} > 10 V)$	
U_{G3}	= max.	800	V		t h	= min.	1	min		
U $_{\rm G2}$	= max.	340	V		ϑ_U , ϑ_A	= max.	+50	°C		9)
+U G1	= max.	25	V			= min.	-30	°C		
-U _{G1}	= max.	200	V		Е	= max.	500	lx		5)
U +FK M	= max.	50	V							
U _{-FK M}	= max.	125	V							

DBC (Dynamik Beam Confrol) dynamische Strahlstrom-Steuerung:
 Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

²⁾ Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U $_{\rm GI} \le 15$ V), für den richtigen Strahlstrom gemäß Anmerkung 7) und dem daraus resultierenden Strom an Gitter 1 betrieben.

 $I_{G1 M} \le 1.5 \text{ mA}$ ohne DBC Betrieb mit Strahlaustastung, gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1\ M}=7\ V$ über der Einstellung für Bildweiß (s. Anmerkung 12)) und Spitzenströme I $_{G1\ M}\leq 8\ mA$ abgeben kann.

Der Betrieb mit U _{G1 M} > 7 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

3) Die Kameraröhren der Ausführung //02 (XQ 2073/02 R und XQ 2075/02 R mit keramischem Zentrierring für genaue optische Anpassung) sind mechanisch austauschbar gegen Röhren der Serien XQ 1073/02 R bzw. XQ 1075/02 R, XQ 1083 R bzw. XQ 1085 R und XQ 1503 R bzw. XQ 1505 R.

Kameraröhren der Ausführung /03 (XQ 2073/03 R und XQ 2075/03 R mit Signalelektrodenring) sind mechanisch austauschbar gegen Röhren der Serie XO 1073 R bzw XO 1075 R.

Röhren mit keramischem Zentrierring (Ausführung /02) sind die zu bevorzugenden Röhren dieser Serie.

XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

NICHT FÜR NEUENTWICKLUNGEN

- 4) Einstellbare Vorbelichtung:
 - Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden. In Farbfernsehkameras sollte die Vorbelichtung für jede Röhre unabhängig voneinander eingestellt werden. Eine typische Einstellung für eine RGB-Kamera ist 3 nA (R), 2 nA (G) und 6 nA (B). Auflicht mit $\lambda > 600$ nm ist zu vermeiden.
- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1126 bzw. AT 1116. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 7) Die Spannung an G1 wird bei 1 Blende über Bildweiß so eingestellt, daß ein Strahlstrom von 200 nA entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit 1 A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
- 8) Zur Erzielung der bei Modulationstiefe angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 11 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 10)) erforderlich. (Filter BG 12 = 1 mm)
- 9) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 10) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 2073/0. R	Schott OG 570 und Calflex B1/K1	3
XQ 2075/0. B	Schott OG 570	3

- 11) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende 5,6 sowie den entsprechenden Filtern im optischen System. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- ¹²) Eingestellt auf 3 nA für die Summe aus Dunkelstrom, Isolationsstrom und Vorbelichtungsstrom.

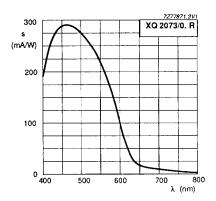
NICHT FÜR NEUENTWICKLUNGEN

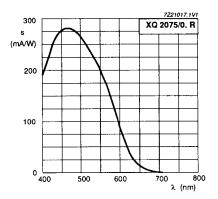
XQ 2073/02 R XQ 2073/03 R XQ 2075/02 R XQ 2075/03 R

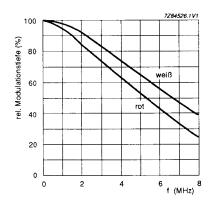
13) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit.

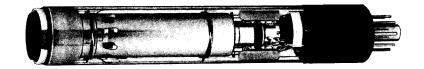

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


- 14) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 - Die Signalungleichmäßigkeit setzt sich aus kleinen parabolischen und sägezahnförmigen Anteilen in horizontaler und vertikaler Richtung zusammen.
 - Sie können durch geeignete Störsignalkorrektur für Bildschwarz ausreichend kompensiert werden.
- 15a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 15b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!



1"-PLUMBICON® - Kameraröhren

- Dioden Elektrodensystem
- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- Einsatz vorzugsweise in Verbindung mit Röntgen-Bildverstärkern mit P 20 Leuchtschirm in medizinischen Anwendungen

XQ 2172/02 Ausführung mit keramischem Zentrierring und Standard-Antireflexionsplatte

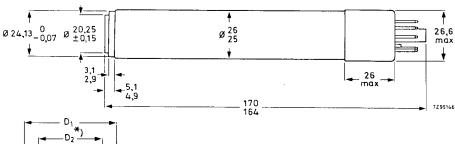
XQ 2172/03 Ausführung mit Signalelektrodenring

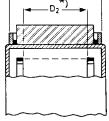
XQ 2172/03 X Ausführung mit Signalelektrodenring und Anti-Reflexionsplatte BG 18

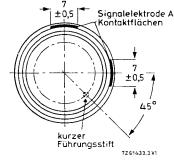
Kurzdaten

Heizung	$\mathbf{U}_{\mathbf{F}}$	=	6,3	V		
	I _F	=	190	mA		
Maximum der spektralen Empfindlichkeit	ca.		470	nm		
Grenzwellenlänge	ca.		800950	nm		
Empfindlichkeit, P 20 Leuchtschirm XQ 2172/02			440	μ A/lm		
XQ 2172/03			490	μΑ/lm		
XQ 2172/03 X			465	μA/Im		
Modulationstiefe bei 400 Zeilen (5 MHz)			60	%		
Fokussierung	magn	etisch				
Ablenkung	magn	etisch				
Ausführung mit	Dioden-Elektrodensystem, 1) 2) Lichtleitern, Anti-Reflexionsplatte (Ausf. /02 und /03 X), keramischem Zentrierring (Ausführung /02) oder Signalelektrodenring (Ausführung /03 und /03 2					

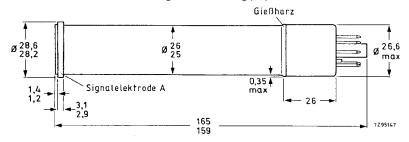
Anmerkungen siehe 7. Seite dieses Datenblattes

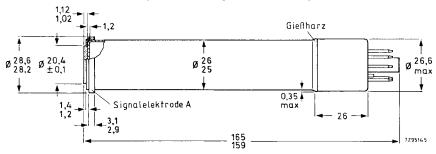





Mechanische Daten

Abmessungen in mm

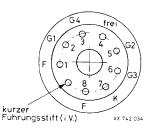


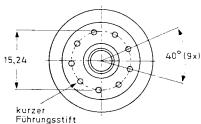

Röhre mit Signalelektrodenring (/03)

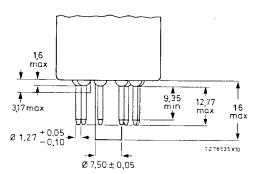
26. 2. 1988 210

^{*)} Die Differenz zwischen den Mittellinien der Durchmesser D₁ (Bezugsring) und D₂ (Feldnetz) ist < 100 µm.</p>

Röhre mit Signalelektrodenring und Antireflexionsplatte (/03 X)


Sockel


Ditetrar (E 8-11), IEC 67-I-33a


Masse

ca. 70 g

Einbaulage beliebig

Zubehör

Fassung

56 605

Röhre mit keramischem	Röhren mit
Zentrierring (/02)	Signalelektrodenring (/03 und /03 X)
AT 1126/03 S	AT 1116/06 S

Anmerkungen siehe 7. Seite dieses Datenblattes

4. 10. 1988

Kenn- und Betriebsdaten 6)

Optische Daten

Durchmesser der nutzbaren

Bildfläche

16.2 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke

Brechungsindex

 $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Тур

Dicke Brechungsindex

XQ 2172/02	XQ 2172/03 X
-	BG 18
5 mm	1.07 mm

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom

n = 1.54

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten. Für beste Eigenschaften wird Stabilisierung der Heizspannung

ν

V

mΑ

mΑ

10...0

empfohlen.

n = 1.52

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_F = 190 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung bei normaler Strahleinstellung

Austastspannung an G1
G1-Strom bei normalem

G2-Strom bei normalem

Strahlstrom

Strahlstrom

Columnianuma

Fokussierung Ablenkung

Kapazität

Ausführung /02 Ausführung /03 -U G1 =

 $U_{G1} \le 20$ $U_{G1 MM} = 30$

I_{G1} ≤ 5

 $I_{G2} \leq 0,1$

magnetisch

magnetisch

 $c_a = 2,5...4 pF$ $c_a = 3...5 pF$

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit erhöht sich c_a.

Anmerkungen siehe 7. Seite dieses Datenblattes

^{4. 10. 1988}

²¹²

Kenn- und Betriebsdaten ⁶)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	UK	=	0	V	
Signalelektrodenspannung	U A	=	45	V	
Spannung an G4	U $_{\rm G4}$	=	960	v	9)
Spannung an G3	U $_{\rm G3}$	=	600	V	9)
Spannung an G2	U $_{\rm G2}$	=	300	v	
Spannung an G1	U $_{G1}$		020	V	
Austastspannung an G1	U $_{G1MM}$	=	30	V	
Strahlstrom	I STR				7) 8)
Fokussierspulenstrom			siehe		6)
Ablenkspulenstrom			siehe		6)
Beleuchtungsstärke der Frontplatte (P 20)	E	=	010	lx	
Frontplattentemperatur	ϑ_A	=	2045	°C	
Speicherplatte					
Dunkelstrom	I ₀		< 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		470	nm	
Grenzwellenlänge	ca.		800950	nm	
γ-Wen			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					10)
XQ 2172/02 XQ 2172/03 XQ 2172/03 X			145 (≥ 130) 155 (≥ 145) 110 (≥ 90)	μΑ/lm μΑ/lm μΑ/lm	
Empfindlichkeit mit P 20 Lichtquelle					
XQ 2172/02 XQ 2172/03 XQ 2172/03 X			440 (≥ 395) 490 (≥ 440) 465 (≥ 400)	μΑ/lm μΑ/lm μΑ/lm	
Signalstrom bei $E = 1 lx (P 20)$					11)
XQ 2172/02 XQ 2172/03 XQ 2172/03 X			205 (≥ 185) 225 (≥ 210) 215 (≥ 185)	nA nA nA	
Signalstrom, Spitzenwert (ø 16,2 mm)			2000	nA	7)
Anmerkungen siche 7. Seite dieses Datenblattes					

4. 10. 1988 213

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 12)

Modulationstiefe, unkompensierter Amplitudengang, bei 20,3 LP/mm (abgetastete Fläche 9,6 mm x 12,8 mm) in Bildmitte (5 MHz, 400 Zeilen) 60 (≥ 50) Modulationstiefe bei 12 Lp/mm (abgetastete Fläche Ø 16,2 mm) in Bildmitte

(5 MHz, 400 Zeilen) 80 (≥ 70) % Modulations-Übertragungskurven siehe nachfolgende Diagramme

Trägheit (ohne Vorbelichtung)

Abfallträgheit13)14)Restsignal nach Dunkelimpuls von 60 ms12 (≤ 18)%Restsignal nach Dunkelimpuls von 200 ms4,5 (≤ 7)%Anstiegsträgheit13)15)Signalstrom 60 ms nach Einschalten der Beleuchtung95 (≥ 50)%

%

siehe nachfolgende Diagramme

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

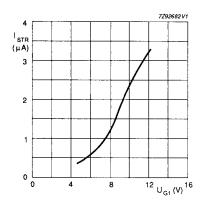
UA	= max.	50	V	I _{G1}	= max.	10	mA	(≈ I _K)	3)
U $_{\rm G4}$	= max.	1100	V	Z FK	= min.	2	$k\Omega$	$(U_{FKM} > 10 V)$	
$U_{\rm G4G3}$	= max.	450	V	t h	= min.	1	min		
U_{G3}	= max.	800	v	ϑ _U , ϑ _A	= max.	+50	°C		4)
$U_{\rm G2}$	= max.	350	V		= min.	-30	°C		
+U _{G1}	= max.	20	V	Е	= max.	500	lx		5)
-U _{G1}	= max.	200	V						
U _{+FK M}	= max.	50	V						
U _{-FK M}	= max.	125	v						

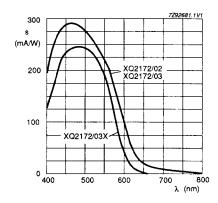
Anmerkungen siehe nächste Seite dieses Datenblattes

^{4. 10. 1988}

- 1) Das Dioden-Elektrodensystem wird mit einer positiven Spannung und dem daraus resultierenden Strom an Gitter 1 betrieben.
 Einzustellen ist die Gleichspannung an Gitter 1 nach der in Anmerkung 8) beschriebenen Strahlstromcinstellung.
- 2) DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung: Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Hohe Strahlstromeinstellungen sind nur bei Spitzlichtern einzusetzen. Alle anderen Betriebseinstellungen sind bei normalem Strahlstrom oder mit Strahlaustastung vorzunehmen.
- 3) Ein Strombegrenzer ist einzusetzen, um den gesamten Katodenstrom auf max. 10 mA zu begrenzen.
- 4) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1116 bzw. AT 1126 Fokussier- und Ablenkeinheiten siehe unter Zubehör.
 Die Ablenkamplituden werden so eingestellt, daß eine Bildfläche von ø 16,2 mm auf der Speicherschicht als Kreisfläche auf einem Monitor abgebildet wird, wobei der Durchmesser der Abbildung der Bildhöhe des Monitors entspricht.
- 7) Die maximalen Signalspitzenströme I AM bei Spitzlichtern betragen ca. 3 µA. Der Vidcoverstärker muß für Signalströme dieser Größe bemessen sein.
- 8) Die Spannung an G₁ wird so eingestellt, daß ein Strahlstrom von 400 nA entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um ein vorgegebenes Signal zu stabilisieren. In den Kenndaten für Auflösung und Trägheit ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I_A/I_{STR} = 20/300 nA. Das bedeutet einen Signalstrom von 20 nA und einer Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA emöglicht. Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelcktroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen (siehe Anmerkung ¹¹)).
- 9) Das optimale Spannungsverhältnis U G4/U G3 zur Erzielung geringer Landefehler (vorzugsweise ≤ 1 V) hängt von der verwendeten Fokussier- und Ablenkeinheit ab. Für den Typ AT 1116 und AT 1126 wird ein Spannungsverhältnis 1,6:1 empfohlen. In keinem Fall darf U G4 < U G3 werden, da dieses Spannungsverhältnis die Speicherschicht beschädigt.</p>
- 10) McBbedingungen: gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den Filtern Schott VG 9 (1 mm) und Calflex B1/K1 im optischen System.

XQ 2172/02 XQ 2172/03 XQ 2172/03 X

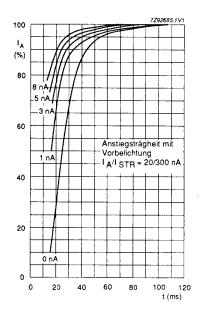

- 11) Die Signalspitzenströme werden mit einem Video-Oszilloskop am Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der ø 16,2 mm Fläche, gemessen. Bei Messung mit einem integrierenden Meßinstrument sind die Signalelektrodenströme kleiner:
 - a) um einen Faktor α (α = 100/100- β ; β ist die Gesamtaustastzeit in %); beim CCIR-System ist α = 0,75 b) um einen Faktor δ , (δ ist das Verhältnis der genutzten Abtastfläche (Kreis mit ø 16,2 mm) zur Fläche, die den eingestellten Abtastamplituden (16,2 mm x 21,6 mm) entspricht), hier ergibt sich das Verhältnis δ = 0,59. Das gesamte Verhältnis des integrierten Signalstromes I $_A$ zum Signalspitzenstrom I $_A$ $_A$ beträgt α x δ = 0,44.
- 12) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, sinusförmiger Helligkeitsverteilung des Meßrasters bei 400 Zeilen, Blende 5,6. Der publizierte Wert von 60 % ist unkorrigiert. Die wirkliche Auflösung der Röhre ist höher. Gemessen bei I A = 200 nA und I STR = 400 nA. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 13) gemessen mit einem Signalstrom I A = 20 nA und einem Strahlstrom, der gerade einen Signalstrom von 300 nA stabilisiert.

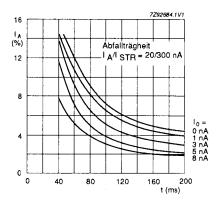

¹⁴) Anstiegsträgheit:

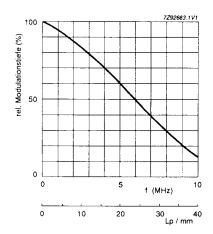
Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

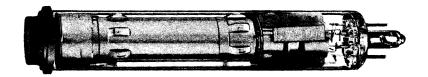



Warnhinweis


Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

26.2.1988



26. 2. 1988 **217**

2/3" - PLUMBICON® - Kameraröhren

- · Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität

Die Plumbicon-Röhren der Serie XQ 2427 sind vorzugsweise geeignet zum Einsatz in EB- (Elektronische Berichterstattung) und EAP- (Elektronische Außenproduktion) Fernsehkameras.

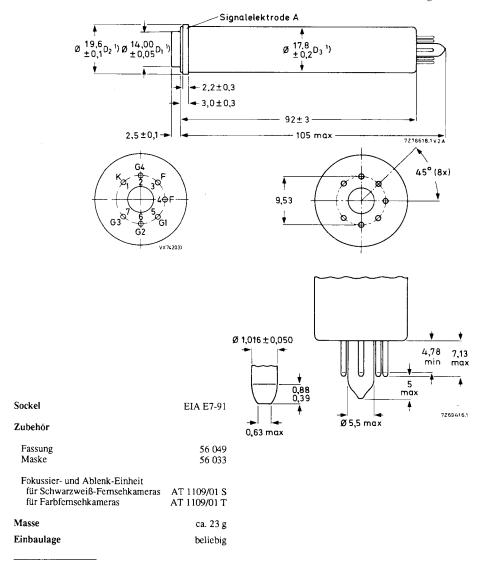
Sie sind mechanisch austauschbar gegen 2/3"-Plumbicon-Röhren der Serie XQ 1427 1).

XQ 2427	für Schwarzweiß Fernsehkameras
XQ 2427 R	für den Rotkanal in Farbfernsehkameras
XQ 2427 G	für den Grünkanal in Farbfemsehkameras
XQ 2427 B	für den Blaukanal in Farbfernsehkameras

Kurzdaten

Heizung	U _F I _F	=	6,3 95	V mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
	XQ 2	2427	XQ 242	7 R	XQ 2427 G	XQ 2427 B	
Grenzwellenlänge	650	.850	850		650850	650	nm
Empfindlichkeit bei Farbtemperatur 2856 K	34	0	95		130	40	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	50	C	45		50	55	%
Fokussierung	magne	tisch	•	•		ı	
Ablenkung	magne	tisch					
Ausführung mit	Dioder	n-Elekt	rodensyste	m,	1)2)		

Anti-Reflexionsplatte


Anmerkungen siehe 6. Seite dieses Datenblattes

10. 3. 1988

Mechanische Daten

Abmessungen in mm

¹⁾ Die Differenz zwischen den Mittellinien der Durchmesser D 1 (Anti-Reflexionsplatte), D 2 (Signalelektrode) und der Mittellinie des Durchmessers D₃ (Röhrenkolben) ist ≤ 200 µm.

^{10.3.1988}

Kenn- und Betriebsdaten 7)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3 : 4) 6,6 mm x 8,8 mm

Lage der Bildfläche Die Horizontalablenkung soll etwa parallel zur Ebene durch die

Röhrenachse und den Zwischenraum zwischen Stift 1 und 7

verlaufen.

