
PHILIPS 
APPLICATION 

BOOK 

PHILIPS ELECTRONIC COMPONENTS 
AND MATERIALS DIVISION 

positive 
C 

clock pulses 

INTRODUCTION TO 
DIGITAL TECHNIQUES 

l 



1 



INTRODUCTION TO DIGITAL TECHNIQUES 

The contents of this booklet are extracted from Part VIII of the 
Electronics Trainers Manual produced by the Educational Products 
and Systems Department, in close co-operation with R. H. GR1GG, 
Assoc. I.E.R.E. Royal Military College of Science, Shrivenham, England. 





CONTENTS 

1. NUMBER SYSTEMS 
2. BOOLEAN ALGEBRA 

3. BASIC LOGIC CIRCUITS 
4. LOGIC DESIGN 

APPENDIX A. REFERENCES 
B. GLOSSARY 

3 





Introduction 

For centuries mankind has been interested in calculations, and nat-
urally over the years mechanical aids have been invented and developed. 
One of the earliest calculating devices was the abacus, in which the num-
bers were represented by beads threaded on parallel wires. Essentially it 
was a pulse operated system, the pulses being supplied by the operator 
moving the beads. 

A modern digital computer is also a pulse operated device, but since 
the pulses are electronic very fast operating speeds are possible. The 
range of potential applications for the modern machine is enormous, 
varying from scientific research on the one hand to the calculations 
necessary in banking and commerce on the other. In addition, the com-
puter is becoming more and ,more important in the industrial field, not 
only for calculating purposes but also for the precise control of plant and 
machinery. Under these conditions it is obvious that there is an increasing 
need to extend the understanding of the basic principles and the electronic 
techniques used in digital computing. 
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l.l. NUMBER SYSTEMS 

Decimal system 
Throughout the world many different number systems are in daily use, 

but probably the most commonly used is the decimal system. By con-
vention everyone readily understands that a number such as 1965 means 
one thousand, nine hundred and sixty five, because the notation employed 
is a positional one. Reading from the right the first digit gives the units, 
the next gives tens, the next hundreds and so on. The number can 
therefore be expressed in the following manner 

1965=1x103+9x102+6x101+Sx10~ 
= 1000 + 900 + 60 + 5 

It should be noted that any number raised to the power of zero is equal to 
unity. 

An integer, or whole number, is given in the example, but the notation 
can also be used for fractional quantities if negative indices are employed. 
For example 

1.965 = 1 x 10~+9 x 10-1+6 x 10-2+5 x 10-3

9 6 5 = 1 + 10 + 100 + 1000 

Since the system is based on powers of ten, a shift to the left multiplies by 
ten and a shift to the right divides by ten. 

Binary system 
In an electronic digital computer, the digits are usually represented 

by different values or levels of potential, and if the decimal number 
system were used it would mean that the circuits must be capable of 
differentiating accurately between the ten levels representing the various 
digits. Of course this is possible with careful circuit design, but the cir-
cuits may be complex and the chance of error is quite high. In order to 
simplify circuit design and improve reliability, the binary system of 
numbers is generally employed in digital computing. As the binary system 
is based on powers of two there are only two digits, usually referred to as 
bits, namely: 0 and 1. The machine has now only to recognise two 
separate levels of potential. 

A positional notation is again used, as shown below, where the binary 
equivalents are tabulated for numbers up to ten. 

9 



Number 

O 

Binary Equivalent 
23 22 21 2° 
O O O O 0x2° 

1 O O 0 1 1X2° 
2 O 0 1 0 1X21+0x2° 
3 0 0 1 1 1x21+1x2° 
4 0 1 0 0 1x22+0x21+0x2° 
5 0 1 0 1 1X22+0x21+1X2° 
6 0 1 1 0 1x22+1x21+0x2° 
7 0 1 1 1 1x2+1x21+1x2° 
8 1 O O 0 1X23+0x22+0x21+0x2° 
9 1 O 0 1 1X23+0x22+0x21+1X2° 

10 1 0 1 0 1X23+0x22 +1X21+0x2° 
etc. etc. ctc. 

