TUNG-SOL

PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBE TYPE 6336B

TWIN POWER TRIODE FOR SERIES REGULATOR SERVICE

DESCRIPTION — The 6336B is a rugged, twin power triode particularly well suited for use as a pass tube in series regulated power supplies. Tubes of this design will meet the test requirements of MIL-E-1/1478.

The 6336B is capable of withstanding prolonged exposure to continuous vibration. This performance extra is achieved by using ceramic spacers, rather than mica, to hold the electrode in position. Also, gold plated strap frame grids are used for extra mechanical stiffness.

The 6336B will replace the 6336A in any application. Also, one 6336B will replace two or three 6080WB or 6AS7G tubes working in parallel.

ELECTRICAL DATA

Heater Voltage	6.3	$\pm 10\%$	Volts
Heater Current — E _r = 6.3 Volts	5.0		Amperes
Minimum Cathode Heating Time	30		Seconds
Transconductance-per Section	13,500		Umhos
Amplification Factor	2.7		
Interelectrode Capacities — per Section			
Grid to Cathode	16.7		pf
Grid to Plate	21.8		pf
Cathode to Plate	3.8		pf
Heater to Cathode	15.0		pf
Interelectrode Capacities — Between Sections			
Section 1 Plate to Section 2 Plate	0.6		pf
Section 1 Plate to Section 2 Plate	0.6		pf

MECHANICAL DATA

Mounting Position	Any
(If tube is to be mounted in a horizontal position it is recommended that it be mounted	
so that the base lug key be either directly up or directly down)	
Bulb	T 16 Nonex
BaseLarge wafer octa	l, glass bonded
mica, with metal sl	eeve, JEDEC type
B8-98	
Average Net Weight	3.5 ounces

RATINGS, ABSOLUTE VALUES

	Minimum	Maximum	
Plate Dissipation per Plate		30	Watts
Plate Voltage	0	400	Volts dc
Plate Current per Plate — Note 1		400	Milliamperes dc
Heater-Cathode Voltage	-300	+300	Volts dc
Grid Voltage	-300	0	Volts dc
Envelope Temperature		250	Degrees Centigrade
Altitude for Full Ratings — Note 2		10.000	Feet
Grid Circuit Resistance Values — Note 3			
For Fixed Bias, or Cathode and Fixed Bias Operation	500	200.000	Ohms
For Cathode Bias Operation	500	500,000	Ohms

Note 1. If tube voltage drop is to be swung more than 6 volts, this current cannot be realized. See Plate Characteristics Curve.

Note 2. If cooling is provided to keep bulb temperature within ratings, altitude rating can be extended to 60,000 feet.

Note 3. When sections are paralleled, minimum cathode resistance per cathode shall be 27 ohms or that resistance necessary to produce 10 percent of the grid bias voltage, whichever is greater.

BASING DIAGRAM BOTTOM VIEW 8BD

APPLICATION NOTES

The 6336B is widely used as a "passing" tube or series regulator tube in controlled power supplies because of its high transconductance at relatively low plate voltages. To provide the desired output current, many triode sections can be paralleled. If tube sections are to be paralleled however, the designer is strongly urged to use sufficient resistance in each cathode leg to equalize current division among the triode sections. Recommended values for various operating currents are shown on the plate characteristics curve. If the output current of the supply is not fixed, use the resistance indicated for the lowest current that approaches the maximum plate dissipation line. Cathode resistance is superior to anode resistance because it helps to provide increasing bias on the sections taking greater plate current. A cathode resistor too, need be only one quarter the value $\left(\frac{R}{u+1}\right)$ of a plate resistor, and therefore will dissipate only one quarter the power. In any case, the only losses incurred in using a resistor is the insertion loss of the resistor itself (about two watts) and the additional voltage (less than 10 volts) necessary from the unregulated supply. A cathode resistor adds a small additional loss by causing the passing tube to work with higher bias and hence with greater tube drop.

The regulator circuit shown in Figure 2 is preferable from the consideration of the safety of the passing tube both during warmup and in the event of trouble in the amplifier circuit or if the amplifier tube is removed from its socket. It has the additional advantage of providing a constant voltage for the amplifier circuit. However, if the regulated output voltage is low (below 250 volts), it will be necessary to provide additional negative voltage for the reference tube circuit. Also, if the regulated output voltage is to be variable, it may be necessary to follow Figure 1. If Figure 1 is used, a clamping diode rated at 300 volts piv should be employed to prevent the grid from swinging positive. The use of this diode is of extreme importance for without it, during warmup the amplifier tube draws little current, there is little IR drop across the resistor, and the grid of the passing tube is effectively tied to the plate. The grid then will attempt to draw excessive current from the passing tube's cathode and may seriously impair cathode life.

Passing tube operation conditions should be chosen to provide as low a tube drop as possible. A safety margin of at least 5 volts from the zero bias line should be allowed however, for variations of individual tubes. If the cathode resistors as suggested on the plate characteristic curve are used, a minimum bias of 7.5 volts will be provided. Sufficient bias excursion should be allowed for overcoming ripple. The amplifier circuit should be able to swing the passing tube grid far enough to counteract the effect of unbalance due to tube ageing.

A grid resistor should be used for each triode section. This should be high enough to prevent parasitic oscillation but not large enough to prevent loss of control due to a small amount of "gas" grid current. A value of grid resistance that meets both these conditions is 1,000 ohms. Heater voltage should be kept as close as possible to 6.3 volts as measured on the tube pins. When connecting many high drain tube heaters across a single transformer, bus bars feeding from "alternate ends" (Figure 3) should be used with a stranded pair feeding individual sockets.

TYPE 6336B

TYPE 6336B

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

Page 4 of 4

TUNG-SOL

PRODUCT BULLETI

INDUSTRIAL ELECTRON TUBE **TYPE 6528A JUNE 1965**

MEDIUM MU TWIN POWER TRIODE FOR SERIES REGULATOR SERVICE

DESCRIPTION The 6528A is a rugged twin power triode well suited for use as a pass tube in series regulated power supplies. Tubes of this design will meet all the requirements of MIL-E-1/1479.

The 6528A is capable of withstanding prolonged exposure to continuous vibration. This performance extra is achieved by using ceramic spacers, rather than mica, to hold electrodes in position. Also, gold plated strap frame grids are used for extra mechanical stiffness.

The 6528A will replace the 6528 in any application.