Frontplatte

Dicke $2,3 \pm 0,1 \text{ mm}$ Brechungsindex n = 1,49

Anti-Reflexionsplatte

 $\begin{array}{ll} \mbox{Dicke} & 2.5 \pm 0.1 \ \mbox{mm} \\ \mbox{Brechungsindex} & n = 1.52 \end{array}$

Elektrische Daten

Heizung indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung $U_F = 6.3 \text{ V} \pm 5 \%$

Die Heizspannung darf 9 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

8)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$ $I_F = 95 \text{ mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

Austastspannung

an G1 $U_{G1 MM} = 25$ V an Katode $U_{K MM} = 25$ V

G1-Strom bei normalem $I_{G1} \hspace{1.5cm} \leq \hspace{1.5cm} 1,5 \hspace{1.5cm} mA$

G2-Strom bei normalem $I_{G2} \leq 0,1$ mA

Fokussierung magnetisch Ablenkung magnetisch

Kapazität $c_a = 1,5...3$ pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Kenn- und Betriebsdaten ⁷)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	v	
Signalelektrodenspannung	U A	=	45	V	
Spannung an G4	U $_{\mathrm{G4}}$	=	500 750	v	9)
Spannung an G3	U $_{\mathrm{G3}}$	=	285 430	v	9)
Spannung an G2	U $_{\rm G2}$	=	300 300	V	
Spannung an G1	U G1				8)
Austastspannung an G1	U_{G1MM}	=	25	v	
Strahlstrom	I _{STR}				8)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	10)
Frontplattentemperatur	θA	=	2045	°C	
Speicherplatte					
Dunkelstrom	I 0		≤ 1	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	12)
Grenzwellenlänge	ca.		650850	nm	
γ-Wert			0.95 + 0.05		
Empfindlichkeit bei Farbtemperatur 2856 K					11)
XQ 2427			340 (≥ 275)	μA/lm	
XQ 2427 R			95 (≥ 80)	μA/lm	
XQ 2427 G			130 (≥ 95)	μA/lm	
XQ 2427 B			40 (≥ 35)	μΑ/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{10. 3. 1988}

²²²

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 13)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 2427 XQ 2427 G	XQ 2427 R	XQ 2427 B
Signalstrom I A (nA)	200	150	150
Strahlstrom I STR (nA)	400	300	300
Modulationstiefe bei 5 MHz (%)			
U _{G4/G3} = 750/430 V	50 (≥ 45)	45 (≥ 40)	55 (≥ 50)
$U_{G4/G3} = 500/285 \text{ V}$	48 (> 43)	40 (> 35)	55 (>50)

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

14) 15)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

		Anstieg	gsträgheit	Abfallträgheit			
		I _A /I _{STR} =	= 20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$			
	Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms		
XQ 2427		95 %	≈ 100 %	7,5 %	3%		
XQ 2427 R		95 %	≈ 100 %	9 %	3,5 %		
XQ 2427 G		95 %	≈ 100 %	7,5 %	3%		
XQ 2427 B		95 %	≈ 100 %	10 %	4 %		

Spitzlichtverarbeitung mit D.B.C

16)

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U_A	= max.	50	V ³)	I Gl	= max.	5	mA	(≈ I _K)	4)
U_{G4}	= max.	1000	v	I _{Gl M}	= max.	8	mA	(mit DBC)	2)
U _{G4G3}	= max.	400	v		= min.	2	$k\Omega$	$(U_{FKM} > 10 V)$	
U $_{\rm G3}$	= max.	750	v	t _h	= min.	1	min		
U $_{\rm G2}$	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	°C		5)
+U G1	= max.	25	V		= min.				
-U _{G1}	= max.	200	v	E	= max.	500	lx		6)
U +FK M	1 = max.	50	v						
U _{-FK M}	= max.	125	v	-					
				ı					

Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Da das Dioden-Elektrodensystem mit einer positiven Spannung und dem daraus resultierenden Strom an Gitter 1 betrieben wird, sind Kameras, die für Röhren der Serie XQ 1427 entwickelt wurden, entsprechend zu modifizieren.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

2) Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung 8) und dem daraus resultierenden Strom an Gitter 1 betrieben.

I $_{G1 \text{ M}} \le 1,5 \text{ mA}$ ohne DBC Betrieb mit Strahlaustastung, $_{G1 \text{ M}} \le 8 \text{ mA}$ mit DBC gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1~M}=10~V$ über der Einstellung für Bildweiß (s. Anmerkung 8)) und Spitzenströme I $_{G1~M}\leq 8~m$ A abgeben kann.

Der Betrieb mit U $_{\rm G1\,M}$ > 10 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

¹⁾ DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung:

- 3) Da bei PLUMBICON-Kameraröhren eine automatische Empfindlichkeitssteuerung durch Regelung der Signalelektrodenspannung nicht möglich ist, muß dies auf andere Weise, wie z.B. Blendeneinstellung oder Neutralflitter, erzielt werden.
 Soll eine Polymer Gemilie in eine Komere die für Vidikore entwickelt unrede einergesetzt worden es en
 - Soll eine Röhre dieser Familis in eine Kamera, die für Vidikons entwickelt wurde, eingesetzt werden, so muß die Schaltung für die automatische Empfindlichkeitssteuerung außer Betrieb gesetzt und die Signalelektrodenspannung auf 45 V eingestellt werden.
- 4) Spitzenwert, gemessen mit einem Oszilloskop.
- 5) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 6) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 7) gemessen mit der Fokussier- und Ablenkeinheit AT 1109. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 8) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.
 - In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I $_{\rm A}$ /I $_{\rm STR}$ = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
 - Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor $\,\alpha$ größer.
 - $(\alpha = 100/100-\beta, \beta)$ ist die Gesamtaustastzeit in %; beim CCIR-System ist $\alpha = 1,3$)
- 9) Das optimale Spannungsverhältnis U G4/U G3 zur Erzielung geringer Landefehler (vorzugsweise ≤ 1 V) hängt von der verwendeten Fokussier- und Ablenkeinheit ab. Für den Typ AT 1109 wird ein Spannungsverhältnis von 1,75: 1 empfohlen.
 - In keinem Fall darf die Röhre mit einer Spannung U $_{\rm G4}$ (Feldnetz) < U $_{\rm G3}$ betrieben werden, da diese Betriebseinstellung die Speicherplatte beschädigt.
 - Spannungseinstellung U G4/U G3 für optimale Auflösung:
 - Die Auflösung der Kameraröhre nimmt mit Erhöhung der Spannung an G 3 und G 4 zu. Es ist aber zu berücksichtigen, daß eine Betriebsart mit höheren Spannungen auch höhere Ablenk- und Fokussierleistung erfordert.
 - Bei der Kameraentwicklung sind thermische Messungen (Luftkühlung, Wärmeableitung) durchzuführen, um die Einhaltung der max. Frontplattentemperatur von +50 °C sicherzustellen, da sonst Leistung und Lebensdauer der Röhre eingeschränkt werden.
- 10) Zur Erzielung eines Signalstromes von 200 nA bei XQ 2427 ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 2427 R/G/B ist eine Beleuchtungsstärke von etwa 25 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 11)) erforderlich. (BG 12 = 1 mm)

11) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 2427 R	Schott OG 570 und Calflex B1/K1	3
XQ 2427 G	Schott VG 9	1
XQ 2427 B	Schott BG 12	3

- 12) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 13) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 80 %, bei sinusförmiger Helligkeitsverteilung des McBrasters, 30 LP/mm (400 Zeilen bei 6,6 mm x 8,8 mm Bildfläche) und Blende 5,6.

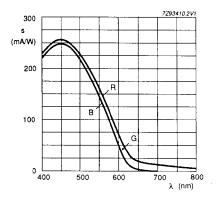
Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

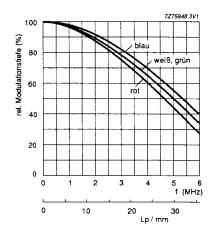
14) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

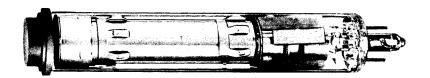
Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


- 15) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
- 16a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 16b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!


10.3.1988

2/3" - PLUMBICON® - Kameraröhren

- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für industrielle Anwendungen

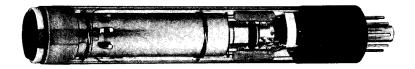
Die Plumbicon-Röhren der Serie XQ 2428 sind elektrisch und mechanisch identisch mit denen der Serie XQ 2427, haben jedoch geringere Anforderungen in Bezug auf Bildfehler.

XQ 2428	für Schwarzweiß Fernsehkameras
XQ 2428 R	für den Rotkanal in Farbfernschkameras
XQ 2428 G	für den Grünkanal in Farbfernsehkameras
XQ 2428 B	für den Blaukanal in Farbfernschkameras

Kurzdaten

Hairung

Ausführung mit


Heizung	∪ _F	=	0,3 95	mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
	XQ 2	428	XQ 242	8 R	XQ 2428 G	XQ 2428 B	
Grenzwellenlänge	650	850	850		650850	650	nm
Empfindlichkeit bei Farbtemperatur 2856 K	365	5	100		140	40	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	60	ı	52		60	65	%
Fokussierung	magnet	isch		•		ı	
Ablenkung	magnet	isch					

Anti-Reflexionsplatte

1"-LOC PLUMBICON® - Kameraröhren

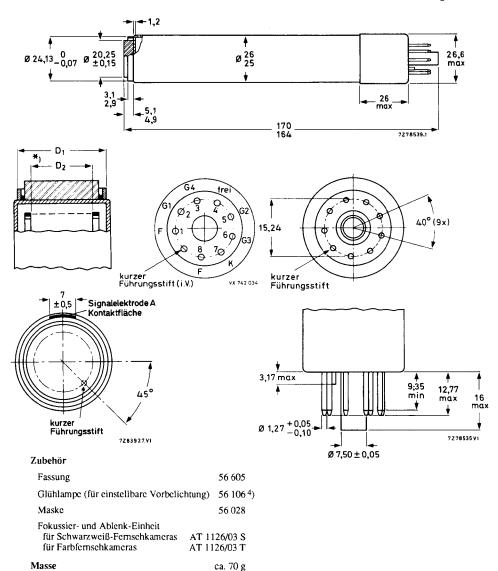
- · Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtern
- · sehr niedrige Ausgangskapazität für optimales Signal-Rausch/Verhältnis
- getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- · für Anwendungen mit hohen Anforderungen an Bildqualität

Die LOC (Low Output Capacitance) Plumbicon-Röhren der Serie XQ 3070/02 sind so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden können und eignen sich vorzugsweise für den Einsatz in Studio- und EAP-Fernsehkameras (Elektronische Außenproduktion).

Sie sind mechanisch austauschbar gegen 1"-Plumbicon-Röhren mit keramischem Zentrierring.

XQ 3070/02 für Schwarzweiß Fernsehkameras
XQ 3070/02 R für den Rotkanal in Farbfernsehkameras
XQ 3070/02 G für den Grünkanal in Farbfernsehkameras
XO 3070/02 B für den Blaukanal in Farbfernsehkameras

Kurzdaten


Heizung	U _F	= =	6,3 95	V mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
Grenzwellenlänge	ca.		650	nm			
	XQ	3070/02	XQ3070	/02R	XQ3070/02G	XQ3070/02F	В
Empfindlichkeit bei Farbtemperatur 2856 I	37	75	70		155	40	μA/lm
Modulationstiefe bei 400 Zeilen (5 MHz)	6	0	45		60	60	%
Fokussierung	magr	netisch	I			I	
Ablenkung	magr	netisch					
Ausführung mit	Licht Anti-	leitem, Reflexio	rodensyste nsplatte, Zentrierri		1) 2) 3) 4)		

Anmerkungen siehe 6. Seite dieses Datenblattes

20. 2. 1988

Einbaulage

^{*)} Die Differenz zwischen den Mittellinien der Durchmesser D $_1$ (Bezugsring) und D $_2$ (Feldnetz) ist < 100 μ m. 20. 2. 1988 232

beliebig

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

9.6 mm x 12.8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex

 $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $5 \pm 0.1 \, \text{mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (150 mA) (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

V

 mA^{2}

wird Stabilisierung der Heizspannung empfohlen.

10...0

15

25

25

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_{F} = 95 \text{ mA}$

-U G1

Strahl-System

bei $U_{G2} = 300 \text{ V}$
ohne Austastung
bei normaler Strahleinstellung

Sperrspannung an G1

onne Austastung	
bei normaler Strahleinstellung	
Austastspannung	

nusiasispa
an G1
an Katode

$$U_{G1} \leq U_{G1 MM} =$$

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit erhöht sich c ..

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 3070/02

Kenn- und Betriebsdaten 6)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U_{G4}	=	960	v	
Spannung an G3	U _{G3}	=	600	v	
Spannung an G2	U $_{\rm G2}$	=	300	v	
Spannung an G1	U _{G1}				7)
Austastspannung an G1	$U_{G1\;MM}$	=	25	v	
Strahlstrom	I _{STR}				7)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	8)
Frontplatientemperatur	ϑ_A	=	2045	°C	
Speicherplatte					
Dunkelstrom	Ιο		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
γ-Wert			0.95 + 0.05		
Empfindlichkeit bei Farbtemperatur 2856 K					10)
XQ 3070/02			375 (≥ 300)	μA/lm	
XQ 3070/02 R			70 (≥ 63)	μA/lm	
XQ 3070/02 G			155 (≥ 130)	μA/lm	
XQ 3070/02 B			40 (≥ 35)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{20. 2. 1988} **234**

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

7) 11)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 3070/02 XQ 3070/02 G	XQ 3070/02 R	XQ 3070/02 B
Signalstrom I A (nA)	200	100	100
Strahlstrom I _{STR} (nA)	400	200	200
Modulationstiefe bei 5 MHz (%)	60 (≥ 55)	45 (≥ 40)	60 (≥ 55)

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

4) 12) 13)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstie	gsträgheit	Abfallträgheit		
	I _A /I _{STR}	= 20/300 nA	I _A /I _{STR} =	20/300 nA	
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 3070/02	95 %	≈ 100 %	9 %	2,5 %	
XQ 3070/02 R	95 %	≈ 100 %	9 %	2,5 %	
XQ 3070/02 G	95 %	≈ 100 %	9%	2,5 %	
XQ 3070/02 B	90 %	≈ 100 %	12 %	4 %	

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

14)

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

15)

Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 3070/02

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U _A	= max.	50	V	1	I_{G1}	= max.	5	mA	(≈ I _K)	
U $_{\rm G4}$	= max.	1100	V		I _{G1 M}	= max.	8	mA	(mit DBC)	2)
$U_{\rm G4G3}$	= max.	450	V		z_{FK}	= min.	2	$k\boldsymbol{\Omega}$	$(U_{FKM} > 10 V)$	
U $_{\rm G3}$	= max.	800	V		t _h	= min.	1	min		
U_{G2}	= max.	340	V		ϑ_U , ϑ_A	= max.	+50	°C		9)
+U G1	= max.	25	V			= min.	-30	°C		
-U _{G1}	= max.	200	V		E	= max.	500	lx		5)
U _{+FK M}	= max.	50	V							
U _{-FK M}	= max.	125	V							

2) Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung ⁷) und dem daraus resultierenden Strom an Gitter 1 betrieben.

$$I_{G1 M} \le 1,5 \text{ mA}$$
 ohne DBC Betrieb mit Strahlaustastung,
 $I_{G1 M} \le 8 \text{ mA}$ mit DBC gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1~M}$ = 7 V über der Einstellung für Bildweiß (s. Anmerkung 7)) und Spitzenströme I $_{G1~M}$ \leq 8 mA abgeben kann.

Der Betrieb mit U _{G1 M} > 7 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

3) Kameraröhren der Serie XQ 3070/02 haben in Abweichung zu den Röhren der Serien XQ 1070/02, XQ 1500 und XQ 2070 nur einen Signalelektrodenanschluß.

Fernschkameras, die für vorstehend aufgeführte Röhren entwickelt wurden, müssen entsprechend Anmerkung 2) elektrisch modifiziert werden.

DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung: Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromeserve.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Austreten von Spitzlichtern positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

4) Einstellbare Vorbelichtung:

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefort, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden. Für Schwarzweiß Anwendungen ist eine Vorbelichtung entsprechend 2 bis 3 nA zusätzlichem Dunkelstrom normalerweise ausreichend zur Beseitigung von Trägheitseffekten.

In Farbfernsehkameras sollte die Vorbelichtung für jede Röhre unabhängig voneinander eingestellt werden. Eine typische Einstellung für eine RGB-Kamera ist 3 nA (R), 2 nA (G) und 6 nA (B). Auflicht mit $\lambda > 600$ nm ist zu vermeiden.

- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1126. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 7) Die Spannung an G1 bei 1 Blende über Bildweiß wird so eingestellt, daß ein Strahlstrom von 200 nA für Rund B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
- 8) Zur Erzielung eines Signalstromes von 200 nA bei XQ 3070/02 ist eine Beleuchtungsstärke von etwa 4,6 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 3070/02 R/G/B ist eine Beleuchtungsstärke von etwa 11 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 10)) erforderlich. (Filter BG 12 = 1 mm)
- 9) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 10) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3070/02 R	Schott OG 570	3
XQ 3070/02 G	Schott VG 9	1
XQ 3070/02 B	Schott BG 12	3

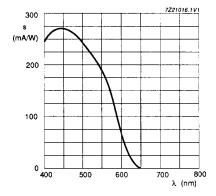
11) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende ` 5,6 sowie den entsprechenden Filtern im optischen System.

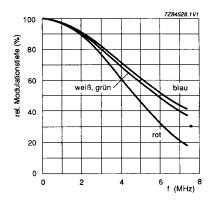
Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

12) Eingestellt auf 3 nA f
ür die Summe aus Dunkelstrom, Isolationsstrom und Vorbelichtungsstrom.

24. 2. 1988

XQ 3070/02


13) Anstiegsträgheit:

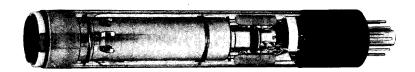

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 14) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 - Die Signalungleichmäßigkeit setzt sich aus kleinen parabolischen und sägezahnförmigen Anteilen in horizontaler und vertikaler Richtung zusammen.
 - Sie können durch geeignete Störsignalkorrektur für Bildschwarz ausreichend kompensiert werden.
- 15a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 15b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.

Warnhinweis


Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

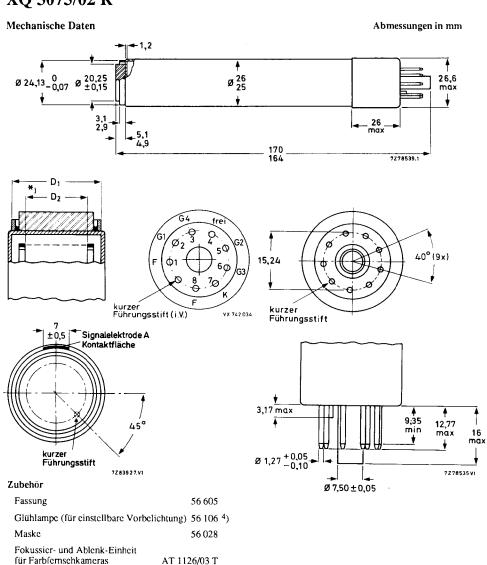
20.2.1988

1"-LOC PLUMBICON® - Kameraröhren mit erweiterter Rotempfindlichkeit

- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- sehr niedrige Ausgangskapazität f
 ür optimales Signal/Rausch-Verh
 ältnis
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · keramischer Zentrierring für genaue optische Anpassung
- für den Rotkanal in Farbfernschkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- XQ 3075/02 R mit aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte

Die LOC (Low Output Capacitance) Plumbicon-Röhren XQ 3073/02 R und XQ 3075/02 R sind so ausgeführt, daß sie vom rückwärtigen Ende in die Ablenkeinheit eingesetzt werden können und eignen sich vorzugsweise für den Einsatz in Studio- und EAP-Fernsehkameras (Elektronische Außenproduktion). Sie sind mechanisch austauschbar gegen 1"-Plumbicon-Röhren mit keramischem Zentrierring.