It may be seen that the least significant digit is on the right and moving 
from right to left each digit represents in ascending order a higher power 
of two. If negative indices are used, fractional quantities can also be 
recorded, but the digits to the right of the binary point are in a descending 
scale, each being half the value of its predecessor. Thus the binary number 

1.1101 = 1x2°+1x2-1+1x2-2+0x2-3+1x2-4

= 1 + z + ~ + 0 + '1e 
= 1.8125 

It should be appreciated that integers can be expressed precisely in binary 
form, but some approximation might be necessary for certain fractional 
quantities. The actual error will depend on the number of binary digits in 
use, and in practice it is usually very small. 

Since the binary system is based on powers of two, a shift to the left 
multiplies by two and a shift to the right divides by two. Consider for 
example the binary number 

1001= 9 

With a shift to the left it becomes :-

10010= 1x24+0x23+0x22+1x21+0x2° 
= 16 + 0 + 0 + 2 + 0 
= 18 

i.e. the number is doubled. 

With a shift to the right itbecomes:-

100.1 = 1X22+0x21+0x2°+1X2-1
= 4 + 0 + 0 + i 
= 4'-z 

i.e. the number is halved. 
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The normal processes of arithmetic can be carried out on numbers in 
any scale, but in the binary system the rules are extremely simple. For 
instance there are only three rules to consider for addition:-

0+0 = 0 
1+0=1 
1 + 1 =Two = 0 and 1 to carry. 

To add two numbers, say 7 and 5 
7 = 00111 
5 =00101 

01100 Sum = 12 
01110 Carry 

Note that the carry is transferred into the next significant column. 
It is important to realise that within the machine all computations are 

reduced to a series of simple steps, and basically the computer need only 
be capable of addition or subtraction. Multiplication can be achieved by 
a process of repetitive addition combined with a shifting procedure, and 
division may be carried out by repeated subtraction. The reduction of a 
problem to a form suitable for the computer and the preparation of the 
sequence of basic operations for any particular computation is called 
programming. 

In general, conversion from decimal to binary and vice versa is a re-
quirement to ease communication between human beings and the com-
puter. To represent ten distinct symbols for 0 to 9, four binary digits (or 
bits) are necessary, and this leads to some redundancy because sixteen 
combinations are possible with four bits. Ten of the sixteen possible com-
binations are chosen to represent the decimal digits, and this allows a 
coded system to be used. Only a few of the possible codes have been in-
vestigated, and a detailed discussion is outside the scope of this booklet. 
However, the factors affecting the choice of such a code are:-

(a) convenience of arithmetical operations, 
(b) ability to detect errors, 
(c) ability to correct errors, 
(d) efficiency of storage requirements, 
(e) convenience to human beings. 

The list is not given in any particular order of significance. 
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2.1. THE LOGIC OF CLASSES AND PROPOSITIONS 

Introduction 
A little over a hundred years ago, logical or Boolean algebra was 

developed by George Boole (Ref. 1) to simplify complex logical proposi-
tions, but its application to the analysis and simplification of switching 
circuits was realised by Shannon (Ref. 2) much later. Since a digital com-
puter contains a number of complex switching circuits, Boolean algebra 
plays an important part in the analysis and logic design of the system. 
The basic gating elements may be combined in many ways to achieve a 
particular function, and the logic designer must choose the way best 
suited to his purpose. The choice is often influenced by the manner in 
which the elements are packaged during manufacture, but obviously an 
arrangement which involves a minimum number of elements is attractive. 

The logic of classes 
In mathematical logic, a class is defined as a group of elements atl of 

which possess at least one characteristic in common. From this definition 
it follows that a complementary class can exist in which no member 
possesses the common characteristic. Both classes together may betaken 
to form the particular universal class under consideration. It is conve-
nient to illustrate these ideas with the aid of a Ve~tn diagram as shown in 
fig. 1. 