ELECTRICAL DATA

Heater Voltage	$6.3 \pm 10\%$ Volts	Inter Electrode Capacities per Triode Section
Heater Current ($E_r = 6.3$ volts)	5.0 Amperes	Grid to Cathode
Minimum Cathode Heating Time	30 Seconds	Grid to Plate
Transconductance (per section)37	,000 Micromhos	Cathode to Plate 2.9 uuf
Amplification Factor	9.0	Heater to Cathode
Plate Resistance	245 Ohms	Inter Electrode Capacities Between Triode
		Sections

Section 1 Plate to Section 2 Plate 0.6 uuf

Any

MECHANICAL DATA

Mounting Position If tube is to be mounted in a horizontal position it is recommended that it be mounted so that the base lug key be either directly up or directly down. Bulb

Juin	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	• •	•	•	٠	•	•	•	•	•	•	 	•	
Base					•																																								•	•		 		

T-16 Nonex Large wafer octal 8 pin with metal sleeve, JEDEC type B8-98

RATINGS, ABSOLUTE VALUES

Plate Dissipation per Plate Plate Current per Plate If tube voltage drop is to be swung more than 6 volts, this current cannot be realized. See Plate Characteristics Curve.	Minimum 	Maximum 30 300	Watts Milliamperes d. c.
Plate Voltage Heater-Cathode Voltage Grid Voltage Grid Current per Grid Heater Voltage Envelope Temperature Altitude for Full Ratings If cooling is provided to keep bulb temperature within ratings, altitude rating can be extended to 60,000 feet. Grid Circuit Resistance Values	0 300 300 5.7 	$+300 \\ +300 \\ 0 \\ 6.9 \\ 250 \\ 10,000$	Volts d. c. Volts d. c. Volts d. c. Milliamperes Volts Degrees Centigrade Feet
For Fixed Bias, or Cathode and Fixed Bias Operation For Cathode Bias Operation Resistance per grid leg when triode sections are paralleled Cathode Resistance: Minimum cathode resistance per cathode leg necessary to provide 10% of the grid bias	500 500 500 g shall be volatge, wh	50,000 500,000 10 ohms o ichever is g	Ohms Ohms Ohms r that resistance greater.

OUTLINE DRAWING

BASING DIAGRAM BOTTOM VIEW 8BD

APPLICATION NOTES

The 6528A is widely used as a "passing" tube or series regulator tube in controlled power supplies because of its high transconductance at relatively low plate voltages. To provide the desired output current, many triode sections can be paralleled. If tube sections are to be paralleled however, the designer is strongly urged to use sufficient resistance in each cathode leg to equalize current division among the triode sections. Recommended values for various operating currents are shown on the plate characteristics curve. If the output current of the supply is not fixed, use the resistance indicated for the lowest current that approaches the maximum plate dissipation line. Cathode resistance is superior to anode resistance because it helps to provide increasing bias on the sections taking greater plate current. A cathode resistor too, need be only one tenth the value $\left(-\frac{R}{u+1}\right)$ of a plate resistor, and therefore will dissipate only one tenth the power. In any case, the only losses incurred in using a resistor is the insertion loss of the resistor itself (less than one watt) and the additional voltage (less than 6 volts) necessary from the unregulated supply. A cathode resistor adds a small additional loss by causing the passing tube to work with higher bias and hence with greater tube drop.

The regulator circuit shown in Figure 2 is preferable from the consideration of the safety of the passing tube both during warmup and in the event of trouble in the amplifier circuit or if the amplifier tube is removed from its socket. It has the additional advantage of providing a constant voltage for the amplifier circuit. However, if the regulated output voltage is low, it may be necessary to provide additional negative voltage for the reference tube circuit. Also, if the regulated output voltage is to be variable, it may be necessary to follow Figure 1. If Figure 1 is used, a clamping diode rated at 300 volts piv should be employed to prevent the grid from swinging positive. The use of this diode is of extreme importance for without it there is little IR drop across the resistor during warmup of the amplifier tube and the grid of the passing tube is effectively tied to the plate. The grid then will attempt to draw excessive current from the passing tube's cathode and may seriously impair cathode life.

Passing tube operation conditions should be chosen to provide as low a tube drop as possible. A safety margin of at least 5 volts from the zero bias line should be allowed however, for variations of individual tubes. If the cathode resistors as suggested on the plate characteristic curve are used, a minimum bias of 5.0 volts will be provided. Sufficient bias excursion should be allowed for overcoming ripple. The amplifier circuit should be able to swing the passing tube grid far enough to counteract the effect of unbalance due to tube ageing.

A grid resistor should be used for each triode section. This should be high enough to prevent parasitic oscillation but not large enough to prevent loss of control due to a small amount of "gas" grid current. A value of grid resistance that meets both these conditions is 1,000 ohms. Heater voltage should be kept as close as possible to 6.3 volts as measured on the tube pins. When connecting many high drain tube heaters across a single transformer, bus bars feeding from "alternate ends" (Figure 3) should be used with a pair of stranded wires feeding individual sockets.

TYPE 6528A

AVERAGE PLATE CHARACTERISTICS FOR EACH TRIODE UNIT

Page 3 of 4

TRANSFER CHARACTERISTICS FOR EACH TRIODE SECTION

AVERAGE CHARACTERISTICS

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

• TUNG-SOL PRODUCT BULLETIN

INDUSTRIAL Electron Tubes Type 7403

JUNE 1965

PULSE BEAM POWER TUBE

DESCRIPTION — The 7403 is a rugged, reliable beam power tube designed for pulse service. It will deliver pulse power outputs in the order of 20 kw.

Construction features include a hard glass envelope, ceramic electrode spacers and a noncharring glass bonded mica base wafer.

MAXIMUM RATINGS

ABSOLUTE MAX. SYSTEM — SEE EIA STANDARD RS-239

DC Plate Voltage — Note 1	4000 Volts
Peak Plate Voltage including Transient — Note 2	5000 Volts
Grid 2 Voltage — Note 1	850 Volts
Negative DC Grid 1 Voltage	200 Volts
Negative Peak Grid 1 Voltage — Note 1	500 Volts
Positive Peak Grid 1 Voltage — Note 1	220 Volts
Plate Dissipation	40 Watts
Grid 2 Dissipation	3.5 Watts
Grid 1 Dissipation	0.5 Watt
D-C Cathode Current	150 Milliamperes
Peak Cathode Current— See Rating Chart	10 Amperes

Notes: 1. Series resistance must be inserted in the power supply sufficient to limit the short circuit current to less than 0.5 ampere.

2. With a screen potential not exceeding 400Vdc and when no instantaneous voltage due to transient is present (essentially resistive plate load) a maximum plate potential of 4500Vdc may be used.

HEATER CHARACTERISTICS AND RATINGS

ABSOLUTE MAX. SYSTEM - SEE EIA STANDARD RS-239

Heater Sections Parallel Connected:			
Average Characteristics	6.3 Volts	1.70	Amp
Limits of Applied Voltage		5.7 to 6.9	Volts
Heater — Cathode Voltage — Either Polarity		Max. 500	Volts
Cathode Heating Time		Min. 30	Sec.