Kurzdaten


Heizung	U _F	=	6,3 95	V mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge XQ 3073/02 R XQ 3075/02 R	ca.		850950 750	nm nm
Empfindlichkeit bei Farbtemperatur 2856 K	ca.		100	μA / lm
Modulaționstiefe bei 400 Zeilen (5 MHz)			55	%
Fokussierung	magne	etisch		
Ablenkung	magno	etisch		
Ausführung mit	Lichtle aufged Anti-F	eitern, dampft Reflexi		1) 2) 3) 4) perrfilter auf der XQ 3075/02 R)

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 3073/02 R XQ 3075/02 R

ca. 70 g

beliebig

Masse

Einbaulage

^{*)} Die Differenz zwischen den Mittellinien der Durchmesser D $_1$ (Bezugsring) und D $_2$ (Feldnetz) ist < 100 μm .

^{20. 2. 1988} 240

Kenn- und Betriebsdaten 6)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

9.6 mm x 12.8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $5 \pm 0.1 \text{ mm}$ n = 1.52

aufgedampfter Infrarot-Sperrfilter XQ 3075/02 R

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (150 mA) (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

ν

v

 mA^{2}

wird Stabilisierung der Heizspannung empfohlen.

10...0

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_F = 95 \text{ mA}$

-U G1

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$ ohne Austastung

bei normaler Strahleinstellung Austastspannung an G1 an Katode

G1-Strom bei normalem Strahlstrom G2-Strom bei normalem

Kapazität

Fokussierung Ablenkung

Strahlstrom

 U_{G1} ≤ 15

U_{G1 MM} 25 25 UKMM =

 I_{Gi} ≤ 1.5

0.1 mA^{2} I_{G2}

magnetisch

magnetisch

C a 2,1 pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit erhöht sich c ...

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 3073/02 R XQ 3075/02 R

Kenn- und Betriebsdaten 6)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	V	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U $_{\mathrm{G4}}$	=	960	V	
Spannung an G3	U _{G3}	=	600	v	
Spannung an G2	U _{G2}	=	300	V	
Spannung an G1	U G1				7)
Austastspannung an G1	U_{G1MM}	=	25	V	
Strahlstrom	I _{STR}				7)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	8)
Frontplattentemperatur	θA	=	2045	°C	
Speicherplatte					
Dunkelstrom	Ι ο		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
XQ 3073/02 R	ca.		850950	nm	
XQ 3075/02 R	ca.		750	nm	
γ-Wen			0,95 + 0,05		

100 (≥ 80)

Empfindlichkeit bei Farbtemperatur 2856 K

10)

μA/lm

Anmerkungen siehe 6. Seite dieses Datenblattes

^{20. 2. 1988}

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 7) 11)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

Signalstrom I A

100

nΑ

Strahlstrom I STR

200

nA

Modulationstiefe bei 5 MHz

55 (≥ 50)

%

Trägheit für dunkle Bildpartien (20 % Bildweiß)

(Dunkelstrom auf 3 nA eingestellt, typische Werte)

4) 12) 13)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

	Anstieg	strägheit	Abfallträgheit		
	I _A /I _{STR} =	: 20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ n}$		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 3073/02 R	90 %	≈ 100 %	11 %	3 %	
XQ 3075/02 R	90 %	≈ 100 %	11 %	3 %	

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12.5 %

14)

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

15)

Anmerkungen siehe nächste Seite dieses Datenblattes

XQ 3073/02\R XQ 3075/02 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	v	I_{G1}	= max.	5	mA	(≈ I _K)	
U_{G4}	= max.	1100	V	I_{GlM}	= max.	8	mA	(mit DBC)	2)
$U_{\rm G4G3}$	= max.	450	V	z_{FK}	= min.	2	$k\Omega$	$(U_{FKM} > 10 V)$	
U_{G3}	= max.	800	V	t _h	= min.	1	min		
U $_{\rm G2}$	= max.	340	V	ϑ U, ϑ A	= max.	+50	°C		9)
+U _{G1}	= max.	25	V		= min.	-30	°C		
-U _{G1}	= max.	200	v	E	= max.	500	lx		5)
U +FK M	= max.	50	V						
U _{-FK M}	= max.	125	v						

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtern positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

²⁾ Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U $_{\rm GI}$ \leq 15 V), für den richtigen Strahlstrom gemäß Anmerkung 7) und dem daraus resultierenden Strom an Gitter 1 betrieben.

$$I_{G1 M} \le 1,5 \text{ mA}$$
 ohne DBC Betrieb mit Strahlaustastung, gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1\ M}=7\ V$ über der Einstellung für Bildweiß (s. Anmerkung 7)) und Spitzenströme $1_{G1\ M}\le 8\ mA$ abgeben kann.

Der Betrieb mit U _{G1 M} > 7 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindem und zu Schwingneigung führen.

3) Die Kameraröhren XQ 3073/02 R und XQ 3075/02 R haben in Abweichung zu den Röhren der Serien XQ 1070/02, XQ 1500 und XQ 2070 nur einen Signalelektrodenanschluß. Femsehkameras, die für vorstehend aufgeführte Röhren entwickelt wurden, müssen entsprechend Anmerkung 2) elektrisch modifiziert werden.

DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung: Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve.

- 4) Einstellbare Vorbelichtung:
 - Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 605 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden. In Farbfernsehkameras sollte die Vorbelichtung für jede Röhre unabhängig voneinander eingestellt werden. Eine typische Einstellung für eine RGB-Kamera ist 3 nA (R), 2 nA (G) und 6 nA (B). Auflicht mit $\lambda > 600$ nm ist zu vermeiden.
- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1126. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 7) Die Spannung an G1 wird bei 1 Blende über Bildweiß so eingestellt, daß ein Strahlstrom von 200 nA entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.
- 8) Zur Erzielung der bei Modulationstiese angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 11 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 10)) erforderlich. (Filter BG 12 = 1 mm)
- 9) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 10) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3073/02 R	Schott OG 570 und Calflex B1/K1	3
XO 3075/02 R	Schott OG 570	3

- 11) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 20,6 LP/mm (400 Zeilen bei 9,6 mm Bildhöhe) und Blende 5,6 sowie den entsprechenden Filtern im optischen System. Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 12) Eingestellt auf 3 nA für die Summe aus Dunkelstrom, Isolationsstrom und Vorbelichtungsstrom.

XQ 3073/02 R XQ 3075/02 R

13) Anstiegsträgheit:

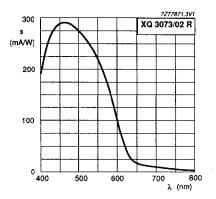
Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

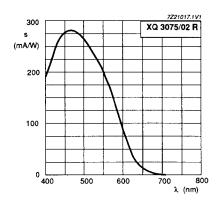
Abfallträgheit:

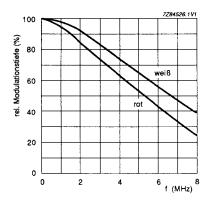
Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

14) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an. Die Signalungleichmäßigkeit setzt sich aus kleinen parabolischen und sägezahnförmigen Anteilen in

horizontaler und vertikaler Richtung zusammen.

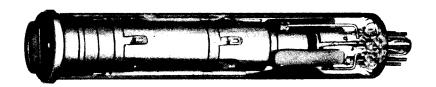

- Sie können durch geeignete Störsignalkorrektur für Bildschwarz ausreichend kompensiert werden.
- 15a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 15b) Die maximalen Signalspitzenströme I A M bei Spitzlichtem betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis


Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

XQ 3073/02 R XQ 3075/02 R



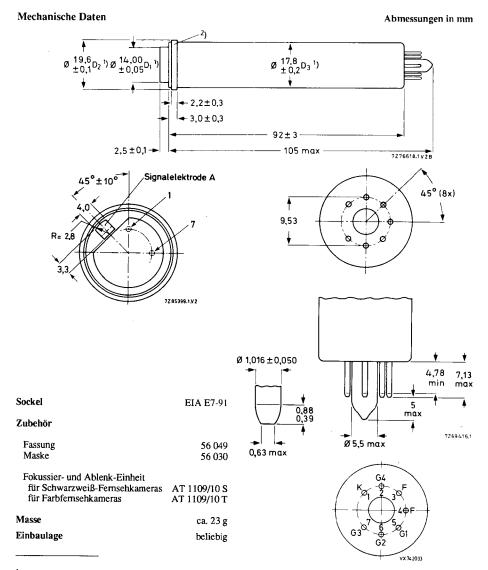
2/3"-LOC PLUMBICON® - Kameraröhren

- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- sehr niedrige Ausgangskapazität f
 ür optimales Signal/Rausch-Verh
 ältnis
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- für Anwendungen mit hohen Anforderungen an Bildqualität

Die LOC (Low Qutput Capacitance) Plumbicon-Röhren der Serie XQ 3427 sind vorzugsweise geeignet zum Einsatz in EB- (Elektronische Berichterstattung) und EAP- (Elektronische Außenproduktion) Fernsehkameras.

Sie sind mechanisch austauschbar gegen 2/3"-Plumbicon-Röhren der Serie XQ 1427 1).

XQ 3427	für Schwarzweiß Fernsehkameras
XQ 3427 R	für den Rotkanal in Farbfernsehkameras
XQ 3427 G	für den Grünkanal in Farbfernsehkameras
XQ 3427 B	für den Blaukanal in Farbfernsehkameras


Kurzdaten

Heizung	$U_F = I_F =$	6,3 95	V mA		
Maximum der spektralen Empfindlichkeit	ca.	450	nm		
	XQ 3427	XQ 3427	R XQ 342	7 G XQ 3427 B	
Grenzwellenlänge	650850	850	6508	650	nm
Empfindlichkeit bei Farbtemperatur 2856 I	340	95	130	40	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	50	45	50	55	%
Fokussicrung	magnetisch		,	•	
Ablenkung	magnetisch				
Ausführung mit	Dioden-Elek Anti-Reflexi		n, 1) ²)		

Anmerkungen siehe 6. Seite dieses Datenblattes

¹) Die Differenz zwischen den Mittellinien der Durchmesser D₁ (Anti-Reflexionsplatte), D₂ (Metallring) und der Mittellinie des Durchmessers D₃ (Röhrenkolben) ist ≤ 200 µm.

²⁾ Der Metallring ist elektrisch nicht angeschlossen.

^{8. 3. 1988} **250**

Kenn- und Betriebsdaten 8)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

6,6 mm x 8,8 mm

Lage der Bildfläche

Die Horizontalablenkung soll etwa parallel zur Ebene durch die

Röhrenachse und den Zwischenraum zwischen Stift 1 und 7

verlaufen.

Frontplatte

Dicke Brechungsindex 2.3 ± 0.1 mm

n = 1,49

Anti-Reflexionsplatte

Dicke Brechungsindex $2.5 \pm 0.1 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

9)

wird Stabilisierung der Heizspannung empfohlen.

10...0

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_F = 95 \text{ mA}$

-U G1

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

bei normaler Strahleinstellung

Austastspannung

an G1 an Katode

an Katode

G1-Strom bei normalem

Strahlstrom

G2-Strom bei normalem Strahlstrom

Fokussierung Ablenkung

Kapazität

U _{G1} ≤ 15

 $U_{G1 MM} = 25$ $U_{K MM} = 25$

I_{G1} ≤ 1,5

≤

G₁ ≤ 1,5 mA

magnetisch

 I_{G2}

C a

. .

magnetisch

= 1,5 pF 3)

0,1

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

mΑ

erhöht sich c a.

GO

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten 8)						
Elektrische Daten, Fortsetzung						
Spannung an Katode	U _K	=	0		v	
Signalelektrodenspannung	U A	=	45	i	v	
Spannung an G4	U _{G4}	=	500	750	v	¹⁰)
Spannung an G3	U _{G3}	=	285	430	v	10)
Spannung an G2	U $_{\rm G2}$	=	300	300	v	
Spannung an G1	U G1					9)
Austastspannung an G1	U _{G1 MM}	=	25	i	v	
Strahlstrom	I _{STR}					9)
Beleuchtungsstärke der Frontplatte	Е	=	01	10	lx	11)
Frontplattentemperatur	ϑA	=	20	45	°C	
Speicherplatte						
Dunkelstrom	I o		≤ 1	I	nA	
Maximum der spektralen Empfindlichkeit	ca.		450)	nm	¹³)
Grenzwellenlänge	ca.		650	850	nm	
γ-Wert			0,95 +	0,05		
Empfindlichkeit bei Farbtemperatur 2856 K						12)
XQ 3427			340 (≥	275)	μA/lm	
XQ 3427 R			95 (≥	80)	μ Α/ lm	
XQ 3427 G			130 (≥	≥ 95)	μ Α/lm	
XQ3427 B			40 (≥	35)	μΑ/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{8. 3. 1988}

²⁵²

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 14)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 3427 XQ 3427 G	XQ 3427 R	XQ 3427 B
Signalstrom I A (nA)	200	150	150
Strahlstrom I STR (nA)	400	300	300
Modulationstiefe bei 5 MHz (%)			
U _{G4/G3} = 750/430 V	50 (≥ 45)	45 (≥ 40)	60 (≥ 55)
U _{G4/G3} = 500/285 V	48 (> 43)	40 (> 35)	55 (>50)

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

15) 16)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstieg	strägheit	Abfallträgheit		
	I A/I STR =	= 20/300 nA	I _A /I _{STR} =	20/300 nA	
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 3427	95 %	≈ 100 %	7,5 %	2,5 %	
XQ 3427 R	95 %	≈ 100 %	9 %	3,5 %	
XQ 3427 G	95 %	≈ 100 %	7,5 %	2,5 %	
XQ 3427 B	95 %	≈ 100 %	10 %	3,5 %	

Spitzlichtverarbeitung mit D.B.C

17)

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V 4)	I _{G1}	= max.	5	mA	(≈ I _K)	5
U $_{\rm G4}$	= max.	1000	v	I .	= max.	8	mA	(mit DBC)	2
$U_{\rm G4G3}$	= max.	400	v	Z _{FK}	= min.	2	$\boldsymbol{k}\Omega$	$(U_{FKM} > 10 \text{ V})$	
U_{G3}	= max.	750	v	t _h	= min.	1	min		
U_{G2}	= max.	350	v	ϑ _U , ϑ _A	= max.	+50	°C		6
+U _{G1}	= max.	25	v		= min.	-30	°C		
-U _{G1}	= max.	200	v	E	= max.	500	lx		7
U _{+FK M}	= max.	50	v						
U _{-FK M}	= max.	125	V						

Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Da das Dioden-Elektrodensystem mit einer positiven Spannung und dem daraus resultierenden Strom an Gitter 1 betrieben wird, sind Kameras, die für Röhren der Serie XQ 1427 entwickelt wurden, entsprechend zu modifizieren.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtern positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

2) Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung 9) und dem daraus resultierenden Strom an Gitter 1 betrieben.

I $_{G1 M} \le 1,5 \text{ mA}$ ohne DBC Betrieb mit Strahlaustastung, $_{G1 M} \le 8 \text{ mA}$ mit DBC gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U G1 M = 10 V über der Einstellung für Bildweiß (s. Anmerkung 9)) und Spitzenströme

 $I_{G1 M} \le 8 \text{ mA abgeben kann.}$

Der Betrieb mit U $_{\rm G1\,M}$ > 10 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

Der Metallring ist elektrisch nicht angeschlossen.

¹⁾ DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung:

- 4) Da bei PLUMBICON-Kameraröhren eine automatische Empfindlichkeitssteuerung durch Regelung der Signalelektrodenspannung nicht möglich ist, muß dies auf andere Weise, wie z.B. Blendeneinstellung oder Neutralfilter, erzielt werden.
 - Soll eine Röhre dieser Familis in eine Kamera, die für Vidikons entwickelt wurde, eingesetzt werden, so muß die Schaltung für die automatische Empfindlichkeitssteuerung außer Betrieb gesetzt und die Signalelektrodenspannung auf 45 V eingestellt werden.
- 5) Spitzenwert, gemessen mit einem Oszilloskop.
- 6) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 7) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 8) gemessen mit der Fokussier- und Ablenkeinheit AT 1109. Fokussier- und Ablenkeinheiten siehe unter Zubehör.
- 9) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.

In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I $_{A}$ /I $_{STR}$ = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.

Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.

 $(\alpha = 100/100$ -β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist $\alpha = 1,3$)

10) Das optimale Spannungsverhältnis U G4/U G3 zur Erzielung geringer Landefehler (vorzugsweise ≤ 1 V) hängt von der verwendeten Fokussier- und Ablenkeinheit ab. Für den Typ AT 1109 wird ein Spannungsverhältnis von 1,75 : 1 empfohlen.

In keinem Fall darf die Röhre mit einer Spannung U $_{\rm G4}$ (Feldnetz) < U $_{\rm G3}$ betrieben werden, da diese Betriebseinstellung die Speicherplatte beschädigt.

Spannungseinstellung Ū _{G4}/U _{G3} für optimale Auflösung:

Die Auflösung der Kameraröhre nimmt mit Erhöhung der Spannung an G_3 und G_4 zu. Es ist aber zu berücksichtigen, daß eine Betriebsart mit höheren Spannungen auch höhere Ablenk- und Fokussierleistung erfordert.

Bei der Kameraentwicklung sind thermische Messungen (Luftkühlung, Wärmeableitung) durchzuführen, um die Einhaltung der max. Frontplattentemperatur von +50 °C sicherzustellen, da sonst Leistung und Lebensdauer der Röhre eingeschränkt werden.

¹¹) Zur Erzielung eines Signalstromes von 200 nA bei XQ 3427 ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 3427 R/G/B ist eine Beleuchtungsstärke von etwa 25 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung ¹²)) erforderlich. (BG 12 = 1 mm)

12) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μΑ/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3427 R	Schott OG 570 und Calflex B1/K1	3
XQ 3427 G	Schott VG 9	1
XQ 3427 B	Schott BG 12	3

- 13) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 14) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 80 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 30 LP/mm (400 Zeilen bei 6,6 mm x 8,8 mm Bildfläche) und Blende 5,6.
 Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Korrekturschaltungen verbessert werden. Diese Korrekturschaltungen verbessert werden.