Fig. 1 a. 

The area within the square represents the universal class being con-
sidered. This class may be divided into a number ofsub-classes : two in this 
case, i.e. class A contained within the circle and class A outside the circle 
(fig. la). A bar is placed above the variable to denote the complement. 
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The logic of classes is concerned with the relations between various 
sub-classes that may exist within a particular universal class. The com-
plementary class has been introduced already, but it will be clear that the 
operations of intersection and union can also occur between sub-classes. 

In order to clarify these ideas consider the following example: 
Suppose the universal class is defined as a group of students, and is re-
presented by the total area within the square. Two sub-classes exist in the 
group of students as shown in the Venn diagrams of fig. lb, c, d, e and f. 

Some are boys with brown hair. 
Shaded area=class A 

Fig. 1 b. 

r 

The remainder are NOT boys with brown hair. 
Shaded area =class A. 

// 

Fig. 1 c. 

Some are boys with blue eyes. 
Shaded area=class B. 

Fig. 1 d. 
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Some are boys with brown hair AND blue eyes. 
Shaded area=intersection ofAand B. 

Some are boys with brown hair OR blue eyes 
OR both. 
Shaded area = union of A and B. 

Fig. 1 e. 

Fig. If. 

Notice that when intersection occurs, the students are members of both 
A and B. Intersection is denoted by a full stop thus: A . B. Since there is no 
change in the intersecting area it is equally true to state that the students 
are members of both B and A, hence 

A. B=B. A 

For the case of union, the students are members of A or B or both, and 
this function is represented by a plus sign: A+B. Clearly, the area 
remains unaltered for B+A, therefore 

A+B=B+A 

Obviously the order in which the variables are placed has no significance. 
In the diagram for intersection the  area  NOT shaded represents NOT 
(A AND B) which may be written as A . B. The area shaded in the follow-
ing diagram is NOT A OR NOT B (written as A+B) and is equivalent to 
the area NOT shaded in the diagram for intersection. 

Thus A+B = A . B 
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Shaded 
A+ B 

Unshaded 
A.B 

Fig. Ig. Fig. Ih. 
Both diagrams are shown side  by side to aid comparison. A similar 

proof can be obtained for A . B=A+Bas shown by the diagrams below. 

Shaded 
A.B 

Fig. 1 i. Fig. Ij. 

Unshaded 
A+B 

These two proofs confirm De Morgan's theorem which is extremely im-
portant in Boolean algebra. 

The logic of propositions 
The theorems of Boolean algebra apply equally either to the logic of 

classes or to thelogic ofpropositions, but in the latter the emphasis is placed 
on wether a given statement is true or false. In compound logical pro-
positions two basic connectives are used, and since these are similar to 
the operations of intersection and union previously described the same 
symbols will be used. The basic connectives are:—

(a) AND formally known as conjunction —written as A . B 
(b) OR formally known as disjunction —written as A+B 

(Students should realise that in textbooks and current literature many 
different symbols are used for the basic connectives.) 

Conjunction is the proposition that both A and B are true, while disjunction 
is the proposition that A or B or both are true. For example, the statement 
"Today is Tuesday and it is raining" can be represented as follows: 

Let A = "Today is Tuesday" and B = "it is raining" 
If C =the complete statement then C = A . B 
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When is the complete statement true? This can be established by tabulat-
ing all the possible combinations of truth and falsity for A and B, and 
deciding the particular conditions under which C is true as shown:-

A B C 
False False False 
False True False 
True False False 
True True True 

Values can be assigned to these two possibilities and normally a 1 is used 
to denote the value of a true statement, and a 0 the value of a false state-
ment. Under these conditions the table becomes :-

A B C 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Such a table is known as a "Truth Table", and the proof is called a proof 
by the method of perfect induction. Clearly in this case the complete 
statement is true only when A AND B are true. 