OUTLINE DRAWING

TERMINAL DIAGRAM BOTTOM VIEW

INTERELECTRODE CAPACITANCES

	Min.	Max.
Grid to Plate	_	2.2 Picofarads
Input	13	21 Picofarads
Output	7.5	12.5 Picofarads

MECHANICAL DATA

Mounting Position	ł
Maximum Bulb Temperature	3
Maximum Altitude	8
Bulb	1
Base	(
Сар	v co
Maximum Weight	4

Any 300°C 80,000 Feet T-12 Hard Glass Glass bonded mica large wafer octal, 6 pin, with metal shell. See Outline page 8 4 ounces

Definitions: Duty factor (10,000 microsecond averaging time) is the ratio of "on" time in microseconds to 10,000 microseconds.

"On" Time is defined as the sum of the duration of all individual pulses which occur during any 10,000 microsecond interval.

il and

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

Page 8 of 8

TUNG-SOL

PRODUCT BULLETI

CLIPPER THYRATRON

DESCRIPTION - The 7455 is a zero bias, short ionization time hydrogen thyratron specially designed to pass high fault currents as an inverse clipper in line-type radar modulators. The tube, when triggered, terminates the pulse-forming network in its characteristic impedance thereby reducing the inverse voltage to zero during both normal and load fault conditions. It also reduces to a minimum the inverse spike energy that otherwise would have to be dissipated by the switch tube anode.

The low anode 'firing' voltage and ability to carry very large peak (fault) currents make a hydrogen clipper thyratron ideal for this application. The 7455 is capable of clipping at a switch-tube power level of 33 megawatts in a line-type modulator. A hydrogen reservoir is included to promote long life by providing a method of automatically replenishing hydrogen lost by 'cleanup'.

ELECTRICAL DATA

Heater Voltage	Minimum 4.75	Bogey 5.00	Maximum 5.2	i 5 Volts
Heater Current—Ef == 5.0 volts	15	20	25	Amperes
Cathode Heating Time	3	-		Minutes
Anode Voltage Drop			300	Volts
Altitude			10,000	Feet
Ambient Temperature	—55		+ 75	Degrees Centigrade

MECHANICAL DATA

Type of Cooling	Convection
Mounting Position	Base down or horizontal
Maximum Net Weight	2 ¹ / ₄ pounds
Mounting Data	Three 5/16 in. diameter holes spaced
	120° on 43/8 in. diameter
Chassis Hole	3 inches
Grid Connector	Tung-Sol/Chatham Part No. 2556-A
Shock—Maximum	500G acceleration with 1 millisecond duration

MAXIMUM RATINGS — ABSOLUTE VALUES

D C Anode Voltage, Inverse (Note 1) D C Anode Voltage, Critical (Note 2) Cathode Current (Note 3)	Min. 1,000	Max. 33	Kilovolts Volts
RMS—Continuous		8.5	Amperes
RMS—Fault—Averaging Time 3 seconds	Number of Control of C	16	Amperes
Peak—Continuous		800	Amperes
Peak—Fault		2,900	Amperes
Operating Frequency (Note 4)		2,500	Cycles-per-second
Grid Voltage—Peak Forward	600		Volts
Grid Voltage—Peak Inverse		3,000	Volts
Grid Trigger Current—Peak	6	15	Amperes
Trigger Pulse Width (Note 5)	0.5		Microsecond
Trigger Lead Time (Notes 6 & 7)	0.2		Microsecond

Notes:

- I. Inverse anode voltage in a clipper tube is defined as the peak voltage that can be impressed between anode and cathode with a polarity opposite to that producing current flow in the tube. Generally, it has the same magnitude as the maximum network voltage.
 2. Critical anode voltage in the clipper tube is defined as the minimum anode voltage at which anode conduction occurs. The actual rating allows sufficient safety factor to enable minimum delay of anode
- conduction. Cathode Current
 - a. RMS cathode current is defined as the maximum effective current flowing through the clipper tube under any condition of operation for a period not exceeding the average time. The interval over which the averaging time is applied must include the period in which the maximum rms fault current is encountered.
 b. Peak fault current is defined as the maximum value of instantaneous current flowing in a clipper tube when a fault occurs in the load circuit.
- when a fault accurs in the load circuit.
 c. In determining circuit parameters, care must be observed to insure that the nominal rms current (without load faulting) is of such a value as to prevent the rms current (with load faulting) from exceeding the rating during the specified average time.
 4. The maximum operating frequency does not necessarily represent the upper limit, but is the highest frequency at which tests have been conducted.
 5. The trigger pulse width should not exceed the load pulse width plus the trigger pulse lead time.
 6. The minimum trigger lead time is defined as the period between the time at which the leading edge of the unloaded grid pulse reaches 50 percent of its maximum value and the time at which the clipper tube anode becomes positive.
 7. The maximum trigger pulse lead time should not exceed 80 percent of the trigger pulse width.

INDUSTRIAL

ELECTRON

TYPE 7455

TUBE

JANUARY 1963

OUTLINE DRAWING

BOTTOM VIEW

APPLICATION NOTES

The typical line-type radar modulator comprises a switch tube, a load, a pulse-forming network, and usually a clipping device. The load is normally a magnetron, or klystron coupled to the modulator by a pulse transformer. Most often, the network is negatively matched, that is, the impedance of the load is smaller than the characteristic impedance of the network. The result of this mismatch is that a negative voltage remains on the network after the main discharge pulse, and the voltage is added to the supply voltage on the next charging cycle. When a load fault occurs, the mismatch is increased and the negative voltage rises placing a higher positive voltage on the pulse-forming network. Prolonged faults produce successively higher network voltages resulting in dangerously high voltages on the circuit components. The negative mismatch voltage also produces an inverse current pulse in the switch tube immediately after the main discharge pulse. As this current decays very rapidly, an inverse spike voltage appears across the tube. The resulting energy must be dissipated by the switch tube anode.

The main advantages gained by employing a clipper device in a modulator circuit include:

- a. protection of components from excess voltage produced during load faults,
- b. regulation of output pulse amplitude, and
- c. reduction of inverse spike energy that has to be dissipated by the switch tube.

A gas tube with its inherent low internal impedance and high peak and average current handling capacity is ideally suited for clipper applications as it is not practical to obtain optimum clipping with a vacuum device.