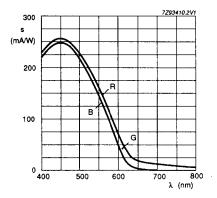
Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

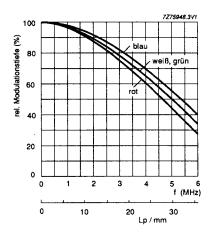
15) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


- ¹⁶) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
- 17a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 17b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8.3.1988

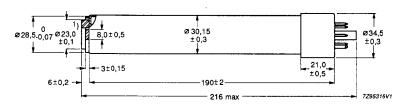
30 mm-LOC PLUMBICON® - Kameraröhren

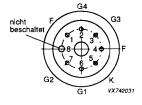
- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtem
- · sehr niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · hohe Auflösung
- für Anwendungen mit hohen Anforderungen an Bildqualität

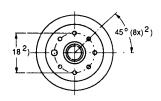
XQ 3440	für Schwarzweiß Fernsehkameras
XQ 3440 R	für den Rotkanal in Farbfernsehkameras
XQ 3440 G	für den Grünkanal in Farbfernsehkameras
XQ 3440 B	für den Blaukanal in Farbfernsehkameras
XQ 3440 L	für den Luminanzkanal in Farbfernsehkameras

Kurzdaten

Heizung	UF	=	0,3	V			
	I _F	=	190	mA			
Maximum der spektralen Empfindlichkeit	ca.		450	nm			
Grenzwellenlänge	ca.		650	nm			
	XQ 3 XQ 3	440 440 L	XQ 344	10 R	XQ 3440 G	XQ 3440 B	
Empfindlichkeit bei Farbtemperatur 2856	K 375		80		150	36	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	65		55		65	70	%
Fokussierung	magne	tisch	ļ	'		ļ	
Ablenkung	magne	tisch					
Ausführung mit	Anti-R	eflexio	odensyste nsplatte, stellbarer	•	1) ²)	3)	

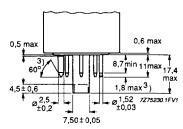

Anmerkungen siehe 6. Seite dieses Datenblattes


8. 2. 1988 **259**



Mechanische Daten

Abmessungen in mm



Zubehör

Fassung	56 021
Maske	56 029
Glühlampe	
(für einstellbare Vorbelichtung)	56 106
Adantar	

(für festeingestellte Vorbelichtung)

XQ 3440 R	XQ 3440 G/L	XQ 3440 B
56 123	56 124	56 125

Fokussier-	und Ablenk-Einhei	t

für Schwarzweiß-Fernsehkameras für Farbfernsehkameras AT 1131 S AT 1131 T

Masse Finbaulage ca. 100 g

Einbaulage beliebig

Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0,1 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7,2 ± 0,2 mm.

²⁾ Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von $8,230\pm0,005$ mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessern: $7 \times 1,690\pm0,005$ mm und $1 \times 2,950\pm0,005$ mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

^{8.2.1988}

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

12.8 mm x 17.1 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse

und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex

 $1,2 \pm 0,1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $6 \pm 0.2 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Heizstrom

bei $U_F = 6.3 \text{ V}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung

bei normaler Strahleinstellung

Austastspannung an G1 an Katode

G1-Strom bei normalem Strahlstrom

G2-Strom bei normalem

Strahlstrom

Fokussierung Ablenkung

Kapazität

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung) wird Stabilisierung der Heizspannung empfohlen.

 $I_F = 190 \text{ mA}$

-U G1 10...0 V

 U_{G1} ≤ 15 ν

 $U_{G1 MM} =$ 25 UKMM 25 ν

 I_{G1} ≤ 5 mA

 I_{G2} ≤ 0.25 mA

magnetisch

magnetisch

3 pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten ⁶)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U _K	=	0	V	
Signalelektrodenspannung	U A	=	45	V	
Spannung an G4 (Feldnetz)	U _{G4}	=	675	V	
Spannung an G3 (Fokussierelektrode)	U _{G3}	=	600	V	
Spannung an G2 (Beschleunigungselektrode)	U _{G2}	=	300	v	
Spannung an G1 für I $_{STR} = 600 \text{ nA}$	U G1	=	8	V	7)
Austastspannung an G1	U _{G1 MM}	=	25	V	
Strahlstrom	I _{STR}	<	600	nA	7)
Beleuchtungsstärke der Frontplatte	Е	=	010	lx	8)
Frontplattentemperatur	ϑ_A	=	2045	°C	
Speicherplatte					
Dunkelstrom	Ι 0		≤ 1	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	
Grenzwellenlänge	ca.		650	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					9)
XQ 3440, XQ 3440 L			375 (≥ 330)	μ A/l m	
XQ 3440 R			80 (≥ 70)	μA/lm	
XQ 3440 G			150 (≥ 120)	μA/lm	
XQ3440 B			36 (≥ 32)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{4. 2. 1988}

²⁶²

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 10)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 3440 XQ 3440 L XQ 3440 G	XQ 3440 R	XQ 3440 B
Signalstrom I A (nA)	300	150	150
Strahlstrom I STR (nA)	600	300	300
Modulationstiefe bei 5 MHz (%)	65 (≥ 55)	55 (≥ 45)	70 (≥ 60)

Trägheit

(ohne Vorbelichtung, typische Werte)

11) 12)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstie	gsträgheit	Abfallträgheit	
	I _A /I _{STR}	= 20/300 nA	$I_{A}/I_{STR} =$	20/300 nA
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms
XQ 3440, XQ 3440 L	95 %	≈ 100 %	9 %	3 %
XQ 3440 R	85 %	≈ 100 %	13 %	3,5 %
XQ 3440 G	95 %	≈ 100 %	10 %	3 %
XQ 3440 B	70 %	≈ 100 %	13 %	5,5 %

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

13)

9)

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

14)

Anmerkungen siehe nächste Seite dieses Datenblattes

GO

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

$U_{\mathbf{A}}$	= max.	50	V	1	I _{G1}	= max.	7	mA	(≈ I _K)	
U $_{\rm G4}$	= max.	1100	V	į	I _{G1 M}	= max.	10	mA	(mit DBC)	
U_{G4G3}	= max.	350	V		z_{FK}	= min.	2	kΩ	$(U_{FKM} > 10 V)$	
U $_{\rm G3}$	= max.	800	V		t h	= min.	1	min		
U $_{\rm G2}$	= max.	350	V	i	ϑυ, ϑ _Α	= max.	+50	°C		4)
+U G1	= max.	25	V			= min.	-30	°C		
-U G1	= max.	200	V	·	E	= max.	500	lx		5)
U +FK M	= max.	50	V	İ	· ·					
U _{-FK M}	= max.	50	v							

²⁾ Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung 7) und dem daraus resultierenden Strom an Gitter 1 betrieben.

$I_{G1M} \le 5 \text{ mA}$	ohne DBC	Betrieb mit Strahlaustastung,
$I_{G1M} \le 10 \text{ mA}$	mit DBC	gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1~M}=10~V$ über der Einstellung für Bildweiß (s. Anmerkung 7)) und Spitzenströme I $_{G1~M}\leq 10~mA$ abgeben kann.

Der Betrieb mit U $_{\rm G1~M}$ > 10 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

¹⁾ DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung:

Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Da das Dioden-Elektrodensystem mit einer positiven Spannung und dem daraus resultierenden Strom an Gitter 1 betrieben wird, sind Kameras, die für Röhren der Serie XQ 1410 entwickelt wurden, entsprechend zu modifizieren.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

^{3a}) Einstellbare Vorbelichtung:

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 021 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden.

3b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen.

Die Heizspannung soll auf 6.3 ± 0.1 V stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu liefem

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert. Z.B. Rot für den Rotkanal, Grün für den Grün- oder Luminanzkanal in Farbfernsehkameras.

4) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1131. Fokussier- und Ablenkeinheit siehe Zubehör.
- 7) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 600 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.

In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I $_{A}$ /I $_{STR}$ = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.

Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.

(α = 100/100-β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)

- 8) Zur Erzielung eines Signalstromes von 300 nA bei XQ 3440 und XQ 3440 L ist eine Beleuchtungsstärke von etwa 3,5 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 3440 R/G/B ist eine Beleuchtungsstärke von etwa 9 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung ⁹)) erforderlich. (Filter BG 12 = 1mm)
- 9) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μA/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3440 R	Schott OG 570	3
XQ 3440 G	Schott VG 9	1
XQ 3440 B	Schott BG 12	3

- 10) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.
 - Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 11) Anstiegsträgheit:

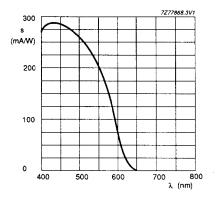
Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

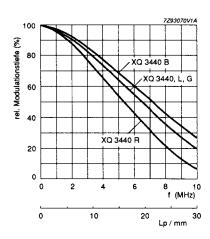
Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 12) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
 - a) Für Schwarzweiß Anwendungen genügt im allgemeinen eine Vorbelichtung, die einem zusätzlichen Dunkelstrom von 5 nA entspricht, um genügend kurze Ansprechzeiten zu erhalten.
 - b) In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.

Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.


- 13) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an.
 - Bei den typischen Einstellungen, wie in Anmerkung ¹²) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.
- 14a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 14b) Die maximalen Signalspitzenströme I A M bei Spitzlichtem betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8.2.1988

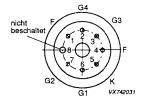
30 mm-LOC PLUMBICON $^{\textcircled{8}}$ - Kameraröhren mit erweiterter Rotempfindlichkeit

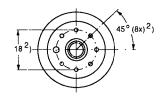
- · Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtern
- · sehr niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · Lichtleiter zur Verminderung der Trägheit
- · hohe Auflösung
- für den Rotkanal in Farbfernschkameras bei Anwendungen mit hohen Anforderungen an Bildqualität
- · XQ 3445 R mit aufgedampftem Infrarot-Sperrfilter auf der Antireflexionsplatte

Kurzdaten

Heizung	UF	=	6,3	V
	I _F	=	190	mA
Maximum der spektralen Empfindlichkeit	ca.		450	nm
Grenzwellenlänge XQ 3443 R XQ 3445 R	ca.		850950 750	nm nm
Empfindlichkeit bei Farbtemperatur 2856 K			105	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)			60	%
Fokussierung	magne	etisch		
Ablenkung	magne	etisch		
Ausführung mit	Dioden-Elektrodensystem, 1) 2) aufgedampftem Infrarot-Sperrfilter auf de Anti-Reflexionsplatte (nur XQ 3445 R), fester oder einstellbarer Vorbelichtung 3			

Anmerkungen siehe 6. Seite dieses Datenblattes




XQ 3443 R XQ 3445 R

Mechanische Daten

Abmessungen in mm

0,5 max 0,6 max 0,6 max 8,7 min 11 max 17,4 1,8 max 3) 4,5 ± 0,6 2,5 ± 0,0 7,50 ± 0,05

Zubehör

Fassung	56 021
Maske	56 029
Glühlampe	
(für einstellbare Vorbelichtung)	56 106
Adapter	
(für festeingestellte Vorbelichtung)	56123
Fokussier- und Ablenk-Einheit	
für Schwarzweiß-Fernsehkameras	AT 1131 S
für Farbfemsehkameras	AT 1131 T
Masse	ca. 100 g
Einbaulage	beliebig

¹) Die Exzentrizität der Antireflexionsplatten-Achse, bezogen auf den Mittelpunkt des Signalelektrodenringes, beträgt max. 0,1 mm, gemessen in der Frontplattenebene. Die gesamte Frontglasdicke beträgt 7,2 ± 0,2 mm.

9. 2. 1988

²) Der Sockel paßt in eine Lehre (Dicke 7 mm) mit einer zentralen Bohrung von 8,230 ± 0,005 mm ø und mit Bohrungen für die Stifte mit folgenden Durchmessem: 7 x 1,690 ± 0,005 mm und 1 x 2,950 ± 0,005 mm. Diese Bohrungen dürfen max. 0,01 mm von ihrer genauen Lage abweichen.

³⁾ Die Stiftenden sind spitzzulaufend und / oder abgerundet.

Kenn- und Betriebsdaten 6)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

12,8 mm x 17,1 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die seitliche Markierung am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $1.2 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $6 \pm 0.2 \text{ mm}$ n = 1.52

XQ 3445 R

aufgedampfter Infrarot-Sperrfilter

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9,5 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

V

ν

ν

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_{E} = 190 \, \text{mA}$

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 300 \text{ V}$

ohne Austastung bei normaler Strahleinstellung

Austastspannung

an G1 an Katode

G1-Strom bei normalem

Strahlstrom

G2-Strom bei normalem Strahlstrom

Fokussierung Ablenkung

Kapazität

-U G1 = 10...0

U_{G1} ≤ 15 25

 $U_{G1MM} =$ 25 UKMM =

5 I_{G1} ≤ mΑ

≤ 0.25 mΑ I_{G2}

magnetisch magnetisch

3

pF Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussier- und Ablenk-Einheit

erhöht sich ca.

Anmerkungen siehe 6. Seite dieses Datenblattes

XQ 3443 R XQ 3445 R

Kenn- und Betriebsdaten	6)
-------------------------	----

	Spannung an Katode	U _K	=	0	v	
	Signalelektrodenspannung	U A	=	45	v	
	Spannung an G4 (Feldnetz)	U _{G4}	=	675	v	
	Spannung an G3 (Fokussierelektrode)	U _{G3}	=	600	v	
	Spannung an G2 (Beschleunigungselektrode)	U _{G2}	=	300	v	
	Spannung an G1 für I _{STR} = 600 nA	U G1	=	8	v	7)
	Austastspannung an G1	U _{G1 MM}	=	25	v	
	Strahlstrom	I _{STR}	<	600	nA	7)
	Beleuchtungsstärke der Frontplatte	Е	=	010	lx	8)
	Frontplattentemperatur	ϑA	=	2045	°C	
S	peicherplatte					
	Dunkelstrom	I ₀		≤ 1	nA	
	Maximum der spektralen Empfindlichkeit	ca.		450	nm	
	Grenzwellenlänge					
	XQ 3443 R	ca.		850950	nm	
	XQ 3445 R	ca.		750	nm	
	γ-Wert			0,95 + 0,05		
	Empfindlichkeit bei Farbtemperatur 2856 K			105 (≥ 70)	μΑ/lm	9)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{10. 2. 1988} 272

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

Signalstrom I A

= 150 nΑ

Strahlstrom I STR

300

nΑ

Modulationstiefe bei 5 MHz

60 (≥ 50)

%

Trägheit

(ohne Vorbelichtung, typische Werte)

11) 12)

Lichtart: Weiß (2856 K), für den Rotkanal wird ein geeignetes Filter eingesetzt.

9)

	Anstiegs	strägheit	Abfallträgheit		
	I _A /I _{STR} =	20/300 nA	.I _A /I _{STR} =	20/300 nA	
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 3443 R	90 %	≈ 100 %	15 %	3 %	
XQ 3445 R	90 %	≈ 100 %	15 %	3 %	

Signalungleichmäßigkeit im Dunkelstrom mit Vorbelichtung

12,5 %

13)

Spitzlichtverarbeitung mit D.B.C. über 4 Blenden

14)

XQ 3443 R XQ 3445 R

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U _A	= max.	50	V	I_{G1}	= max.	7	mA	(≈ I _K)	
U_{G4}	= max.	1100	V	I _{G1 M}	= max.	10	mA	(mit DBC)	
U_{G4G3}	= max.	350	V	z_{FK}	= min.	2	kΩ	$(U_{FKM} > 10 V)$	
U $_{\rm G3}$	= max.	800	V	t _h	= min.	1	min		
$U_{\;G2}$	= max.	350	V	ϑ _U , ϑ _A	= max.	+50	°C		4)
+U _{G1}	= max.	25	V		= min.	-30	°C		
-U _{G1}	= max.	200	v	E	= max.	500	lx		5)
U _{+FK M}	= max.	50	v						
U -FK M	= max.	50	v						

²⁾ Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 15 V), für den richtigen Strahlstrom gemäß Anmerkung ⁷) und dem daraus resultierenden Strom an Gitter 1 betrieben.

$I_{G1M} \le 5 \text{ mA}$	ohne DBC	Betrieb mit Strahlaustastung,
$I_{G1\ M} \le 10\ mA$	mit DBC	gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gefichtete Impulse mit einer Amplitude U $_{G1~M}=10~V$ über der Einstellung für Bildweiß (s. Anmerkung 7)) und Spitzenströme I $_{G1~M}\leq 10~mA$ abgeben kann.

Der Betrieb mit U $_{\rm G1~M}$ > 10 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

¹⁾ DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung:

Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Da das Dioden-Elektrodensystem mit einer positiven Spannung und dem daraus resultierenden Strom an Gitter 1 betrieben wird, sind Kameras, die für Röhren der Serie XQ 1410 entwickelt wurden, entsprechend zu modifizieren.

Dauerbetrieb mit hoher Strahlstromeinstellung ist zu vermeiden, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positiv gerichtete Impulse, gesteuert vom Video-Signal, erzeugt. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine zeitweise Erhöhung des Strahlstromes.

3a) Einstellbare Vorbelichtung:

Für die auf den Pumpstutzen der Röhre aufgesetzte Spezialfassung 56 021 gibt es eine Glühlampe (wird mit jeder Röhre mitgeliefert, 5 V, 110 mA, Bestell-Nr. 56 106), deren Licht über ein Blaugrün-Filter auf den Pumpstutzen der Röhre projiziert wird. Das Licht wird über Lichtleiter geleitet und beleuchtet die Speicherschicht. Die so entstehende Vorbelichtung kann über den Strom der Glühlampe eingestellt werden.

3b) Fest eingestellte Vorbelichtung:

Mit jeder Röhre wird auf Wunsch ein Adapter mitgeliefert.

Er verbindet die Glühlampe über einen konstanten Serienwiderstand mit den Heizanschlüssen. Die Heizspannung soll auf $6.3\pm0.1~\rm V$ stabilisiert und in der Lage sein, einen zusätzlichen Strom von 95 mA zu ließen.

Der Adapter ist entsprechend der Anwendung der Röhre farbkodiert. Z.B. Rot für den Rotkanal, Grün für den Grün- oder Luminanzkanal in Farbfernsehkameras.

4) Grenzwert für die Kamerakonstruktion.

Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussier- und Ablenkeinheit AT 1131, Fokussier- und Ablenkeinheit siehe Zubehör.
- 7) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren. In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I AI STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht. Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer. (α = 100/100-β; β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)
- 8) Zur Erzielung der bei Modulationstiefe angegebenen Signalströme ist eine Beleuchtungsstärke von etwa 9 lx (2856 K) vor den entsprechenden Filtern (siehe auch Anmerkung 9)) erforderlich. (Filter BG 12 = 1 mm)
- ⁹) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und den entsprechenden Filtern im optischen System. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3443 R	Schott OG 570 und Calflex B1/K1	3
XQ 3445 R	Schott OG 570	3

10) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 85 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 15,6 LP/mm (400 Zeilen bei 12,8 mm Bildhöhe) und Blende 5,6.

Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.