A similar procedure can be adopted for disjunction, and the equation 
A+B= C may be obtained from a suitable proposition such as "There is a 
voltage on terminal number 3 or on terminal number 7". The truth table 
is given below. 

A B C 
0 0 0 
1 0 1 
0 1 1 
1 1 1 

For the operation of complementing or negating, a bar is placed above 
the variable, and the truth table is quite simply:-

A A 
0 1 
1 0 
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2.2. POSTULATES AND THEOREMS 

Postulates 
Only a summary of the postulates (i.e. fundamental conditions) is 

given since the truth of these is self-evident. 
A variable may assume one of two values : 0 or 1. 
The complement of 0 is 1 and vice versa. 

1 . 1 = 1 0+0=0 
1 00=0. 1=0 0+1=1+0=1 
0.0=0 l+1 = 1 

The postulates form the basis of a number of theorems which allow 
expressions to be manipulated and simplified. Most theorems in Boolean 
algebra fall into pairs, each expression being the dual of the other. In 
order to obtain the dual of an expression, exchange AND for OR and 
exchange 0 for 1. An example will serve to illustrate the procedure, but 
in fact the postulates given above are presented in dual pairs. 
The dual of 0 . A+ B . C+ 1 

is (1+A). (B+C). 0 
It should be noted that normally the AND function takes precedence over 
the OR function in the absence of any other information. It is, therefore, 
necessary to add brackets to the dual expression to avoid any ambiguity. 

Theorems 
In an expression such as A. B + A. C + D(B+ C) + D . E there are 

five variables, A B C D and E, and nine literals. 
A literal is defined as each appearance of a variable or of its complement. 
To obtain the complement of an expression, exchange AND for OR, 

exchange 0 for 1 and complement all literals. 
The complement of 0 . A+ B . C+ 1 

is (1+A). (B+C). 0 
Where possible the following theorems are presented in dual pairs. It 
may then be shown that, if the first expression is true, the dual must also 
be true. In order to prove this point, both expressions for theorem 1 will 
be verified using the method of perfect induction. 

la A.0=0 

Proof for la: 
if A = 0 then 
if A = 1 then 

Proof for lb: 
if A = 0 then 
if A = 1 then 

A . 0=0 
0 . 0=0 l 
1 .0=0 

A+1=1 
0+1 = 1 
1+1=1 

lb A+1 = 1 

Both are postulates and are true. 

Both are postulates and are true. 
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A similar proof may be obtained for the following simple theorems: 

2a A . 1 = A 2b A+0 =A 

3a A. A=A 3b A+A = A 

4a A.A=O 4b A+A = 1 

Theorem 5, the "Commutative Law", states that the order in which the 
variables are placed is not significant. This was shown to be true by means 
of Venn diagrams in the previous section. 

Sa A.B=B.A Sb A+B=B+A 

The remaining theorems can all be proved by constructing a truth table 
which shows all the possible combinations of the values of the variables 
involved. Theorem 6, the "Associative Law" will be taken as an example to 
demonstrate the method. 

6a A.B.C=A.(B.C)=(A.B).0 

6b A+B+C=A+(B+C)=(A+B)+C 

To prove : 
A B 

A . (B . C) _ (A . B) . C 
c 

(B . c) (A . B) A . (B . 
c) (A . B) . 

c 

0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 1 0 0 
0 0 1 0 0 0 0 
1 0 1 0 0 0 0 
0 1 1 1 0 0 0 
1 1 1 1 1 1 1 

The first three columns provide all the possible combinations of the vari-
ables, and the other columns are derived by appropriate combinations 
of the values of the variables involved. Since the last two columns are 
identical in all respects the proof is valid. 