Two of the most popular clipping methods are illustrated in figures 1 and 2. The configuration of figure 1 is preferred. In it the clipper tube is connected across the far end of the pulse-forming network in series with a resistive load the value of which approximates the network impedance. With the clipper in this location, the inverse spike can be almost completely eliminated and simple triggering means can be employed. In the front-of-line clipper, illustrated in figure 2, if the load impedance is less than the network impedance, as is usually the case, a resistor must be inserted in series with the clipper tube. The value of this resistance should be chosen to approximate the network impedance. The relation between switch-tube currents and clipper-tube currents in a line modulator are shown in graphic form in figures 3, 4 and 5. The ratio of switch tube to clipper tube peak current as a function of R_L/Z_0 is shown in figure 3. During normal operation, the clipper tube peak current is usually no greater than one-half the switch tube peak current. However, under a fault condition, the clipper tube peak current is 0.7 times the switch tube fault current, and may be four times the normal clipper tube peak current depending on the ratio R_L/Z_0 . The ratio of the rms clipper tube to switch tube currents as a function of R_L/Z_0 with the ratio of rise time to pulse width (f) as a parammeter, is shown in figure 4. During a load fault, R_L becomes zero and the rms clipper current is just one-half the rms switch tube fault current. However, under certain conditions the rms clipper current may be as much as four times the steady-state value. A similar graph, figure 5, presents the relationship between the average currents in the switch tube and the clipper tube.

While a thyratron clipper requires an additional grid connection not needed for a diode clipper, the thyratron can be triggered at the optimum time demanded by the circuit. This fact, plus the inherent ability of a grided tube to hold off high inverse voltage, makes the thyratron a trouble-free clipping device.

The clipper tube may be triggered in a number of ways. It has been determined that the most effective clipping occurs when the clipper tube grid is triggered at least several hundred millimicroseconds before the initial voltage wave reaches the far end of the line. The simplest triggering method consists of a one-turn primary pulse transformer and is illustrated in figure 6. In this circuit, a trigger pulse of the proper lead time, polarity and amplitude is obtained directly from the pulse-forming network. Thus triggering is accomplished in a simple manner without loading the pulse-forming line. The methods shown in figures 7 and 8 will also fill the triggering time requirement. However, if the divider impedances are too low, the output pulse shape will be affected. The trigger circuit of figure 8 can also be employed in "tailbiting" and voltage clamping service.

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

Tung-Sol/Chatham CROWBAR Thyratrons PROTECT HIGH-POWER CIRCUITS AGAINST DESTRUCTIVE ARCS

Any one of a host of causes can trigger internal arcs in highpower tubes with little or no warning . . . even if the tubes are well designed, operate in well-engineered circuits, and have conservative demands placed upon them. Cosmic rays, linevoltage transients, parasitic oscillations, spurious primary and secondary electrons and material whiskers are just a few of the potential sources of these highly destructive arcs.

But by engineering Tung-Sol/Chatham high reliability crowbar hydrogen thyratrons into your design, you can safeguard against costly arc-generated breakdowns. By short-circuiting destructive currents, these zero bias "arc-busters" extinguish the arcs before circuit elements can be damaged. Instantaneous response and the ability to carry extremely large currents make these rugged thyratrons ideally suited for this purpose. Moreover, they are able to conduct these heavy surge currents even after having been idle for long periods. Each tube contains a hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various operating conditions. Write for full technical details. Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK193

Technical assistance is available through the following sales offices: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.; Philadelphia, Pa.; Seattle, Wash. Canada: Toronto, Ont.

TIME-SAVING GUIDE FOR... SPECIFYING DEFLECTION YOKES

Helps speed your project. Eliminates confusion in choosing the right yoke. Engineers have saved countless hours, many dollars and numerous headaches by using this simple Guide Sheet For Specifying Deflection Yokes. Offered as a public service to engineers by SYNTRONIC INSTRU-MENTS, INC., YOKE SPECIAL-ISTS, the only firm devoted primarily to deflection yoke manufacture; therefore preeminently qualified to help you specify the correct yoke for your application. Complete line for every military and special purpose-in production quantities or custom designed to your specific requirement.

Phone our nearest rep. today for your Time-Saving Guide Sheet.

New York Area: Jules J. Bressler Co. Phone: N.Y. OXford 5-0255; N.J. UNion 4-9577

Philadelphia Area: Massey Associates Phone: MOhawk 4-4200

Washington-Baltimore Area: Massey Associates Phone: GRanite 4-2071 Indianapolis: Joe Murphy Phone: VIctor 6-0359 Los Angeles: Ash M. Wood Co. Phone: CUmberland 3-1201 No obligation. We are glad to help you.

(Continued from page 60A)

work. Under his supervision rapid advances were achieved in both research and engineering which led to large scale production of advanced radar systems and microwave devices of all types.

The Sperry scientist received the B.A. degree in 1932 and the M.A. in physics and electrical engineering in 1933 at the University of Missouri, Columbia. At Harvard he earned the M.S. degree in 1935 and a Doctor of Science degree in 1940, both in communications engineering.

Dr. Shepherd holds 15 radar and electronic patents. He holds membership in Tau Beta Pi, Phi Beta Kappa, Eta Kappa Nu, Sigma Xi, and American Institute of Electrical Engineers.

Dr. Sergei A. Schelkunoff (A'40–F'44), has been appointed professor of Electrical Engineering at Columbia University.

The appointment has been announced by Professor Ralph J. Schwarz, chairman of the Department of Electrical Engineering of the Columbia School of Engineering, who said that Dr. Schelkunoff will assume his duties at the University September 15. He has been an adjunct professor of Electrical Engineering at Columbia since 1958.

Dr. Schelkunoff was born in Russia, January 27, 1897. He received the Bachelor's degree from State College of Washington, Pullman, Wash., where he was awarded the Master's degree in mathematics in 1923. Columbia awarded him the Ph.D. degree in mathematics in 1928. He served in the engineering department of Western Electric Company in 1923–25, and in 1925–26 was a member of the technical staff of Bell Telephone Laboratories, Inc.

In 1926–27 he was an instructor in mathematics at State College, and served as an assistant professor of mathematics there from 1927 to 1929.

He returned to Bell Telephone Laboratories in 1929 as a member of the technical staff and became assistant director of mathematical research February 1, 1956. Since September 1, 1958, he has been assistant vice president of Bell Laboratories, at Murray Hill, N. J. He is the author of several scientific books and numerous scientific articles and papers.

Dr. Schelkunoff received the Liebmann Prize of the IRE in 1942 for mathematical contributions to the electromagnetic theory. In 1949 he was awarded the Ballantine Medal of the Franklin Institute for "outstanding research in communication and reconnaissance."

Dr. Eric A. Walker (M'47), president of the Pennsylvania State University, University Park, is the new president of the American Society for Engineering Education. He will serve for the year beginning in July, 1960.