XQ 3443 R XQ 3445 R

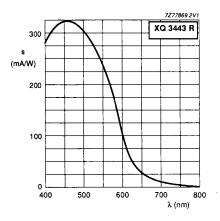
11) Anstiegsträgheit:

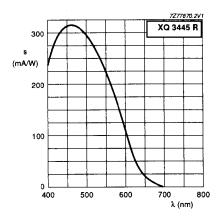
Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

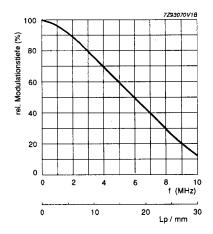
Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 12) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung erreicht werden. Auflicht mit $\lambda > 600$ nm ist zu vermeiden.
 - In Farbfernsehkameras können die Ansprechzeiten der einzelnen Röhren durch angepaßte Vorbelichtung aufeinander abgestimmt werden. Bei einer RGB-Kamera wird empfohlen, zuerst die normalen Signal- und Strahlströme einzustellen. Dann wird die Kamera auf einen dunklen Hintergrund gerichtet, vor dem ein Metronom steht mit einem weißen Quadrat auf dem Pendel. Die Beleuchtung wird so gewählt, daß das weiße Quadrat ein Spitzensignal von ca. 50 nA im Grünkanal erzeugt. Dann wird in diesem Kanal ein künstlicher Dunkelstrom von max. 3 nA eingestellt.
 - Die Vorbelichtung im Rot- und Blaukanal soll so gewählt werden, daß die Trägheit der drei Röhren angepaßt ist.
- 13) Dieser Wert gibt die max. Abweichung in den vier Ecken (10 % einwärts in horizontaler und vertikaler Richtung gemessen) vom Bildmitten-Wert an. Bei den typischen Einstellungen, wie in Anmerkung 12) angegeben, ist keine Störsignal-Kompensation für Bildschwarz im Videoverstärker erforderlich. Eine weitere Verbesserung der Trägheit kann durch noch stärkere Vorbelichtung erreicht werden. Dann kann eine Störsignal-Kompensation erforderlich werden.
- 14a)Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht.
- 14b) Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis


Gift


Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8, 2, 1988

XQ 3443 R XQ 3445 R

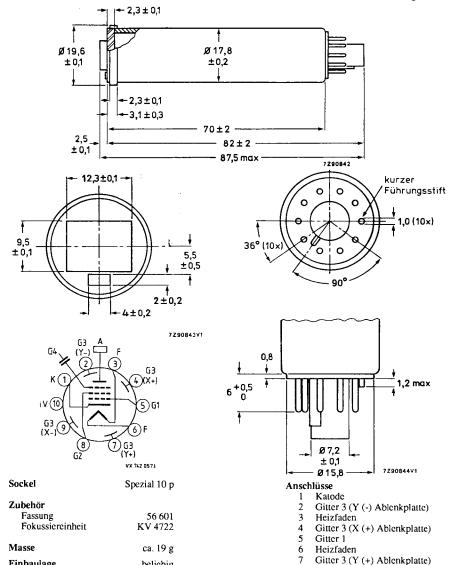
2/3"-LOC PLUMBICON® - Kameraröhren mit magnetischer Fokussierung und statischer Ablenkung

- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtern
- MS-Ausführung (Magnetisch-Statisch), daher kurze Baulänge (87,5 mm)
- sehr niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- für Anwendungen mit hohen Anforderungen an Bildqualität

Die LOC (Low Qutput Capacitance) Plumbicon-Röhren der Serie XQ 3457 sind vorzugsweise geeignet zum Einsatz in EB- (Elektronische Berichterstattung) und EAP- (Elektronische Außenproduktion) Femsehkameras.

XQ 3457	für Schwarzweiß Fernsehkameras
XQ 3457 R	für den Rotkanal in Farbfernsehkameras
XQ 3457 G	für den Grünkanal in Farbfernsehkameras
XQ 3457 B	für den Blaukanal in Färbfernsehkameras

Kurzdaten


Heizung	UF	=	6,3	V			
•	IF	=	95	mΑ			
Maximum der spektralen Empfindlichkeit	ca.		480	nm			
	XQ:	3457	XQ 3457	7 R	XQ 3457 G	XQ 3457 B	
Grenzwellenlänge	65	50	850		650	650	nm
Empfindlichkeit bei Farbtemperatur 2856 K	32	20	100		125	36	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	5	0	40		50	55	%
Fokussierung	magne	tisch	•				
Ablenkung	elektro	statiscl	h				
Ausführung mit			rodensyster insplatte	n,	1) 2)		

Anmerkungen siehe 6. Seite dieses Datenblattes

Mechanische Daten

Abmessungen in mm

8

Gitter 2

Gitter 3 (X (-) Ablenkplatte) 10 kurzer Führungsstift (i.V.)

8.3.1988 280

Einbaulage

beliebig

Kenn- und Betriebsdaten 6)

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

6.6 mm x 8.8 mm

Lage der Bildfläche

Die Horizontalablenkung soll parallel zur langen Seite

der Anti-Reflexionsplatte verlaufen.

Frontplatte

Dicke Brechungsindex $2.3 \pm 0.1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $2.5 \pm 0.1 \text{ mm}$ n = 1,52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6.3 V \pm 5 \%$

Die Heizspannung darf 9 V (150 mA) (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

v

wird Stabilisierung der Heizspannung empfohlen.

10...0

10

Heizstrom

bei $U_F = 6.3 \text{ V}$

 $I_F = 95 \text{ mA}$

-U Gı

 U_{G1}

Strahl-System

Sperrspannung an G1 bei $U_{G2} = 250 \text{ V}$ ohne Austastung

bei normaler Strahleinstellung

Austastspannung an G1 (Spitze-Spitze-Wert) an Katode (Spitze-Spitze-Wert) G1-Strom bei normalem

Strahlstrom G2-Strom bei normalem Strahlstrom

Fokussierung

Ablenkung

Kapazität

U_{G1 MM} 25

25 UKMM

 I_{G1} ≤ 3 mA ≤ 0.1

magnetisch elektrostatisch

 I_{G2}

C a

3

pF Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Fokussiereinheit erhöht sich c a.

mΑ

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten 6)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4 (Feldnetz)	U _{G4}	=	340	v	8)
Spannung an G3 (Gleichspannungsanteil)	U _{G3}	=	220	v	8)
Spannung an G2	U $_{\rm G2}$	=	250	v	
Spannung an G1 (Steuerelektrode)	U _{G1}	=	010	v	7)
Austastspannung an G1 (Spitze-Spitze-Wert)	U_{G1MM}	=	25	v	
Strahlstrom	I _{STR}				7)
magn. Flußdichte der Fokussierspule	Ø	=	7,3	mT	9)
Ablenkplattenspannung horizontal (Spitze-Spitze-Wert) venikal (Spitze-Spitze-Wert	U _{G3 X MM} U _{G3 Y MM}	=	155 116	V V	
Beleuchtungsstärke der Frontplatte	E	=	010	lx	10)
Frontplattentemperatur	ϑ A	=	2045	°C	
Speicherplatte					
Dunkelstrom	I ₀		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		480	nm	12)
Grenzwellenlänge XQ 3457 R XQ 3457, XQ 3457 G XQ 3457 B	ca. ca. ca.		850 650 650	nm nm nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K XQ 3457 XQ 3457 R XQ 3457 G XQ3457 B			320 (≥ 270) 100 (≥ 75) 125 (≥ 90) 36 (≥ 33)	μΑ/lm μΑ/lm μΑ/lm μΑ/lm	11)

Anmerkungen siehe 6. Seite dieses Datenblattes

^{8. 3. 1988} **282**

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 13)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 3457 XQ 3457 G	XQ 3457 R	XQ 3457 B
Signalstrom I A (nA)	200	150	150
Strahlstrom I STR (nA)	400	300	300
Modulationstiefe bei 5 MHz (%)	50 (≥ 40)	40 (≥ 32)	55 (≥ 40)

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

14) 15)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstieg	strägheit	Abfallträgheit		
	I _A /I _{STR} =	= 20/300 nA	$I_{A}/I_{STR} = 20/300 \text{ nA}$		
Zeit nach dem Ein- bzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 3457	95 %	≈ 100 %	8 %	3 %	
XQ 3457 R	95 %	≈ 100 %	9 %	3,5 %	
XQ 3457 G	95 %	≈ 100 %	8 %	3 %	
XQ 3457 B	95 %	≈ 100 %	10 %	4 %	

Spitzlichtverarbeitung mit D.B.C

16)

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	V]	I _{G1}	= max.	5	mA	(≈ I _K)	3)
U_{G4}	= max.	500	V		I _{G1 M}	= max.	8	mA	(mit DBC)	2)
U_{G4G3}	= max.	300	V	ľ	Z_{FK}	= min.	2	kΩ	$(U_{FKM} > 10 V)$	
U_{G3}	= max.	300	V		t h	= min.	1	min		
U_{G2}	= max.	350	V		ϑ _U , ϑ _A	= max.	+50	°C		4)
+U _{G1}	= max.	20	V			= min.	-30	°C		
-U _{G1}	= max.	50	V		Е	= max.	500	lx		5)
U _{+FK M}	= max.	50	V							
U _{-FK M}	= max.	125	V							

- 1) DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung: Das "Dioden-Elektrodensystem" ist ein als Diode arbeitendes Dreielektrodensystem mit sehr hoher Strahlstromreserve. Dauerbetrieb mit hoher Strahlstromeinstellung ist nicht zu empfehlen, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positiv gerichtete Impulse, gesteuert vom Video-Signal, produziert. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine sofortige Erhöhung des Strahlstromes.
- 2) Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 10 V), für den richtigen Strahlstrom gemäß Anmerkung 10) und dem daraus resultierenden Strom an Gitter 1 betrieben.

 $I_{G1 M} \le 3 \text{ mA}$ ohne DBC Betrieb mit Strahlaustastung, $I_{G1 M} \le 5 \text{ mA}$ mit DBC gemessen mit einem Oszilloskop

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{G1\,M}=8\,$ V und Spitzenströme I $_{G1\,M}\leq 8\,$ mA abgeben kann.

Der Betrieb mit U _{G1 M} > 8 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, wird aber die Auflösung und Lebensdauer der Röhre vermindem und zu Schwingneigung führen.

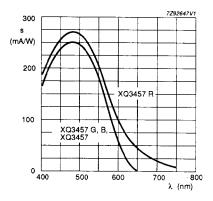
- 3) maximaler Gleichspannungswert
- 4) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Fokussiereinheit KV 4722. Fokussiereinheit siehe unter Zubehör.

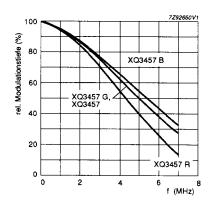
8.3.1988

- 7) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.
- 8) Das optimale Spannungsverhältnis U G4 / U G3 zur Erzielung geringer Landefehler (vorzugsweise ≤ 1 V) hängt von der verwendeten Fokussiereinheit ab.
- 9) siehe unter Fokussiereinheit (Zubehör)
- 10) Zur Erzielung eines Signalstromes von 200 nA bei XQ 3457 ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 3457 R/G/B ist eine Beleuchtungsstärke von etwa 25 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 11)) erforderlich. (BG 12 = 1 mm)
- 11) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 3457 R	Schott OG 570 und Calflex B1/K1	3
XQ 3457 G	Schott VG 9	1
XQ 3457 B	Schott BG 12	3


- 12) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 13) Unkompensierter Amplitudengang bei 5 MHz in Bildmitte.
 - Die Grafik zeigt den horizontalen Amplitudengang bei Blende 5,6
 - Die Angabe des Signal- und Strahlstromes erfogt für S/W und G-Röhren bei I $_A$ / I $_{STR}$ = 200 / 400 nA und I $_A$ /I $_{STR}$ = 150/300 nA für R und B Röhren.
 - Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 14) Anstiegsträgheit:


Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 15) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.
- 16) Bei DBC-Betrieb entsprechend Anmerkung 2) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 16fachen Wert für Bildweiß entspricht. Die maximalen Signalspitzenströme I A M bei Spitzlichtern betragen ca. 2,5 μA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.

Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8.3.1988

286

2/3" - PLUMBICON $^{\circledR}$ - Kameraröhren mit elektrostatischer Fokussierung und magnetischer Ablenkung

- · getrenntes Feldnetz
- · fotoleitende Schicht geringer Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität

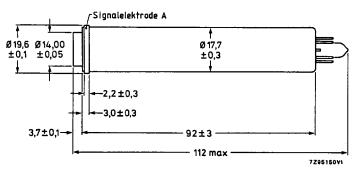
Die Plumbicon-Röhren der Serie XQ 3467 sind vorzugsweise für den Einsatz in leichten, kompakten Fernsehkameras für die elektronische Berichterstattung sowie industrielle Anwendungen geeignet.

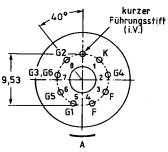
XQ 3467	für Schwarzweiß Fernsehkameras
XQ 3467 R	für den Rotkanal in Farbfernsehkameras
XQ 3467 G	für den Grünkanal in Farbfernsehkameras
XQ 3467 B	für den Blaukanal in Farbfemsehkameras

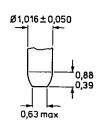
Kurzdaten

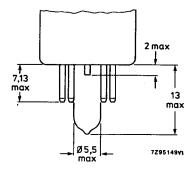
Heizung	U_F	=	6	V
	I _F	=	75	mΑ
Maximum der spektralen Empfindlichkeit	ca.		480	nm

	XQ 3467	XQ 3467 R	XQ 3467 G	XQ 3467 B	
Grenzwellenlänge	650850	850	650850	650	nm
Empfindlichkeit bei Farbtemperatur 2856 K	375	95	140	36	μA / lm
Modulationstiefe bei 320 Zeilen (4 MHz)	45	40	45	50	%


Fokussierung elektrostatisch Ablenkung magnetisch


Ausführung mit Anti-Reflexionsplatte




Mechanische Daten

Abmessungen in mm

Sockel	Spezial 9 p
Zubehör	

Fassung Ablenk-Einheit	56 604 KV 4780
Masse	ca. 27 g
Einbaulage	beliebig

8.3.1988

288

3) Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

6,6 mm x 8,8 mm

Lage der Bildfläche

Die Vertikalablenkung soll etwa parallel zur Ebene durch die Röhrenachse und den Führungsstift am Sockel verlaufen.

Frontplatte

Dicke Brechungsindex $2,3 \pm 0,1 \text{ mm}$ n = 1.49

Anti-Reflexionsplatte

Dicke Brechungsindex $3.7 \pm 0.1 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 6 V \pm 5 \%$

Die Heizspannung darf 9 V (RMS) nicht überschreiten.

Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_F = 6 V$

 $I_{F} = 75 \text{ mA}$

Strahl-System

Sperrspannung an G1

bei Austastung

Spannung an G1

bei I STR = 400 nA

Austastspannung an G1

-U G1 U_{G1}

30...100

10...30

75

4)

(Spitze-Spitze-Wert)

U_{G1 MM} elektrostatisch

Fokussierung Ablenkung

Kapazität

magnetisch

2,5 pF

Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Ablenk-Einheit erhöht sich c a.

Anmerkungen siehe 6. Seite dieses Datenblattes

Kenn- und Betriebsdaten	3)				
Elektrische Daten, Fortsetzung					
Spannung an Katode	Uĸ	=	0	v	
Signalelektrodenspannung	U 🗚	_ =	45	v	
Spannung an G3, G6	Uс	_{33G6/} =	1000	v	
Spannung an G5	U c	₅₅ =	500	v	
Spannung an G4 (Fokussierelektro	de) U o	₃₄ =	90130	v	
Spannung an G2	U o	52	300	v	
Spannung an G1	-U ,	G1	1030	v	4)
Austastspannung an G1	U G	_{1 MM} =	75	v	
Strahlstrom	I _{ST}	`R			4)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	5)
Frontplattentemperatur	ϑA	. =	2045	°C	
Speicherplatte					
Dunkelstrom	Ιο		≤ 1	nA	
Maximum der spektralen Empfindl	ichkeit ca.		480	nm	7)
Grenzwellenlänge					
XQ 3467 R	ca.		850	nm	
XQ 3467, XQ 3467 G	ca.		650850	nm	
XQ 3467 B	ca.		650	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatus	r 2856 K				6)
XQ 3467			375 (≥ 325)	μA/lm	
XQ 3467 R			95 (≥ 75)	μA/lm	
XQ 3467 G			140 (≥ 110)	μA/lm	
XQ3467 B			36 (≥ 32)	μA/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{8. 3. 1988} **290**

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 8)

Modulationstiefe bei 320 Zeilen (4 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 3467 XQ 3467 G	XQ 3467 R	XQ 3467 B
Signalstrom I A (nA)	200	150	150
Strahlstrom I _{STR} (nA)	400	300	300
Modulationstiefe bei 4 MHz (%)	45 (≥ 35)	40 (≥ 30)	50 (≥ 40)

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

9) 10)

Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

	Anstiegsträgheit		Abfallträgheit	
	$I_{A}/I_{STR} = 20/300 \text{ nA}$		$I_{A}/I_{STR} =$	20/300 nA
Zeit nach dem Ein-	60	200	60	200
bzw. Ausschalten	ms	ms	ms	ms
XQ 3467	95 %	≈ 100 %	8 %	3 %
XQ 3467 R	95 %	≈ 100 %	8 %	3 %
XQ 3467 G	95 %	≈ 100 %	8 %	3 %
XQ 3467 B	95 %	≈ 100 %	9 %	3,5 %

Anmerkungen siehe nächste Seite dieses Datenblattes

Grenzdaten (absolute Werte)

(Spannungen auf Katode bezogen, soweit nicht anders angegeben)

U A	= max.	50	v	$U_{+FKM} = max.$ 50 V	
U _{G3G6/}	= max.	1200	v	$U_{-FKM} = max$. 125 V	
U_{G5}	= max.	600	v	t _h = min, 1 min	
U $_{\rm G4}$	= max.	250	v	ϑ_{U} , $\vartheta_{A} = max$. +50 °C	1
U_{G2}	= max.	350	v	= min30 °C	
+U G1	= max.	0	v	E = max. 500 lx	2
-U _{G1}	= max.	200	v		

angegeben mit I $_{\rm A}/{\rm I}$ $_{\rm STR}$ = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht. Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei

Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.

(α = 100/100-β, β ist die Gesamtaustastzeit in %; beim CCIR-System ist α = 1,3)

5) Zur Erziclung eines Signalstromes von 200 nA bei XQ 3467 ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) erforderlich. Zur Erziclung der bei Modulationstiefe angegebenen Signalströme bei XQ 3467 R/G/B ist eine Beleuchtungsstärke von etwa 25 lx (2856 K) vor den entsprechenden Filtern (siehe Anmerkung 6)) erforderlich. (BG 12 = 1 mm)

Grenzwert für die Kamerakonstruktion.
 Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.

²⁾ für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.

³⁾ gemessen mit der Ablenkeinheit KV 4780. Ablenkeinheit siehe unter Zubchör.

⁴⁾ Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.
In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom

6) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

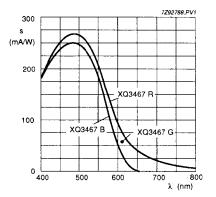
	Filter	Dicke (mm)
XQ 3467 R	Schott OG 570 und Calflex B1/K1	3
XQ 3467 G	Schott VG 9	1
XQ 3467 B	Schott BG 12	3

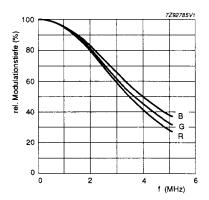
- 7) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 8) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 80 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 30,3 LP/mm (400 Zeilen bei 6,6 mm x 8,8 mm Bildfläche) und Blende 5,6.
 - Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beeinflußt auch nicht die Grenzauflösung.
- 9) Anstiegsträgheit:

Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.


10) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit λ > 600 nm ist zu vermeiden.


Warnhinweis

Gift

Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8.3.1988

2/3"- HS - LOC PLUMBICON® - Kameraröhren

mit elektrostatischer Fokussierung und magnetischer Ablenkung

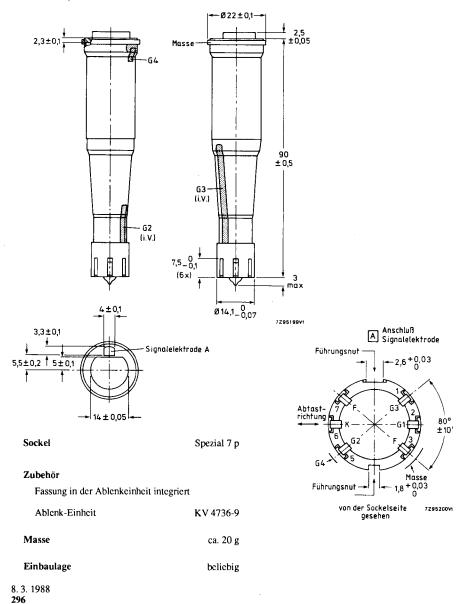
- Dioden Elektrodensystem für DBC-Betrieb zur besseren Übertragung von Spitzlichtern
- HS-Ausführung (Hohe Stabilität)
- · sehr niedrige Ausgangskapazität für optimales Signal/Rausch-Verhältnis
- · getrenntes Feldnetz mit seitlichem Anschluß für geringe Störeinstrahlung
- · niedrige Dämpfung des Ablenkfeldes durch Wandelektroden
- · fotoleitende Schicht geringer Trägheit
- · für Anwendungen mit hohen Anforderungen an Bildqualität

Die LOC (Low <u>Output Capacitance</u>) Plumbicon-Röhren der Serie XQ 4187 sind vorzugsweise für den Einsatz in kompakten Fernsehkameras für die elektronische Berichterstattung sowie industrielle Anwendungen geeignet.

XQ 4187	für Schwarzweiß Fernsehkameras
XQ 4187 R	für den Rotkanal in Farbfernsehkameras
XQ 4187 G	für den Grünkanal in Farbfernsehkameras
XQ 4187 B	für den Blaukanal in Farbsernsehkameras

Kurzdaten

Heizung	$U_F =$	8,7 V			
	$I_F =$	53 m	A		
Maximum der spektralen Empfindlichkeit	ca.	450 nr	n		
	XQ 4187	XQ 4187 R	XQ 4187 G	XQ 4187 B	
Grenzwellenlänge	650850	850	650	650	nm
Empfindlichkeit bei Farbtemperatur 2856 l	K 320	90	130	40	μA / lm
Modulationstiefe bei 400 Zeilen (5 MHz)	43	34	43	45	%
Fokussierung	elektrostatisch	n 1	·		
Ablenkung	magnetisch				
Ausführung mit	Dioden-Elekt Anti-Reflexio Wandelektroo	nsplatte,	1) 2)		


Anmerkungen siehe 6. Seite dieses Datenblattes

8. 3. 1988 **295**

Mechanische Daten

Abmessungen in mm

GO

Kenn- und Betriebsdaten

Optische Daten

nutzbare Bildfläche

(Verhältnis 3:4)

6,6 mm x 8,8 mm

Lage der Bildfläche

Die Vertikalablenkung soll parallel zur Ebene durch die Röhrenachse und die Führungsnut am Sockel verlaufen. Der Signalelektrodenanschluß muß sich während der Abtastung

oben befinden.

Frontplatte

Dicke Brechungsindex $2.3 \pm 0.1 \text{ mm}$ n = 1.52

Anti-Reflexionsplatte

Dicke Brechungsindex $2.5 \pm 0.1 \text{ mm}$ n = 1.52

Elektrische Daten

Heizung

indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Heizspannung

 $U_F = 8.7 V \pm 5 \%$

Die Heizspannung darf 12 V (RMS) nicht überschreiten. Für beste Eigenschaften (Lebensdauer, Stabilität der Farbdeckung)

wird Stabilisierung der Heizspannung empfohlen.

Heizstrom

bei $U_{F} = 8.7 \text{ V}$

 $I_F = 53 \text{ mA}$

Strahl-System

Sperrspannung an G1

bei Austastung Spannung an G1

bei I STR = 400 nAGitterströme bei

-U G1 5...0 ٧

 U_{G1} 5...10

400 nA max. DBC I STR = ≤ 3 10 mΑ I_{G1} 200 ≤ 100 μΑ I_{G3} I_{G4} 10 ≤ 4 μΑ

Fokussierung

elektrostatisch

Ablenkung

magnetisch

Kapazität

(mit umlaufendem Indium-Ring)

1,6

pF Diese Kapazität bildet im wesentlichen die Ausgangsimpedanz der Röhre. Durch den Einbau in die Ablenk-Einheit erhöht sich c a.

Kenn- und Betriebsdaten 6)					
Elektrische Daten, Fortsetzung					
Spannung an Katode	U K	=	0	v	
Signalelektrodenspannung	U A	=	45	v	
Spannung an G4	U _{G4}	=	1100	v	
Spannung an G3	U $_{\rm G3}$	=	400	v	
Spannung an G2	$_{\rm G2}$	=	52 (4955)	v	
Spannung an G1	U _{G1}				7)
Strahlstrom	I _{STR}				⁷)
Beleuchtungsstärke der Frontplatte	E	=	010	lx	8)
Frontplattentemperatur	ϑ _A	=	2045	°C	
Speicherplatte					
Dunkelstrom	0 1		≤ 2	nA	
Maximum der spektralen Empfindlichkeit	ca.		450	nm	¹⁰)
Grenzwellenlänge					
XQ 4187 R	ca.		850	nm	
XQ 4187	ca.		650850	nm	
XQ 4187 B, XQ 4187 G	ca.		650	nm	
γ-Wert			0,95 + 0,05		
Empfindlichkeit bei Farbtemperatur 2856 K					9)
XQ 4187			320 (≥ 275)	μΑ/lm	
XQ 4187 R			90 (≥ 75)	μA/lm	
XQ 4187 G			130 (≥ 105)	μA/lm	
XQ4187 B			40 (≥ 35)	μ A/lm	

Anmerkungen siehe 6. Seite dieses Datenblattes

^{8. 3. 1988} **298**

Kenn- und Betriebsdaten

Speicherplatte, Fortsetzung

Auflösung 11)

Modulationstiefe bei 400 Zeilen (5 MHz), in Bildmitte, unkompensierter Amplitudengang

	XQ 4187 XQ 4187 G	XQ 4187 R	XQ 4187 B
Signalstrom I A (nA)	200	150	150
Strahlstrom I STR (nA)	400	300	300
Modulationstiefe bei 5 MHz (%)	43 (≥ 40)	34 (≥ 32)	45 (≥ 40)

Modulations-Übertragungskurven

siehe nachfolgende Diagramme

Trägheit

(ohne Vorbelichtung, typische Werte)

12) 13)

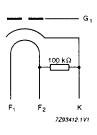
Lichtart: Weiß (2856 K), für den Rot-, Grün- und Blaukanal wird ein geeignetes Filter eingesetzt

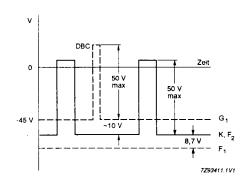
	Anstiegsträgheit I _A /I _{STR} = 20/300 nA		Abfallt	ofallträgheit TR = 20/300 nA	
			I _A /I _{STR} =		
Zeit nach dem Einbzw. Ausschalten	60 ms	200 ms	60 ms	200 ms	
XQ 4187	95 %	≈ 100 %	6 %	2 %	
XQ 4187 R	95 %	≈ 100 %	7 %	2,5 %	
XQ 4187 G	95 %	≈ 100 %	6 %	2 %	
XQ 4187 B	95 %	≈ 100 %	7 %	3 %	

Spitzlichtverarbeitung mit D.B.C

14)

Grenzdaten (absolute Werte)


(Spannungen auf Katode bezogen, soweit nicht anders angegeben)


¹⁾ DBC (Dynamik Beam Control) dynamische Strahlstrom-Steuerung Dauerbetrieb des "Dioden-Elektrodensystems" mit hoher Strahlstromeinstellung ist nicht zu empfehlen, da dies zu verkürzter Lebensdauer der Röhre führt. Vorteilhafter ist es, die hohe Strahlstromreserve zur Verminderung von Überstrahlungseffekten auszunutzen. Möglich wird dies durch den Einsatz einer DBC-Schaltung, die bei Auftreten von Spitzlichtem positive Impulse, gesteuert vom Video-Signal, produziert. Die Ansteuerung des Gitters 1 mit diesen Impulsen bewirkt eine sofortige Erhöhung des Strahlstromes.

²⁾ Das Dioden-Elektrodensystem wird mit einer positiven Spannung (U G1 ≤ 25 V), siehe auch Anmerkung 7) und dem daraus resultierenden Strom an Gitter 1 betrieben.

Eine DBC-Steuerschaltung ist so zu konzipieren, daß sie an Gitter 1 positiv gerichtete Impulse mit einer Amplitude U $_{\rm G1~M}$ = max. 50 V über der normalen U $_{\rm G1~E}$ instellung für I $_{\rm STR}$ = 400 nA abgeben kann. Der Betrieb mit U $_{\rm G1~M}$ > 50 V bringt keine weitere Verbesserung der Spitzlichtverarbeitung, kann aber die Auflösung und Lebensdauer der Röhre vermindern und zu Schwingneigung führen.

3) Nachfolgende Schaltung und Röhren-Einstellung werden empfohlen.

- 4) Grenzwert für die Kamerakonstruktion. Kurze Temperaturüberschreitungen bis zu +70 °C während des Betriebes sind zulässig.
- 5) für kurze Intervalle; während der Lagerung und bei kurzen Betriebspausen muß das Fenster der Röhre mit der mitgelieferten Plastik-Schutzkappe abgedeckt oder die Blende geschlossen werden. Im Stand-by-Betrieb muß auch der Strahlstrom unterdrückt werden.
- 6) gemessen mit der Ablenkeinheit KV 4736-9. Ablenkeinheit siehe unter Zubehör.
- 7) Die Spannung an G1 wird so eingestellt, daß ein Strahlstrom von 300 nA für R- und B-Röhren und 400 nA für Schwarzweiß- und G-Röhren entsteht. Der Strahlstrom wird als der Strom definiert, der ausreicht, um einen gleichgroßen Signalstrom zu stabilisieren.

In den Kenndaten, u.a. für Auflösung und Trägheit, ist z.B. das Verhältnis für Signalstrom zu Strahlstrom angegeben mit I A/I STR = 20 nA/300 nA. Das bedeutet einen Signalstrom von 20 nA und eine Einstellung für den Strahlstrom, die gerade einen Signalstrom von 300 nA ermöglicht.

Die Signalströme werden mit einem integrierenden Meßinstrument an dem Signalelektroden-Anschluß, bei gleichmäßiger Beleuchtungsstärke auf der abgetasteten Fläche, gemessen. Die Signalspitzenströme, die mit dem Video-Oszilloskop gemessen werden, sind um Faktor α größer.

 $(\alpha = 100/100 - \beta, \beta)$ ist die Gesamtaustastzeit in %; beim CCIR-System ist $\alpha = 1.3$)

8) Zur Erzielung eines Signalstromes von 200 nA bei XQ 4187 ist eine Beleuchtungsstärke von etwa 10 lx (2856 K) erforderlich. Zur Erzielung der bei Modulationstiefe angegebenen Signalströme bei XQ 4187 R/G/B ist eine Beleuchtungsstärke von etwa 25 lx (2856 K) vor den entsprechenden Filtem (siehe Anmerkung ⁹)) erforderlich. (BG 12 = 1 mm)

9) Meßbedingungen:

gemessen mit Wolframfadenlampe (2856 K), Beleuchtungsstärke 4,54 lx und entsprechenden Filtern. Der Signalstrom in nA wird als Farbsignal in μ A/Lumen bei weißem Licht vor dem Filter gemessen.

	Filter	Dicke (mm)
XQ 4187 R	Schott OG 570 und Calflex B1/K1	3
XQ 4187 G	Schott VG 9	1
XQ 4187 B	Schott BG 12	3

- 10) Für die richtige Grauwertwiedergabe bei Schwarzweißkameras und die richtigen Farbmischkurven bei Farbkameras soll ein Infraror-Sperrfilter in das optische System eingebaut sein.
- 11) gemessen mit einem 50 mm Leitz Summicron Objektiv mit einer Modulationsübertragung von 80 %, bei sinusförmiger Helligkeitsverteilung des Meßrasters, 30 LP/mm (400 Zeilen bei 6,6 mm x 8,8 mm Bildfläche) und Blende 5,6.
 Der horizontale Amplitudengang kann durch geeignete Korrekturschaltungen verbessert werden. Diese Kompensation wirkt sich jedoch nicht auf die vertikale Auflösung aus und beginflußt auch nicht die Grenzauflösung.

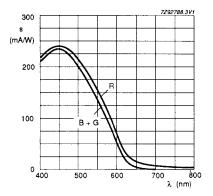
12) Anstiegsträgheit:

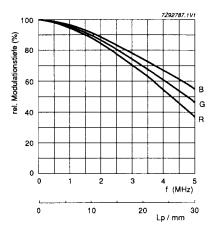
Nach 10 s in völliger Dunkelheit wird die Beleuchtung eingeschaltet. Die dargestellten Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Einschalten gemessen.

Abfallträgheit:

Nach min. 5 s Beleuchtung der Speicherschicht wird die Lichtquelle abgeschaltet. Die Werte für den Signalstrom in % werden 60 ms bzw. 200 ms nach dem Abschalten gemessen.

- 13) Trägheitsverminderung, insbesondere bei geringer Szenenbeleuchtung, kann durch Vorbelichtung (< 5 nA) über die Optik erreicht werden. Auflicht mit $\lambda > 600 \text{ nm}$ ist zu vermeiden.
- 14) Bei DBC-Betrieb entsprechend Anmerkung 2) und 3) verarbeitet die Röhre Spitzlichter mit einem Durchmesser von 10 % der Bildhöhe und einer Beleuchtungsstärke, die dem 8fachen Wert für Bildweiß entspricht. Die maximalen Signalspitzenströme I A M bei Spitzlichtem betragen ca. 1400 nA. Der Videoverstärker muß für Signalströme dieser Größe bemessen sein, ohne daß eine Übersteuerung auftritt.


Warnhinweis


Gift

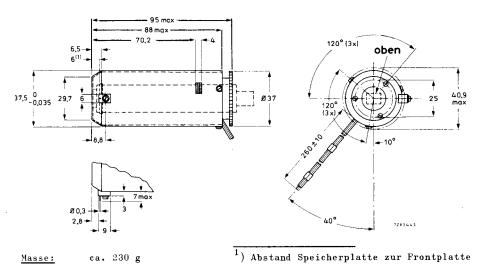
Diese Bauelemente enthalten giftige Stoffe PbO (Bleioxid), die bei Zerstörung/Überlastung freigesetzt werden können. Vorsicht bei Berühren der Fragmente, Einatmen von Staub und Gasen vermeiden! Entsorgung nur nach Vorschriften des Umweltschutzes!

8. 3. 1988

302

Zubehör

Тур		Seite
AT 1109/01 S	Fokussier-und Ablenk-Spulensatz für 2/3"-PLUMBICON $^{\textcircled{\$}}$ - Röhren (einzelner Spulensatz von AT 1109/01 T)	309
AT 1109/01 T	Fokussier- und Ablenk-Spulensätze für 2/3"-PLUMBICON $^{\textcircled{g}}$ - Röhren (selektiertes Tripel für die Bestückung einer Farbfemsehkamera)	309
AT 1109/10 S	Fokussier- und Ablenk-Spulensatz für 2/3" LOC-PLUMBICON $^{\circledR}$ - Röhren der Serie XQ 3427 (einzelner Spulensatz von AT 1109/10 T)	313
AT 1109/10 T	Fokussier- und Ablenk-Spulensätze für 2/3" LOC-PLUMBICON $^{\textcircled{\$}}$ - Röhren der Serie XQ 3427 (selektiertes Tripel für die Bestückung einer Farbfernsehkamera)	313
AT 1109/16 S	Fokussier- und Ablenk-Spulensatz für 2/3" LOC-PLUMBICON $^{\circledR}$ - Röhren der Serie XQ 3427 (einzelner Spulensatz von AT 1109/16 T)	317
AT 1109/16 T	Fokussier- und Ablenk-Spulensätze für 2/3" LOC-PLUMBICON® - Röhren der Serie XQ 3427 (selektiertes Tripel für die Bestückung einer Farbfernschkamera)	317
AT 1116 S	Fokussier- und Ablenk-Spulensatz für 1"-PLUMBICON $^{\textcircled{\$}}$ - Röhren und hochwertige 1"-Vidikons	321
AT 1126/03 S	Fokussier- und Ablenk-Spulensatz für 1" LOC-PLUMBICON $^\circledR$ - Röhren der Serien XQ 1500, XQ 2070/02 und XQ 3070/02 (einzelner Spulensatz von AT 1126/03 T)	325
AT 1126/03 T	Fokussier- und Ablenk-Spulensätze für 1" LOC-PLUMBICON - Röhren der Serien XQ 1500, XQ 2070/02 und XQ 3070/02 (selektiertes Tripel für die Bestückung einer Farbfernsehkamera)	325
AT 1130/02 S	Fokussier- und Ablenk-Spulensatz für 30 mm-PLUMBICON $^{\textcircled{\$}}$ - Röhren der Serien XQ 1410 und XQ 1520 (einzelner Spulensatz von AT 1130/02 T)	329
AT 1130/02 T	Fokussier- und Ablenk-Spulensätze für 30 mm-PLUMBICON® - Röhren der Serien XQ 1410 und XQ 1520 (selektiertes Tripel für die Bestückung einer Farbfemsehkamera)	329


Zubehör

Тур		Seite
KV 4722	Fokussier-Spulensatz für 2/3" MS-LOC-PLUMBICON® - Röhren mit magnetischer Fokussierung und elektrostatischer Ablenkung der Serie XQ 3457 (Tripel für Farbfemsehkameras 3 x KV 4722)	333
KV 4736-9 AS	Ablenk-Spulensatz für 2/3" HS-LOC-PLUMBICON® - Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung der Serie XQ 4187	335
KV 4736-9 AT	Ablenk-Spulensätze für 2/3" HS-LOC-PLUMBICON® - Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung der Serie XQ 4187 (selektiertes Tripel für die Bestückung einer Farbfernsehkamera)	335
KV 4780	Ablenk-Spulensatz für 2/3"-PLUMBICON® - Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung der Serie XQ 3467 (Tripel für Farbfemsehkameras 3 x KV 4780)	339

FOKUSSIER - und ABLENK - SPULENSATZ

für 2/3"-PLUMBICON (R) - Röhren der Serien XQ 1427 und XQ 2427

Abmessungen in mm:

Die Spulensätze enthalten Ablenk- und Fokussierspulen sowie Zentriermagnete.

Flußdichte und Richtung des Zentriermagnetfeldes lassen sich einstellen, die Einstellung der minimalen Feldstärke ist markiert.

Der Spulensatz hat eine innenliegende Fokussierspule, dadurch ergibt sich eine niedrige Fokussierleistung.

Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

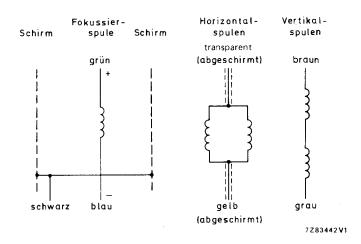
Die von der Rückseite der Ablenkeinheit einzusetzenden Kameraröhren werden durch einen genuteten Aluminiumring und ein Kunststoffröhrchen arretiert und zentriert.

Der Signalelektrodenanschluß läßt sich entfernen und durch eine Eigenentwicklung (z.B. mit integriertem Video-Vorverstärker) ersetzen.

<u>Warnung:</u> Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen:

Einzelner Spulensatz für S/W-Fernsehkameras AT 1109/01 S Selektiertes Tripel für Farbfernsehkameras AT 1109/01 T

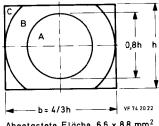



```
Technische Daten:
                                                 -15...+65 °c
  Temperaturbereich
Horizontal-Ablenkspulen
  Induktivität
                                                 0,91 mH ± 5 %
  Widerstand
                                                 3,8 Q ±10 %
  Strom
                                                 260 mA ± 5 % (Spitze-Spitze-Wert)
  Anschlüsse (abgeschirmt)
                                                 transparent, gelb
Vertikal-Ablenkspulen
  Induktivität
                                                 2,8 mH ± 5 %
                                                 12.7 Ω ±10 %
  Widerstand
  Strom
                                                 114 mA ± 5 % (Spitze-Spitze-Wert)
  Anschlfisse
                                                 braun, grau
Fokussier-Spulen 1)
  Widerstand
                                                 60
                                                      Ω ±10 %
  Strom
                                                 120 mA ± 5 %
  Anschlässe
                                                 grün, blau
Röhrenbetriebsdaten: (empfohlene Werte für XQ 1427 und XQ 2427)
  (Spannungen auf Katode bezogen)
  Signalelektrodenspannung
                                                 \mathbf{U_A} = 45 \, \mathbf{V}
                                                U_{G4} = 750 V^2
  Spannung an G<sub>A</sub> (Feldnetz)
  Spannung an G_3 (Fokussierelektrode)
                                                U_{G3} = 430 \text{ V}
  Spannung an G_0 (Beschleunigungselektrode) U_{G2} = 300 \text{ V}
  Signalstrom
                                                      = 150 \text{ nA}
  Strahlstrom
                                                I_{STR} = 300 \text{ nA}
Zentriermagnet:
  magnetische Flußdichte min. 0,015 mT
```

max. 0,24 mT

¹⁾ Die Polung der Fokussierspulen muß so sein, daß der nordsuchende Pol eines Indikators zum bildseitigen Ende der Spule angezogen wird.