(Continued on page 64A)

DIVISION OF

DYNAMICS CORPORATION OF AMERICA CARLISLE, PENNSYLVANIA

F/160

TUNG-SOL INDUSTRIAL ELECTRON TUBES

HYDROGEN DIODE

DESCRIPTION — The 7789 is an indirectly heated, hydrogen filled, half-wave diode designed for use in high-voltage rectifier circuits. The 7789 is a rugged diode that can handle higher voltage than comparable xenon-filled tubes, and is more efficient than vacuum rectifiers. An internally-connected hydrogen generator prevents gas clean-up.

Contrasted with a solid state rectifier, the 7789 can withstand high current and inverse voltage surges. This diode also has the advantage of being temperature free and has a wide range of mounting positions as compared with mercury-vapor tubes. The 7789 is capable of delivering 0.4 ampere average at 15 kilovolts peak inverse voltage.

ELECTRICAL DATA

	Min	Bogey	Max	
Heater Voltage	4.75	5.00	5.25	Volts
Heater Current — $E_f = 5.0$ Volts	7.7	8.5	9.3	Amperes
Cathode Heating Time	3	_		Minutes
Anode Voltage Drop	30		50	Volts
Initial Firing Voltage			70	Volts
Recurrent Firing Voltage	30		50	Volts

MECHANICAL DATA

Convection
Horizontal or Vertical (Base Down)
12 Ounces
See Outline Drawing
JEDEC A4-81
See Outline Drawing

RATINGS, ABSOLUTE VALUES

	Minimum	Maximum	
Peak Inverse Anode Voltage	-	15,000	Volts
Peak	—	1.6	Amperes
Average	_	0.4	Ampere
Surge — Maximum Duration 0.1 Second	_	30	Amperes
Averaging Time	_	15	Seconds
Ambient Temperature	- 55	+75	Degrees Centigrade

BASING DIAGRAM BOTTOM VIEW

K RES

RES

Service Services	19 1	
11/1	7789	
	TUNG-SOL	
THE		-

MAXIMUM RATING CHART

			NO.	A-C SECONDARY	D-C OUTPUT — APPROX		RIPPLE	
FIG.	CIRCUIT	TRANSFORMER	TUBES	VULTAGE Erms VOLTS	Epc VOLTS	IDC AMPS	VOLTS RMS	FREQ
1	Half-wave 1-phase	1-phase	1	10,500	4,800	0.4	5,250	f
2	Full-wave 1-phase	1-phase C-T	2	5,250	4,800	0.8	2,250	2f
3	Bridge circuit 1-phase	1-phase	4	10,500	9,500	0.8	4,500	2f
4	Half-wave 3-phase	Delta-Wye	3	6,15 <mark>0</mark>	7,200	1.2	1,300	3f
5	Full-wave 3-phase	Delta-Wye	6	6,150	14,300	1.2	600	6f
6	Full-wave 3-phase	Delta-Delta	6	10,500	14,300	1.2	600	6f
7	Half-wave 6-phase (3-phase supply)	Delta-Star	6	5,250	7,200	2.4	290	6f

For figure references see STANDARD RECTIFIER CIRCUITS AND RATINGS sheet.

The 7789 should be protected from transient voltages in excess of the maximum rating by spark gaps installed either directly across the tube or across each plate transformer secondary leg.

TUNG-SOL INDUSTRIAL ELECTRON TUBES

HYDROGEN DIODE

DESCRIPTION — The 7790 is an indirectly heated, hydrogen filled, half-wave diode designed for use in high-voltage rectifier circuits. The 7790 is a rugged diode that can handle higher voltage than comparable xenon-filled tubes, and is more efficient than vacuum rectifiers. An internally-connected hydrogen generator prevents gas clean-up.

Contrasted with a solid state rectifier, the 7790 can withstand high current and inverse voltage surges. This diode also has the advantage of being temperature free and has a wide range of mounting positions as compared with mercury-vapor tubes. The 7790 is capable of delivering 1.0 ampere average at 20 kilovolts peak inverse voltage.

In many cases the 7790 will function as a low impedance, direct replacement for the 576A vacuum rectifier tube.

ELECTRICAL DATA

	Min	Bogey	Max	
Heater Voltage	4.75	5.00	5.25	Volts
Heater Current – $E_r = 5.0$ Volts	9.5	11.0	12.5	Amperes
Cathode Heating Time	3	-	-	Minutes
Anode Voltage Drop	30	_	50	Volts
Initial Firing Voltage			70	Volts
Recurrent Firing Voltage	30		50	Volts

MECHANICAL DATA

Type of Cooling	See Rating Graph. Convection or Forced Air — 30 cfm directed at top of radiator
Mounting Position	Horizontal or Vertical (Base Down)
Average Net Weight	1 Pound 2 Ounces
Dimensions	See Outline Drawing
Base	JEDEC A4-107
Anode Connection	See Outline Drawing
NOTE: Always make POSITIVE co	nnection to PIN 2.

RATINGS, ABSOLUTE VALUES

	Minimum	Maximum	
Peak Inverse Anode Voltage	_	20,000	Volts
Cathode Current			
Peak		4	Amperes
Average	—	1	Ampere
Surge — Maximum Duration 0.1 Second		30	Amperes
Averaging Time	_	15	Seconds
Ambient Temperature	-55	+75	Degrees Centigrade

TYPE 7790

OUTLINE DRAWING

BASIC DIAGRAM BOTTOM VIEW

7790 TUNG-SOL

MAXIMUM RATING CHART FOR INFINITE INDUCTANCE CHOKE INPUT FILTER

FIG		TRANSCODIER	NO.	*	A-C SECONDARY	D-C OUTP	UT—APPROX	RIPPL	E
FIG.	CIRCUIT	TRANSFORMER	UF *		KILOVOLTS	EDC KILOVOLTS	I⊳c AMPS	KILOVOLTS RMS	FREQ
1	Half-wave 1-phase	1-phase	1	A B	11.0 14.0	5.0 6.4	1.0 1.0	5.50 7.00	f
2	Full-wave 1-phase	1-phase C-T	2	A B	5.5 7.0	5.5 6.4	2.0 2.0	2.30 3.00	2f
3	Bridge circuit 1-phase	1-phase	4	A B	11.3 14.0	10.0 12.8	2.0 2.0	4.70 6.00	2f
4	Half-wave 3-phase	Delta-Wye	3	A B	6.5 8.0	7.5 9.5	3.0 3.0	1.50 1.70	3f
5	Full-wave 3-phase	Delta-Wye	6	A B	6.5 8.0	15.0 19.0	3.0 3.0	0.60 0.80	6f
6	Full-wave 3-phase	Delta-Delta	6	A B	11.0 14.0	15.0 19.0	3.0 3.0	0.60 0.76	6f

* See RATING GRAPH

A: Convection cooling at maximum current rating.