 $^{^2)}$ $\rm U_{G4}$ ist nach minimalen Landefehlern einzustellen, um Röhrenstreuungen zu kompensieren.



Geometrische Verzeichnung

(bei Seitenverhältnis 3 : 4, $\vartheta_U = 21$ °C, gemessen bei Betriebstemperatur)

Verzeichnung

innerhalb des Kreises ≤ 0,5 % der Bildhöhe außerhalb des Kreises ≤ 1,0 % der Bildhöhe Orthogonalitätsfehler (Skew) ≤ 1 % der Bildhöhe

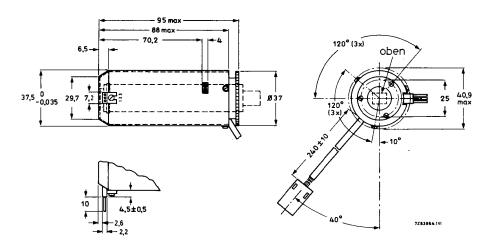
Abgetastete Fläche $6,6 \times 8,8 \text{ mm}^2$ (h = 6,6)

Farbdeckung

AT 1109/01 T besteht aus drei selektierten Fokussier- und Ablenkspulensätzen, bei denen die Farbdeckungsfehler nach Orthogonalitätskorrektur nicht größer sind als:

```
in Zone A **80 ns oder 0,077 % der Bildhöhe
in Zone B 60 ns oder 0,15 % der Bildhöhe
in Zone C 120 ns oder 0,31 % der Bildhöhe
```

Die Fehler werden horizontal und vertikal gemessen und als 1/52~000 der Dauer einer Abtastung angegeben. Dieses entspricht (horizontal) 1 ns im CCIR-System, entsprechend $0.00256~\%~(25~\cdot~10^{-6})$ der Bildhöhe.


Röhrenkapazität (XQ 1427, XQ 2427)

Die Kapazität c $_{\rm a}$ zwischen der Speicherschicht und den übrigen Elektroden nimmt um weniger als 3 pF zu, wenn die Röhre in die Ablenkeinheit eingesetzt ist.

FOKUSSIER - und ABLENK - SPULENSATZ

für 2/3" LOC-PLUMBICON Röhren der Serie XQ 3427

Abmessungen in mm:

Masse: ca. 230 g

Die Spulensätze enthalten Ablenk- und Fokussierspulen sowie Zentriermagnete.

Flußdichte und Richtung des Zentriermagnetfeldes lassen sich einstellen, die Einstellung der minimalen Feldstärke ist markiert.

 $\begin{tabular}{lll} Der Spulensatz & hat & eine & innenliegende & Fokussierspule, & dadurch & ergibt & sich & eine \\ niedrige & Fokussierleistung. \\ \end{tabular}$

Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Die von der Rückseite der Ablenkeinheit einzusetzenden Kameraröhren werden durch einen genuteten Aluminiumring und ein Kunststoffröhrchen arretiert und zentriert.

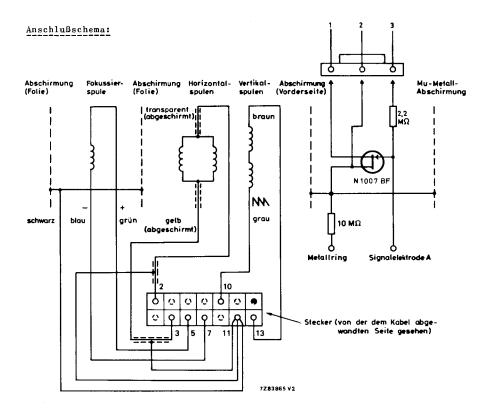
Jeder Spulensatz enthält einen Video-Vorverstärker.

<u>Warnung:</u> Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen:

Einzelner Spulensatz für S/W-Fernsehkameras AT 1109/10 S Selektiertes Tripel für Farbfernsehkameras AT 1109/10 T

Technische Daten:


```
°c
  Temperaturbereich
                                                  -15...+65
Horizontal-Ablenkspulen
  Induktivität
                                                  0.91 mH ± 5 %
  Widerstand
                                                  3,8 Ω ±10 %
                                                  230 mA ± 5 % (Spitze-Spitze-Wert)
  Strom
  Anschlüsse (abgeschirmt)
                                                  transparent, gelb
Vertikal-Ablenkspulen
  Induktivität
                                                  2,8 mH ± 5 %
  Widerstand
                                                  12,7 Ω ±10 %
                                                  104 mA ± 5 % (Spitze-Spitze-Wert)
  Strom
  Anschlüsse
                                                  braun, grau
Fokussier-Spulen 1)
  Widerstand
                                                  60
                                                       Ω ±10 %
                                                  115 mA ± 5 %
  Strom
  Anschlüsse
                                                  grün, blau
Röhrenbetriebsdaten: (empfohlene Werte für XQ 3427)
  (Spannungen auf Katode bezogen)
  Signalelektrodenspannung
                                                  U_{GA} = 750 \text{ V}^{-2}
  Spannung an G<sub>4</sub> (Feldnetz)
  Spannung an G<sub>3</sub> (Fokussierelektrode)
                                                  U_{G3} = 430 \text{ V}
  Spannung an G<sub>2</sub> (Beschleunigungselektrode) U<sub>G2</sub> = 300 V
  Signalstrom
                                                        = 150 \text{ nA}
                                                  I_{STR} = 300 \text{ nA}
  Strahlstrom
Zentriermagnet:
```

max. 0,24 mT

magnetische Flußdichte min. 0.015 mT

Die Polung der Fokussierspulen muß so sein, daß der nordsuchende Pol eines Indikators zum bildseitigen Ende der Spule angezogen wird.

 $^{^2)}$ $\rm U_{G4}$ ist nach minimalen Landefehlern einzustellen, um Röhrenstreuungen zu kömpensieren.



Geometrische Verzeichnung

(bei Seitenverhältnis 3: 4, $\vartheta_U = 21^{-6}C$, gemessen bei Betriebstemperatur)

Verzeichnung

innerhalb des Kreises ≤ 0,5 % der Bildhöhe außerhalb des Kreises ≤ 1,0 % der Bildhöhe Orthogonalitätsfehler (Skew) ≤ 1 % der Bildhöhe

6.84 315

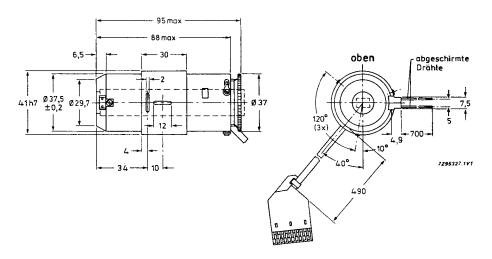
Farbdeckung

AT 1109/10 T besteht aus drei selektierten Fokussier- und Ablenkspulensätzen, bei denen die Farbdeckungsfehler nach Orthogonalitätskorrektur nicht größer sind als:

in Zone A 20 ns in Zone B 40 ns in Zone C 80 ns

Die Fehler werden horizontal und vertikal gemessen und als 1/52~000 der Dauer einer Abtastung angegeben. Dieses entspricht (horizontal) 1 ns im CCIR-System, entsprechend $0.00256~\%~(25~\cdot~10^{-6})$ der Bildhöhe.

Röhrenkapazität (XQ 3427)


Die Kapazität c zwischen der Speicherschicht und den übrigen Elektroden nimmt um weniger als 2 pF zu, wenn die Röhre in die Ablenkeinheit eingesetzt ist.

DATEN FÜR ENTWICKLUNGSMUSTER

AT 1109/16

FOKUSSIER - und ABLENK - SPULENSATZ
für 2/3" LOC-PLUMBICON R - Röhren der Serie XQ 3427

Abmessungen in mm:

Masse: ca. 260 g

Die Spulensätze enthalten Ablenk- und Fokussierspulen sowie Zentrierspulen. Flußdichte und Richtung des Zentriermagnetfeldes lassen sich einstellen.

Der Spulensatz hat eine innenliegende Fokussierspule, dadurch ergibt sich eine niedrige Fokussierleistung.

Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Die von der Rückseite der Ablenkeinheit einzusetzenden Kameraröhren werden durch einen genuteten Aluminiumring und ein Kunststoffröhrchen arretiert und zentriert.

Jeder Spulensatz enthält einen Video-Vorverstärker.

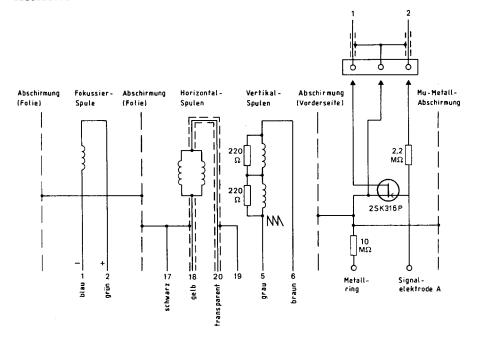
Warnung: Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen:

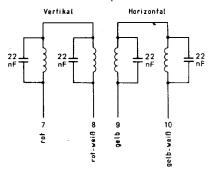
Einzelner Spulensatz für S/W-Fernsehkameras AT 1109/16 S Selektiertes Tripel für Farbfernsehkameras AT 1109/16 T

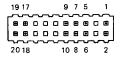
6.88 317

Technische Daten:


```
°c
  Temperaturbereich
                                                     -15...+65
Horizontal-Ablenkspulen
  Induktivität
                                                    0,91 mH ± 5 %
  Widerstand
                                                     3.8 Ω ±10 %
  Strom
                                                     230 mA ± 5 % (Spitze-Spitze-Wert)
  Anschlüsse (abgeschirmt)
                                                     transparent, gelb
Vertikal-Ablenkspulen
  Induktivität
                                                    2,8 mH ± 5 %
  Widerstand
                                                    12,7 Ω ±10 %
  Strom
                                                    104 mA ± 5 % (Spitze-Spitze-Wert)
  Anschlüsse
                                                    braun, grau
Fokussier-Spulen 1)
  Widerstand
                                                    60
                                                          Ω ±10 %
  Strom
                                                    115 mA ± 5 %
  Anschlüsse
                                                    grün, blau
Zentrier-Spulen
  Widerstand je Spulenpaar
                                                    300
                                                          Ω ±10 %
  Strom
                                                    8,4 mA
  Anschlüsse
    horizontal
                                                    rot, rot-weiß
    vertikal
                                                    gelb, gelb-weiß
Röhrenbetriebsdaten (empfohlene Werte für XQ 3427)
  (Spannungen auf Katode bezogen)
  Signalelektrodenspannung
                                                    U_{\Delta} = 45 \text{ V}
                                                    U_{G4} = 750 \text{ V}^{2}
  Spannung an G<sub>4</sub> (Feldnetz)
  Spannung an G<sub>3</sub> (Fokussierelektrode)
                                                    U_{G3} = 430 \text{ V}
  Spannung an G<sub>o</sub> (Beschleunigungselektrode)
                                                   \mathbf{u}_{\mathbf{G2}}
                                                         = 300 \text{ V}
  Signalstrom
                                                         = 150 \text{ nA}
  Strahlstrom
                                                    I_{STR} = 300 \text{ nA}
```

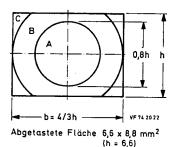
¹⁾ Die Polung der Fokussierspulen muß so sein, daß der nordsuchende Pol eines Indikators zum bildseitigen Ende der Spule angezogen wird.


²⁾ U_{G4} ist nach minimalen Landefehlern einzustellen, um Röhrenstreuungen zu kompensieren.


 $^{^3}$) Dieser Strom bewirkt einen magnetischen Fluß von 0,2 mT.

Anschlußschema:

Zentrierspulen


7.Z95328.1V1

Geometrische Verzeichnung

(bei Seitenverhältnis 3:4, ϑ_U = 21 °C, gemessen bei Betriebstemperatur)

Verzeichnung innerhalb des Kreises A außerhalb des Kreises A Orthogonalitätsfehler (Skew)

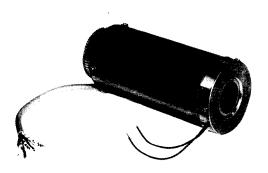
 \leq 0,5 % der Bildhöhe \leq 1,0 % der Bildhöhe \leq 1 % der Bildhöhe

Farbdeckung

AT 1109/16 T besteht aus drei selektierten Fokussier- und Ablenkspulensätzen, bei denen die Farbdeckungsfehler nach Orthogonalitätskorrektur nicht größer sind als:

in Zone A 30 ns in Zone B 60 ns in Zone C 120 ns

Die Fehler werden horizontal und vertikal gemessen und als 1/52~000 der Dauer einer Abtastung angegeben. Dieses entspricht (horizontal) 1 ns im CCIR-System, entsprechend $0.00256~\%~(25\cdot10^{-6})$ der Bildhöhe.

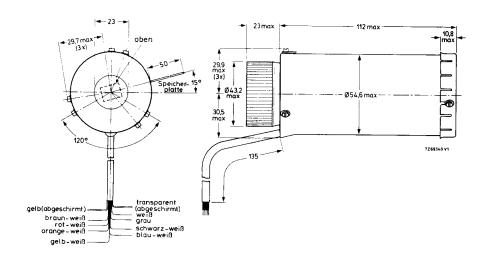

Röbrenkapazität (XQ 3427)

Die Kapazität c_a zwischen der Speicherschicht und den übrigen Elektroden nimmt um weniger als 2 pF zu, wenn die Röhre in die Ablenkeinheit eingesetzt ist.

AT 1116 S

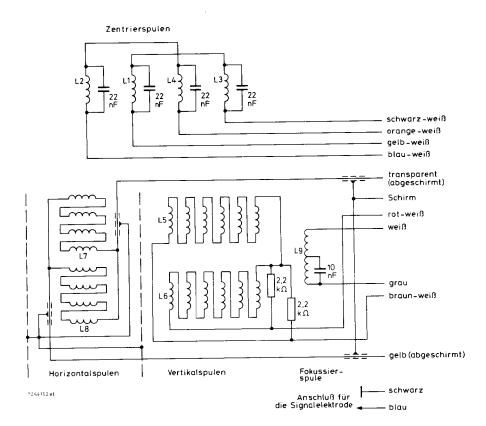
FOKUSSIER- und ABLENK-SPULENSATZ

für 1"-PLUMBICON® - Röhren und hochwertige Vidikons


Der Spulensatz enthält Ablenk-, Fokussier- und Zentrierspule

Die von der Vorderseite einzusetzende Kameraröhre wird durch einen genuteten Kunststoffring am Ende der Fokussier- und Ablenkeinheit in ihrer richtigen Lage arretiert. Bei Drehung des Kunststoffringes wird die Röhre automatisch rückwärts geschoben, bis sie den Anschlag berührt.

AT 1116S


Abmessungen in mm:

Masse: ca. 615 g

AT 1116 S

Anschlußschema:

AT 1116S

Technische Daten:

Temperaturbereich
für Dauerbetrieb
außer Betrieb

Horizontal-Ablenkspulen

Induktivität Widerstand Strom bei
$$\rm U_{G3}$$
 = 600 V, $\rm U_{G4}$ = 950 V Anschlüsse (abgeschirmt)

<u>Vertikal-Ablenkspulen</u>

Induktivität Widerstand Strom bei
$$\rm U_{G3}$$
 = 600 V, $\rm U_{G4}$ = 950 V Anschlüsse

Fokussier-Spule 1)

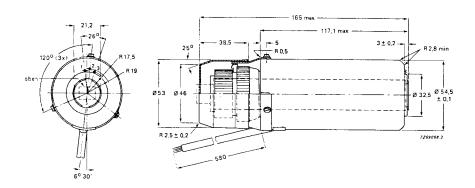

Strom bei
$$U_{G3} = 600 \text{ V}$$
, $U_{G4} = 950 \text{ V}$
Anschlüsse

Zentrier-Spule

Widerstand

Widerstand je Spulenpaar Strom bei
$$\rm U_{G3}$$
 = 600 V, $\rm U_{G4}$ = 950 V Anschlüsse

Geometrische Verzeichnungen


¹⁾ Polung der Fokussierspule: grauer Anschluß an Plus Die Polung der Fokussierspule sollte so sein, daß ein nordsuchender Pol eines Indikators zum bildseitigen Ende der Spule zeigt, wenn der Indikator sich außerhalb der Fokussierspule am bildseitigen Ende befindet.

FOKUSSIER-und ABLENK - SPULENSATZ

für 1"-PLUMBICON® -Röhren der Serien XQ 1500 und XQ 3070

Mechanische Daten

Abmessungen in mm

Masse

ca. 700 g

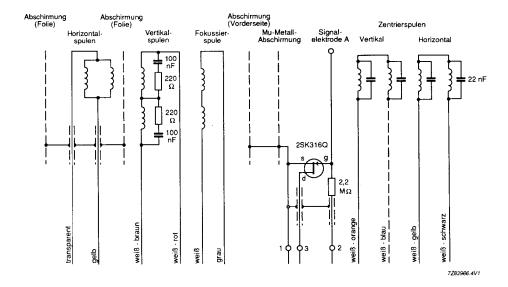
Die drei Spulensätze enthalten Ablenk-, Fokussier- und Zentrierspulen. Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Die von der Rückseite der Ablenkeinheit einzusetzenden Kameraröhren werden durch einen Gewindering zentriert, nach vorn geschoben und arretiert.

Jeder Spulensatz enthält einen Video-Vorverstärker.

Warnung: Druck und Verformung der Mu-Metall-Abschirmung können die Perneabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen


Einzelner Spulensatz für S/W-Fernsehkameras AT 1126/03 S

Selektiertes Tripel für Farbfernsehkameras AT 1126/03 T

AT 1126/03

Anschlußschema

Technische Daten (je Spulensatz)

Temperaturbereich	-15+65 °C	
Horizontal-Ablenkspulen		
Induktivität Widerstand Strom	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-Wert)
Vertikal-Ablenkspulen		
Induktivität Widerstand Strom	4,4 mH ± 5 % 10 Ω ± 10 % 80 mA ± 5 % (Spitze-Spitze-	Wert)
Fokussier-Spule 1)		
Widerstand Strom	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Zentrierspulen		
Widerstand je Spulenpaar Strom	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Röhrenbetriebsdaten	(empfohlene Werte für XQ 1500)	
(Spannungen auf Katode bezogen)		
Signalclektrodenspannung	U _A = 45 V	
Spannung an G ₆ (Feldnetz)	$U_{G6} = 750 \text{ V} 3$	
Spannung an G ₅ (Fokussierelektrode)	$U_{G5} = 475 V$	

 $U_{G2G4} =$

IA

 I_{STR}

300

200

400

ν

nΑ

nΑ

Spannung an G₂G₄ (Beschleunigungselektrode)

Signalstrom

Strahlstrom

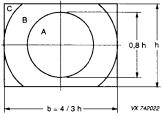
Die Polung der Fokussierspule muß so sein, daß der nordsuchende Pol eines Indikators zum bildseitigen Ende der Spule angezogen wird.

²) Dieser Strom bewirkt eine Auslenkung von ≤ 0,7 % der Bildhöhe.

 $^{^{3}}$) U_{G6} ist nach minimalen Landefehlern einzustellen, um Röhrenstreuungen zu kompensieren.

AT 1126/03

Geometrische Verzeichnung


(bei Seitenverhältnis 3 : 4, ϑ_U = 21 °C, gemessen bei Betriebstemperatur)

außerhalb des Kreises

Verzeichnung

innerhalb des Kreises A ≤ 0.5 % der Bildhöhe

Orthogonalitätsfehler (Skew) ≤ 0,5 % der Bildhöhe

Abgetastete Fläche $9.6 \times 12.8 \text{ mm}^2 (h = 9.6)$

Farbdeckung

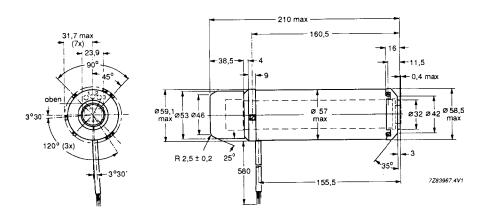
AT 1126/03 T besteht aus drei selektierten Fokussier-und Ablenkspulensätzen, bei denen die Farbdeckungsfehler nach Orthogonalitätskorrektur nicht größer sind als:

≤ 1,0 % der Bildhöhe

in Zone A 40 ns in Zone B 50 ns in Zone C 80 ns

Die Fehler werden horizontal und vertikal gemessen und als 1/52000 der Dauer einer Abtastung angegeben. Dieses entspricht (horizontal) 1 ns im CCIR-System, entsprechend 0,00256 % (25 x 10⁻⁶) der Bildhöhe.

Röhrenkapazität (gemessen ohne Vorverstärker)


Die Kapazität c_a zwischen der Speicherschicht und den übrigen Elektroden nimmt um weniger als 3,5 pF zu, wenn die Röhre in die Ablenkeinheit eingesetzt ist.

FOKUSSIER-und ABLENK - SPULENSATZ

für 30 mm -PLUMBICON® -Röhren der Serien XQ 1410 und XQ 1520

Mechanische Daten

Abmessungen in mm

Masse ca. 1000 g

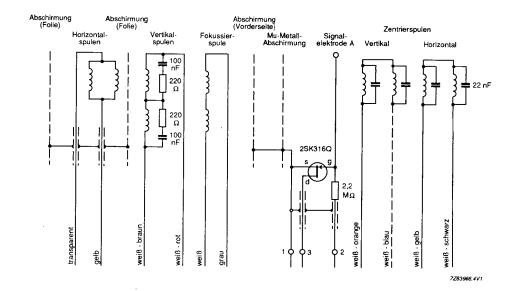
Die drei Spulensätze enthalten Ablenk-, Fokussier- und Zentrierspulen. Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Die von der Rückseite der Ablenkeinheit einzusetzenden Kameraröhren werden durch einen Gewindering zentriert, nach vom geschoben und arretiert.

Jeder Spulensatz enthält einen Video-Vorverstärker.

Warnung: Druck und Verformung der Mu-Metall-Abschirmung können die Perneabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen


Einzelner Spulensatz für S/W-Fernsehkameras AT 1130/02

Selektiertes Tripel für Farbfernsehkameras AT 1130/02 S

AT 1130/02

Anschlußschema

Technische Daten (je Spulensatz)

Temperaturbereich

- Conference - Con					
Horizontal-Ablenkspulen					
Induktivität Widerstand Strom		mΗ Ω mA	±	10	
Vertikal-Ablenkspulen					
Induktivität Widerstand Strom	14,5	mΗ Ω mA	±	10	% % % (Spitze-Spitze-Wert)
Fokussier-Spule 1)					
Widerstand Strom	1125 35	$_{mA}^{\Omega}$		10 5	
Zentrierspulen					
Widerstand je Spulenpaar Strom	530 8,8	$_{mA}^{\Omega}$	±	10	% ²)
Röhrenbetriebsdaten	(emp	fohlen	e We	erte f	ür XQ 1410)
(Spannungen auf Katode bezogen)					
Signalelektrodenspannung	$U_{\mathbf{A}}$	=	4	45	v
Spannung an G ₄ (Feldnetz)	U_{G4}	=	6	75	V 3)

-15...+65 °C

 U_{G3} U_{G2}

 I_{STR}

600

300 300

600

nΑ

nA

Spannung an G3 (Fokussierelektrode)

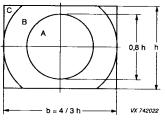
Signalstrom Strahlstrom

Spannung an G₂ (Beschleunigungselektrode)

Die Polung der Fokussierspule ist so, daß der südsuchende Pol eines Indikators zum bildseitigen Ende der Spule zeigt, wenn der Indikator sich außerhalb der Fokussierspule am bildseitigen Ende befindet.

²) Dieser Strom bewirtkt einen magnetischen Fluß von 0,2 mT.

 $^{^{3}}$) U_{G4} ist nach minimalen Landefehlern einzustellen, um Röhrenstreuungen zu kompensieren.


AT 1130/02

Geometrische Verzeichnung

(bei Seitenverhältnis 3 : 4, $\vartheta_U = 21$ °C, gemessen bei Betriebstemperatur)

Verzeichnung

innerhalb des Kreises A $\leq 0.5\%$ der Bildhöhe außerhalb des Kreises A $\leq 1.0\%$ der Bildhöhe Orthogonalitätsfehler (Skew) $\leq 0.5\%$ der Bildhöhe

Abgetastete Fläche 12,8 x 17,1 mm² (h = 12,8)

Farbdeckung

AT 1130/02 besteht aus drei selektierten Fokussier-und Ablenkspulensätzen, bei denen die Farbdeckungsfehler nach Orthogonalitätskorrektur nicht größer sind als:

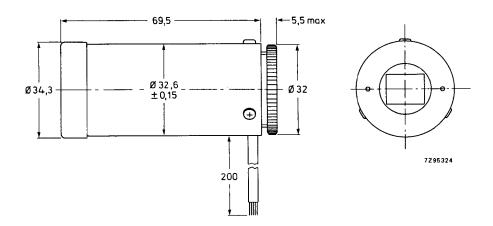
in Zone A 40 ns

in Zonc B 50 ns

in Zone C 80 ns

Die Fehler werden horizontal und vertikal gemessen und als 1/52000 der Dauer einer Abtastung angegeben. Dieses entspricht (horizontal) 1 ns im CCIR-System, entsprechend 0.00256% (25×10^{-6}) der Bildhöhe.

Röhrenkapazität (XQ 1410, XQ 1520)


Die Kapazität c_a zwischen der Speicherschicht und den übrigen Elektroden nimmt um weniger als 5,5 pF zu, wenn die Röhre in die Ablenkeinheit eingesetzt ist.

FOKUSSIER - SPULENSATZ

für 2/3" MS-LOC-PLUMBICON $^{(R)}$ - Röhren mit magnetischer Fokussierung und elektrostatischer Ablenkung der Serie XQ 3457

Abmessungen in mm:

Der Spulensatz enthält eine Fokussierspule sowie Horizontal- und Vertikal-Zentrierspulen.

Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Warnung:

Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen:

Einzelner Spulensatz

KV 4722

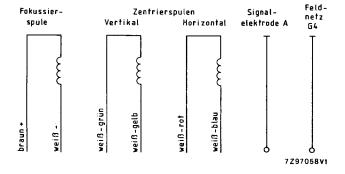
Tripel für Farbfernsehkameras

3 x KV 4722

KV 4722

Technische Daten:

Fokussier-Spule:


Widerstand	25,2 Ω ± 10 %
Strom	198 mA \pm 10 %
magnetische Flußdichte	7 mT \pm 10 %
Anschlüsse	weiß, braun

$\underline{\mathbf{z}}$

magnetische Flußdichte	$7 \text{ mT} \pm 10 \%$
Anschlüsse	weiß, braun
Zentrier-Spulen:	e e
Widerstand	567 Ω ± 10 %
Strom	17,5 mA \pm 10 %
magnetische Flußdichte	$0,4$ mT \pm 10 %
Anschlüsse horizontal	weiß-rot, weiß-blau
vertikal	weiß-grün, weiß-gelb

Einstellung der elektrischen Daten der Röhre entsprechend den Angaben in Datenblatt XQ 3457

Anschlußschema

ABLENK - SPULENSATZ

für 2/3" HS-LOC-PLUMBICON R - Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung der Serie XQ 4187

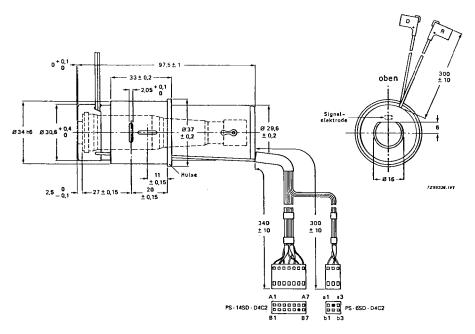
Die Spulensätze enthalten Horizontal- und Vertikal-Ablenkspulen sowie Spulen zur Vorfokussierung.

Bei den HS-Plumbicon-Röhren sind keine Korrekturmittel für die Zentrierung erforderlich.

Die Röhrenfassung ist im Ablenkspulensatz integriert, alle weiteren erforderlichen Röhrenkontakte sind Bestandteil des Ablenkspulensatzes.

Das Gehäuse besteht aus Mu-Metall und dient der optimalen Abschirmung externer Magnetfelder sowie der erforderlichen Beeinflussung des Feldlinienverlaufes für das magnetische Ablenkfeld.

<u>Warnung:</u> Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.


Bestellbezeichnungen:

Einzelner Spulensatz für S/W-Fernsehkameras KV 4736-9 AS Selektiertes Tripel für Farbfernsehkameras KV 4736-9 AT

KV 4736-9

Abmessungen in mm:

Masse: ca. 115 g [★])
Betriebstemperaturbereich: -15...+70 °C

Montagehinweis:

Zum Ausbau der Röhre wird die Metallkappe an der Vorderseite des Ablenkspulensatzes abgeschraubt und entfernt.

Am hinteren Ende der Ablenkeinheit wird vorsichtig auf den Pumpstutzen der Röhre gedrückt und die Röhre nach vorn geschoben.

Die Ablenkeinheiten müssen in einer Kamera so montiert werden, daß sich die Signalelektrodenanschlüsse oben befinden.

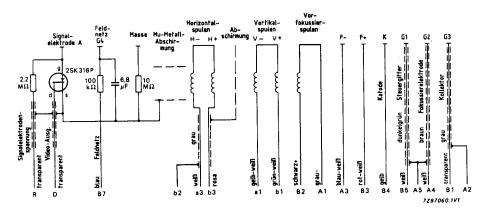
^{*)} mit Hülse ca. 145 g

Elektrische Daten:

gemessen mit f = 1000 Hz, $\vartheta_{\overline{U}}$ = 25 $^{\circ}$ C

Horizontal-Ablenkspulen

Induktivität	1,15	mН	±	5	%
Widerstand	4,5	Ω	±	5	%
Strom	185	mA	±	5	%


Vertikal-Ablenkspulen

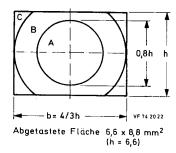
Induktivität	2,41	mH	±	5	%
Widerstand	15,4	Ω	±	5	%
Strom	95	mА	<u>+</u>	5	%

Spulen zur Vorfokussierung

Widerstand	99	Ω	±	5	%
Strom	20	mA	±	5	%

Anschlußschema:

Geometrische Verzeichnung:


Verzeichnung		<u> </u>	1	%	der	Bildhöhe
Orthogonalitätsfehler	(Skew)	≦	1	%	der	Bildhöhe

KV 4736-9

Farbdeckung:

KV 4736-9 AT besteht aus drei selektierten Ablenkspulensätzen, bei denen die Farbdeckungsfehler nicht größer sind als:

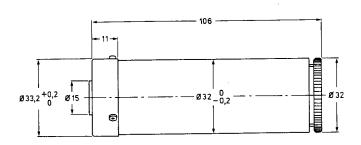
in Zone A 40 ns in Zone B 80 ns in Zone C 120 ns

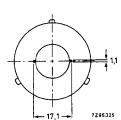
Die Messung der Fehler erfolgt horizontal und vertikal nach Korrektur der Orthogonalität, wobei eine Röhre als Bezugsröhre dient.

Einstellung der elektrischen Daten der Röhre entsprechend den Angaben im Datenblatt XQ 4187.

Röhrenkapazität (XQ 4187)

Die Kapazität zwischen Signalelektrodenanschluß (Röhre eingesetzt) und einer beliebigen Elektrode beträgt ca. 3,5 pF.


DATEN FÜR ENTWICKLUNGSMUSTER


KV 4780

ABLENK - SPULENSATZ

für 2/3"-PLUMBICON $^{\textcircled{R}}$ - Röhren mit magnetischer Ablenkung und elektrostatischer Fokussierung der Serie XQ 3467

Abmessungen in mm:

Masse:

ca. 110 g

Der Spulensatz enthält Horizontal- und Vertikal-Ablenkspulen sowie Zentrierspulen.

Zur Abschirmung externer Magnetfelder besteht das Gehäuse aus Mu-Metall.

Warnung:

Druck und Verformung der Mu-Metall-Abschirmung können die Permeabilität der Abschirmung beeinflussen und damit die genannten Daten verändern.

Bestellbezeichnungen:

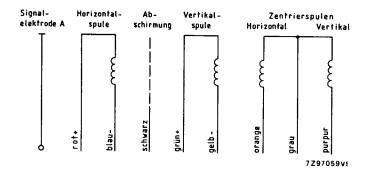
Einzelner Spulensatz für S/W-Fernsehkameras

Tripel für Farbfernsehkameras

KV 4780

3 x KV 4780

KV 4780

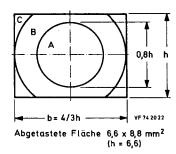

Technische Daten:

Temperaturbereich	-10.	+6	06	°c	
Horizontal-Ablenkspule					
Induktivität	1,17	mН	±	10	%
Widerstand	5,03	Ω	±	10	%
Strom	175	mA	±	10	%
Anschlüsse	rot,	bla	ıu		
Vertikal-Ablenkspule					

Zentrier-Spulen:

Widerstand	146 Ω \pm 10 $\%$
Strom	22 mA ± 10 %
magnetische Flußdichte	0,4 mT ± 10 %
Anschlüsse horizontal	orange, grau
vertikal	purpur, grau

Anschlußschema:


Geometrische Verzeichnung

Kissen-, Tonnen- und Trapezverzeichnung
$$\stackrel{\leq}{=} 1,0 \%$$
 der Bildhöhe Orthogonalitätsfehler $\stackrel{\leq}{=} 1,5 \%$ der Bildhöhe

Farbdeckung

Die Farbdeckungsfehler eines Tripels, bestehend aus 3 Ablenkspulensätzen KV 4780, sind nicht größer als:

in Zone	A	40	$\mathbf{n}\mathbf{s}$
in Zone	В	80	ns
in Zone	C	120	ns

Die Messung der Fehler erfolgt horizontal und vertikal nach Korrektur der Orthogonalität, wobei eine Röhre als Bezugsröhre dient.

Einstellung der elektrischen Daten der Röhre entsprechend den Angaben in Datenblatt XQ 3467.

Literaturhinweise:

Valvo Technische Informationen für die Industrie

77 03 30

Optische Gesichtspunkte für den Einsatz von Kameraröhren

77 12 20

PLUMBICON (R) - Kameraröhren mit ACT-Einrichtung

Valvo Berichte

Fernsehaufnahmeröhren für LLL TV-Systeme (Sonderdruck)

Valvo Brief

18. Nov. 1976 Kameraröhren für alle Anwendungsgebiete

18. April 1977 Trägheit bei Kameraröhren

10. April 1979 Neue 1"- und 2/3"-PLUMBICON $^{\textcircled{R}}$ - Kameraröhren

16. März 1981 PLUMBICON . - Kameraröhren mit verbesserten Eigenschaften

25. Sept. 1981 Bildverstärkerröhre XX 1500-Anwendungen in einer Restlicht-FS-Aufnahmeeinrichtung

Yalvo Sonderdruck aus Philips Technische Rundschau 80/81 Nr. 11

Ein neues Konzept für Fernsehkameraröhren

Typenverzeichnis Typenübersicht	
Formelzeichen Erläuterungen	
PLUMBICON®-Kameraröhren	
Zubehör	

Valvo Unternehmensbereich Bauelemente der Philips GmbH

Burchardstraße 19, Postfach 10 63 23, 2000 Hamburg 1 Telefon (0 40) 32 96-0, Telex 2 15 401-0 va d, Telefax (0 40) 32 96-213

Valvo Zweigbüros

Berlin/Hamburg

Burchardstraße 19 2000 Hamburg 1 Telefon (0 40) 32 96–245 . . . 248 Telex 2 15 401–65 va d Telefax (0 40) 32 96-249

Essen

Lazarettstraße 50 4300 Essen 1 Telefon (02 01) 23 60 01 Telex 8 571 136 valv d Telefax (02 01) 23 03 07

Frankfurt

Theodor-Heuss-Allee 106 6000 Frankfurt/M. 90 Telefon (0 69) 79 40 08–0 Telex 4 12 405 valvo d Telefax (0 69) 79 40 08-25

Freiburg

Tullastraße 72 7800 Freiburg Telefon (07 61) 50 80 91 Telex 7 721 627 vav d Telefax (07 61) 50 69 98

Hannover

lkarusallee 1 a 3000 Hannover 1 Telefon (05 11) 63 00 94 Telex 9 230 239 vav d

München

Drygalski-Allee 33 8000 München 71 Telefon (0 89) 7 80 07–0 Telex 5 213 015 valv d Telefax (0 89) 7 80 07-60

Nürnberg

Bessemerstraße 14 8500 Nürnberg 10 Telefon (09 11) 56 40 91 Telex 6 23 829 vav d Telefax (09 11) 51 44 09

Stuttgart

Albstadtweg 12 7000 Stuttgart 80 Telefon (07 11) 78 98-81 Telex 7 254 755 valv d Telefax (07 11) 78 98-401

Valvo Distributoren

Braunschweig setron Schiffer-Elektronik GmbH & Co. KG

Theodor-Heuss-Straße 4 B 3300 Braunschweig Telefon (05 31) 8 00 11 . . . 16 Telex 9 52 812 Telefax (05 31) 8 59 10

Frankfurt SPOERLE ELECTRONIC

Max-Planck-Straße 1-3 6072 Dreieich 1, bei Frankfurt Telefon (0 61 03) 3 04-0 Telex 4 17 972 Telefax (0 61 03) 3 04-344

Hamburg

Walter Kluxen Bauelemente für Elektronik Nordkanalstraße 52

2000 Hamburg 1 Telefon (0 40) 2 37 01-0 Telex 2 162 074 Telefax (0 40) 23 15 69

Stuttgart

Elecdis Ruggaber GmbH

Hertichstraße 41 7250 Leonberg Telefon (0 71 52) 6 02–0 Telex 7 24 192 Telefax (0 71 52) 6 02-137

München

Sasco GmbH

Hermann-Oberth-Straße 16 8011 Putzbrunn bei München Telefon (0 89) 46 11-0 Telex 5 29 504 Telefax (0 89) 46 11-270

Ultratronik GmbH

Gewerbestraße 4 8036 Herrsching Telefon (0 81 52) 37 09-0 Telex 5 26 459 Telefax (0 81 52) 51 83

Stand September 1988