B: Forced air cooling at maximum voltage and current rating.

For figure references see STANDARD RECTIFIER CIRCUITS AND RATINGS sheet.

The 7790 should be protected from transient voltages in excess of the maximum rating by spark gaps installed either directly across the tute or across each plate transformer secondary leg.

RATING GRAPH

INDUSTRIAL TUNG-SOL ELECTRON TUBES

HYDROGEN DIODE

DESCRIPTION—The 7791 is an indirectly heated, hydrogen filled, half-wave diode designed for use in high-voltage rectifier circuits. The 7791 is a rugged diode that can handle higher voltage than comparable xenon-filled tubes, and is more efficient than vacuum rectifiers. An internally-connected hydrogen generator prevents gas clean-up.

Contrasted with a solid state rectifier, the 7791 can withstand high current and inverse voltage surges. This diode also has the advantage of being temperature free and has a wide range of mounting positions as compared with mercury-vapor tubes. The 7791 is capable of delivering 2.0 amperes average and withstanding 25 kilovolts peak inverse voltage as shown on rating graph.

The 7791 employs flange mounting for minimum overall height consistent with good electrical connections and ease of installation.

ELECTRICAL DATA

	Min	Bogey	Max	
Heater Voltage	4.75	5.0	5.25	Volts
Heater Current — $E_f = 5.0$ Volts	13	15	17	Amperes
Cathode Heating Time	3			Minutes
Anode Voltage Drop	30		60	Volts
Initial Firing Voltage			100	Volts
Recurrent Firing Voltage	30		75	Volts

MECHANICAL DATA

Type of Cooling	See Rating Graph. Convection or Forced Air — 50 cfm directed at top of radiator			
Mounting Position	Horizontal or Vertical (Base Down)			
Average Net Weight	1 Pound 13 Ounces			
Dimensions	See Outline Drawing			
Mounting Data	See Mounting Data Drawing			
Anode Connection	See Outline Drawing			
Heater Connection	$7 \pm \frac{1}{2}$ -inch long lead with lug for $\frac{1}{4}$ -inch diameter screw			
NOTE: Always make POSITIVE connection to BASE PLATE.				

RATINGS, ABSOLUTE VALUES

	Minimum	Maximum	
Peak Inverse Anode Voltage		25,000	Volts
Cathode Current			
Peak		8	Amperes
Average		2	Amperes
Surge — Maximum Duration 0.1 Second		60	Amperes
Averaging Time		15	Seconds
Ambient Temperature	- 55	+75	Degrees Centigrade

Symbol Dimension 0.380" MIN 0.260" - 0.313" 0.260 - 0.3 0.605" MAX 0.04" MIN 0.305" MAX

B

C D E

OUTLINE DRAWING

MAXIMUM RATING CHART FOR INFINITE INDUCTANCE CHOKE INPUT FILTER

FIC	CIPCIIIT			A-C SECONDARY	D-C OUTPUT — APPROX		RIPPLE		
FIG.	CIRCUIT	TRANSFORMER	TUBES		Kilovolts	Epc Kilovolts	IDC AMPS	KILOVOLTS RMS	FREQ
1	Half-wave 1-phase	1-phase	1	A B C D	7.10 14.20 14.20 17.50	3.20 4.80 4.80 8.00	1.75 1.00 2.00 1.00	3.50 5.25 5.25 8.75	f
2	Full-wave 1-phase	1-phase C-T	2	A B C D	3.55 7.10 7.10 8.80	3.20 4.80 4.80 8.00	3.50 2.00 4.00 2.00	1.50 2.25 2.25 3.75	2f
3	Bridge circuit 1-phase	1-phase	4	A B C D	7.10 14.20 14.20 17.50	6.40 9.60 9.60 16.00	3.50 2.00 4.00 2.00	3.00 4.50 4.50 7.50	2f
4	Half-wave 3-phase	Delta-Wye	3	A B C D	4.10 8.20 8.20 10.00	4.80 7.20 7.20 12.00	5.25 3.00 6.00 3.00	0.85 1.30 1.30 2.30	3f
5	Full-wave 3-phase	Delta-Wye	6	A B C D	4.10 8.20 8.20 10.00	9.50 14.25 14.25 23.75	5.25 3.00 6.00 3.00	0.40 0.60 0.60 1.15	6f
6	Full-wave 3-phase	Delta-Delta	6	A B C D	7.10 14.20 14.20 17.50	9.50 14.25 14.25 23.75	5.25 3.00 6.00 3.00	0.40 0.60 0.60 1.15	6f

*See RATING GRAPH

A: Convection cooled at maximum current rating. B: Convection cooled at maximum voltage rating.

C: Forced air cooled at maximum current rating.

D: Forced air cooled at maximum voltage rating.

For figure references see STANDARD RECTIFIER CIRCUITS AND RATINGS sheet.

The 7791 should be protected from transient voltages in excess of the maximum rating by spark gaps installed either directly across the tube or across each plate transformer secondary leg.

RATING GRAPH

CHASSIS CUTOUT

NOTES

- 1. 2.625 inch minimum diameter mounting hole required.
- 2. Three mounting slots for 0.50 inch maximum head $\frac{1}{4}$ -inch screws spaced 120 degrees on 3.750 \pm 0.010 inch diameter circle.

TUNG-SOL PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBE TYPE 7792 JUNE 1962

HYDROGEN DIODE

DESCRIPTION — The 7792 is an indirectly heated, hydrogen filled, half-wave diode designed for use in high-voltage rectifier circuits. The 7792 is a rugged diode that can handle higher voltage than comparable xenon-filled tubes, and is more efficient than vacuum rectifiers. An internally-connected hydrogen generator prevents gas clean-up.

Contrasted with a solid state rectifier, the 7792 can withstand high current and inverse voltage surges. This diode also has the advantage of being temperature free and has a wide range of mounting positions as compared with mercury-vapor tubes. The 7792 is capable of delivering 2.0 amperes average at 25 kilovolts peak inverse voltage.

In many cases, the 7792 will function as a low impedance, direct plug-in replacement for the X80 vacuum rectifier tube.

ELECTRICAL DATA

	Min	Bogey	Max	
Heater Voltage	11.0	11.5	12.0	Volts
Heater Current — $E_f = 11.5$ Volts	6.9	8.5	10.5	Amperes
Cathode Heating Time	3			Minutes
Anode Voltage Drop	30		60	Volts
Initial Firing Voltage			100	Volts
Recurrent Firing Voltage	30		75	Volts

MECHANICAL DATA

Type of Cooling	See Rating Graph. Convection or Forced Air — 50 cfm directed at top of radiator
Mounting Position	Horizontal or Vertical (Base Down)
Average Net Weight	1 Pound 14 Ounces
Dimensions	See Outline Drawing
Base	Super Jumbo, 4-pin With Bayonet, JEDEC A4-106
Anode Connection	Cap, See Outline Drawing

RATINGS, ABSOLUTE VALUES

	Minimum	Maximum	
Peak Inverse Anode Voltage		25,000	Volts
Cathode Current Peak		8	Amperes
Average		2	Amperes
Surge — Maximum Duration 0.1 Second		60	Amperes
Averaging Time		15	Seconds
Ambient Temperature	- 55	+75	Degrees Centigrade

CAUTION — The Cathode connection should be made to Pin 2 in order not to damage tube.

(SEE CAUTION NOTE) BOTTOM VIEW

510		TRANSCORMER	NO.	NO.	A-C SECONDARY	D-C OUTPU	T — APPROX	RIPPLE	
FIG.	CIRCUIT	TRANSFORMER	TUBES		ERMS Kilovolts	E _{DC} Kilovolts	I⊳⊂ AMPS	KILOVOLTS RMS	FREQ
1	Half-wave 1-phase	1-phase	1	A B C	10.5 17.5 12.5	4.75 8.0 5.75	1.5 1.0 2.0	5.25 8.8 6.25	f
2	Full-wave 1-phase	1-phase C-T	2	A B C	5.25 8.8 6.25	4.75 8.0 5.75	3.0 2.0 4.0	2.25 3.75 2.8	2f
3	Bridge circuit 1-phase	1-phase	4	A B C	10.5 17.5 12.5	9.5 15.8 11.5	3.0 2.0 4.0	4.5 7.5 5.6	2f
4	Half-wave 3-phase	Delta-Wye	3	A B C	6.15 10.0 7.35	7.2 12.0 8.6	4.5 3.0 6.0	1.3 2.2 1.55	3f
5	Full-wave 3-phase	Delta-Wye	6	A B C	6.15 10.0 7.35	14.3 23.9 17.2	4.5 3.0 6.0	0.6 1.0 0.72	6f
6	Full-wave 3-phase	Delta-Delta	6	A B C	10.5 17.5 12.5	14.3 23.9 17.2	4.5 3.0 6.0	0.6 1.0 0.72	6f
7	Half-wave 6-phase (3-phase supply)	Delta-Star	6	A B C	5.25 8.8 6.25	7.2 12.0 8.6	9.0 6.0 12.0	0.29 0.48 0.35	6f

MAXIMUM RATING CHART

*See RATING GRAPH

A: Convection cooled, at maximum tube ratings

B: Forced air cooled at maximum voltage ratings

C: Forced air cooled at maximum current ratings

For figure references see STANDARD RECTIFIER CIRCUITS AND RATINGS sheet. The 7792 should be protected from transient voltages in excess of the maximum rating by spark gaps installed either directly across the tube or across each plate transformer secondary leg.

RATING GRAPH

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

OBJECTIVE DATA

NG-SOL ELECTRON TUBE DATA

7793

HYDROGEN DIODE

The 7793 is an indirectly heated, hydrogen filled, half-wave diode designed for use in high-voltage rectifier, clipper, backswing diode and charging diode applications. The 7793 is a rugged diode that can handle higher voltage than comparable xenon-filled tubes, and is more efficient than vacuum rectifiers. An externally connected reservoir promotes stable operation and long life by replentishing hydrogen lost by cleanup.

Contrasted with a solid state rectifier, the 7793 can withstand high current and inverse voltage surges. This diode has the advantage of being temperature free and has a wide range of mounting positions as compared with mercury vapor tubes.

ELECTRICAL DATA

	Min	Bogey	Max	
Heater Voltage Heater Current - Ef=5.0 Volts	4.75 18	5.0	5.25 25	Volts Amperes
Reservoir Voltage	4.75	-	5.25	Volts
Reservoir Current - Ef=5.0 Volts	3	-	5	Amperes
Cathode and Reservoir Heating Time	3	-	-	Minutes
Anode Voltage Drop		-	70	Volts
Initial Firing Voltage	-	-	100	Volts
Recurrent Firing Voltage		-	90	Volts

MECHANICAL DATA

Type of Cooling Mounting Position Average Net Weight Dimensions, Mounting and Terminations Convection or forced air Horizontal or vertical, base down 3 pounds

See drawings

Issue 1 8/16/62

Page 1 of 3

TUNG-SOL ELECTRIC INC. ONE SUMMER AVE. NEWARK 4, N. J.

RATINGS - ABSOLUTE VALUES RECTIFIER SERVICE

		Min	Max	
Peak Inverse Anode Voltage		•	25,000	Volts
Peak			16	Amperes
Average Fault - Maximum Duration 0.1 Sec	ond		4	Amperes
Ambient Temperature	Olla	-55	*90	Degrees
				Centigrade

NOTE: Clipper, backswing and charging dicde ratings have not as yet been established.

Page 2 of 3

7793 DIMENSION DRAWING

Page 3 of 3

TUNG-SOL PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBE TYPE 8149 FEBRUARY, 1963

BEAM POWER VHF PENTODE

DESCRIPTION—The 8149 is a beam power amplifier pentode in the singleended T-12 compactron design. It is intended for use as an RF power amplifier and oscillator at frequencies up to 175 megacycles, with a maximum plate dissipation rating of 35 watts under ICAS conditions. It features a center-tapped heater so it may be operated from either a 3-cell or a 6-cell storage battery system.

A similar tube in a double-ended design is registered as type 8150.

MECHANICAL DATA

Cathode	Coated Unipo	tential
Outline	JEDEC 12-57	
Maximum Diameter	1.563	Inches
Maximum Seated Height	2.750	Inches
Maximum Overall Length		Inches
Bulb	T-12	Glass
Base — Button 12 Pin	JED E12-74	
Pin Connections	Basing Diagram JEDEC 12DT	
Pin 1 — Heater end B	Pin 8 — Grid 2	
Pin 2 — Cathode, Grid 3, Internal Shield	Pin 9 — Cathode, Grid 3, Internal S	Shield
Pin 3 — Cathode, Grid 3, Internal Shield	Pin 10 — Grid 1	
Pin 4 — Grid 2	Pin 11 — Heater Center Tap	
Pin 5, 6, and 7 — Plate, Use All 3 Pins	Pin 12 — Heater End A	
Mounting Position		Any

CIRCLE OF PIN CENTERS Ø MINIMUM DIAMETER DOES NOT APPLY IN THE AREA OF THE SEAL.

OUTLINE DRAWING

BASING DIAGRAM BOTTOM VIEW

ELECTRICAL DATA

Heater Characteristics and Ratings — Absolute Maximum System — See EIA Standard RS-239			
Supply Connected to PinsAverage Values — VoltageAverage Values — CurrentLimits of Applied Heater VoltageMaximum Heater-Cathode Voltage Either Polarity	1 and 12 13.0 0.60 11.0-15.0	11 and 1 - 6.5 1.20 5.5-7.5 135	+ 12 Volts Amps Volts Volts
Direct Interelectrode Capacitances — without external shield			
Grid 1 to Plate: g1 to p Input: g1 to (h + k + g2 + g3 + i.s) Output: p to (h + k + g2 + g3 + i.s)		0.35 13.0 6.0	pf pf pf
Average Static Characteristics			
Plate Voltage Grid 2 Voltage Plate Current Transconductance Amplification Factor, Triode Connected		200 200 100 7500 4.5	Volts Volts mA μmhos
Maximum Ratings — Absolute Maximum System — See EIA Standard RS-239 ICAS — Intermitten RF Power Amplifier and Oscillator — Class C Telegraphy RF Power Amplifier — Class C FM Telephony	t Commercial ar	nd Amateur	Service
For Frequencies up to Plate Voltage-DC Grid 2 Voltage	60 750 250	175 450 250	Mc/s Volts Volts
Grid 1 Voltage-DC	150 220 35	150 220 35	Volts mA Watts
Grid 2 Dissipation Bulb Temperature	3.3 240	3.3 240	Watts °C
Turied Operation			
Plate Voltage		380 380 10k - 78 27k	Volts Volts Ohms Volts Ohms
Additional Fixed Bias Peak R.F. Grid 1 Voltage Plate Current Grid 2 Current	•••••	-24 120 180 12	Volts Volts mA mA
Grid 1 Current Driving Power — Approx. Power Output		2.0 2 40	mA Watts Watts

RATING CHART

CHARACTERISTIC CURVES

CHARACTERISTIC CURVES

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY

Page 4 of 4

TUNG-SOL PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBE TYPE 8150 FEBRUARY, 1963

BEAM POWER VHF PENTODE

DESCRIPTION—The 8150 is a beam power amplifier pentode in the doubleended T-12 compactron design. It is intended for use as an RF power amplifier and oscillator at frequencies up to 175 megacycles, with a maximum plate dissipation rating of 35 watts under ICAS conditions. It features a center-tapped heater so it may be operated from either a 3-cell or a 6-cell storage battery system.

A similar tube in a single-ended design is registered as type 8149.

1.563" MAX 1.437" MIN Ø CAP C1-1 3.125" MAX. T 12 MAX. T 12 MAX. T 12 MAX. T 12 S.000" 12 — PIN BUTTON .750"

CIRCLE OF PIN CENTERS Ø MINIMUM DIAMETER DOES NOT APPLY IN THE AREA OF THE SEAL.

OUTLINE DRAWING

BASING DIAGRAM BOTTOM VIEW

MECHANICAL DATA

Cathode	Coated Unipotential
Outline	JEDEC 12-86
Maximum Diameter	1.563 Inches
Maximum Seated Height	3.000 Inches
Maximum Overall Length	3.375 Inches
Bulb	T-12 Glass
Base — Button 12 Pin	JEDEC E12-74
Cap — Small	JEDEC C 1-1
Pin Connections	Basing Diagram JEDEC 12DU
Pin 1 — Heater End B	Pin 7 — No Connection
Pin 2 — Cathode, Grid 3, Internal Shield	Pin 8 — Grid 2
Pin 3 — Internal Connection, Do Not Use	Pin 9 — Cathode, grid 3, Internal Shield
Pin 4 — Cathode, Grid 3, Internal Shield	Pin 10 — Grid 1
Pin 5 — Grid 2	Pin 11 — Heater Center Tap
Pin 6 — Cathode, Grid 3, Internal Shield	Pin 12 — Heater End A
	Top Cap — Plate
Mounting Position	Any

ELECTRICAL DATA

Heater Characteristics and Ratings — Absolute Maximum System — See EIA Standard RS-239			
Supply Connected to Pins	1 and 12	11 and 1 +	- 12
Average Values — Voltage	13.0	6.5	Volts
Average Values — Current	0.60	1.20	Amps
Limits of Applied Heater Voltage	11.0-15.0	5.5-7.5	Volts
Maximum Heater-Cathode Voltage Either Polarity		135	Volts
Direct Interelectrode Capacitances — Without External Shield			
Grid 1 to Plate: g1 to p		0.2	pf
Input: g1 to (h + k + g2 + g3 + i.s)		13.0	pf
Output: p to (h + k + g2 + g3 + i.s) \dots		6.5	pf
Average Static Characteristics			
Plate Voltage		200	Volts
Grid 2 Voltage		200	Volts
Plate Current		100	mA
Transconductance		7500	μ mhos
Amplification Factor, Triode Connected		4.5	
Maximum Ratings — Absolute Maximum System — See EIA Standard RS-239 ICAS — Intermittent	Commercial an	d Amateur	Service
RF Power Amplifier and Oscillator — Class C Telegraphy			
RF Power Amplitter — Class C F Wi Telephony			
For Frequencies Up to	60	175	Mc/s
Plate Voltage-DC	750	450	Volts
Grid 2 Voltage	250	250	Volts
Grid .1 Voltage-DC	-150	-150	Volts
Cathode Current-DC	220	220	mA
Plate Dissipation	35	35	Watts
Grid 2 Dissipation	3.3	3.3	Watts
Bulb Temperature	240	240	°C
For Voltage vs Frequency Rating Chart See Page 3.			
Typical Operation — Class C Amplifier at 175 Mc/s			
Plate Voltage		380	Volts
Grid 2 Supply Voltage		380	Volts
Grid 2 Dropping Resistor		10k	Ohms
Grid 1 Voltage		-78	Volts
from Grid 1 Resistor		27k	Ohms
Additional Fixed Bias		-24	Volts
Peak R.F. Grid 1 Voltage		120	Volts
Plate Current		180	mA
Grid 2 Current		12	mA
Grid 1 Current		2.0	mA
Driving Power — Approx.		2	Watts
Power Output		40	Watts

RATING CHART

CHARACTERISTIC CURVES

CHARACTERISTIC CURVES

TUNG-SOL ELECTRIC INC., ONE SUMMER AVENUE, NEWARK 4, NEW JERSEY