7a A.B.C=A+B+C 7b A+B+C=A.B.0 

In the previous section, Venn diagrams were used to verify De Morgan's 
theorem, which is stated above. The result is very important and should 
be noted carefully. It may be stated in a more general form as follows: 

f (A,B,C, AND OR) = f (A,B,C, OR AND) 

The symbol f denotes that the complement of the function is required, 
and applying the normal rules, AND is exchanged for OR and each 
literal is complemented. For example 
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Two more theorems are 

8a A.(A+B)=A 8b A+(A.B)=A 

9a (A+B) . (A+B) = A 9b (A . B)+(A . B) = A 

The "Distributive Law" given in theorem 10, below, is also very important, 
and requires careful attention: 

l0a A.B+A.C=A.(B+C) 

In l0a the procedure is similar to the normal algebraic process of factor-
ing, but lOb shows that the operations of AND and OR do not have 
precisely the same meaning as multiplication and addition in classical 
algebra, although the functions are frequently described by the terms 
"product" and "sum" respectively. Furthermore an expression such as 
A . B+C . D is termed a "sum of products", while (A+B) . (C+D) is 
failed a "product of sums". 

In Boolean algebra there are four forms of expression that are of 
particular interest:—

Expanded sum of products. 
Minimum sum of products. 
Expanded product of sums. 
Minimum product of sums. 

The expanded forms are often useful for the analysis and simplification 
of Boolean functions and their associated circuitry, while the minimum 
forms are of interest because these are most frequently used as the actual 
basis for the required circuits. In practice, however, the minimum may 
be defined in several different ways, largely dependent upon the type of 
logical circuit being used. For instance the emphasis in diode circuits 
might be on the least number of logic inputs, but in transistor circuits the 
minimum number of terms might be more desirable. If the Boolean 
function is complex it is not always easy to determine a minimum by 
algebraic manipulation, and other methods of simplification must be 
adopted. 

In order to obtain the expanded sum of products, theorem 9b is used 
and all the possible combinations of the missing variables are supplied to 
each product as shown in the example below. 

A.B.C+A.C.D = A.B.C.D+A.B.C.D+A.C.D 
= A.B.C.D+A.B.C.D+A. B.C.D+A. B.C.D 

On the first line, A. B. C expands into two terms when the missing variable 
is supplied both as D and D, and in the same way two further terms are 
formed from A. C. D by adding B and B. 

A similar operation is carried out for the expanded product of sums, in 
this case all the possible combinations of the missing variables being 
added to each sum. Thus the expansion of (A+C) . (B+C) becomes 
(A+B+c) . (A+s+c) . (A+B+c) . 

(A+B+c) 
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2.3. CONTACT SWITCHING CIRCUITS 

In any logic switching circuit the particular conditions representing 0 
and 1 must be clearly defined since the assignment of values has a pro-
found effect, not only on the Boolean function representing a given circuit 
but also on the circuit associated with a particular function. The choice 
does not however affect the algebra or its manipulations, but merely the 
interpretation we choose to place on the variables and their values. 

In general, the Boolean function describing a circuit sets down con-
ditions defining the transmission capability of the system. The normal 
convention adopted for a contact switching circuit is that a closed circuit 
is represented by 1 and an open circuit by 0. Under these conditions, two 
switches wired in series will perform the AND function as shown in fig. 
2 and it may be seen that the maximum transmission is obtained between 
p and q when the circuit is closed. 

Truth Table 
A B Circuit State 
0 
1 

0 
0 

O=Open 
0 =Open P —~ ~—~o~ q 

Q B 0 1 O=Open 
Boolean Function F=A . B 1 1 1=Closed 

Fig. 2. AND Circuit 

The action of the circuit is described by the Truth Table, and clearly 
maximum transmission implies a low impedance path between p and q 
permitting an easy flow of current through the circuit. 

Fig. 3 shows the parallel arrangement of switches required for the OR 
function. 

Q 

B 

Truth Table 
A B Circuit State 
0 0 0 =Open 
1 0 1=Closed 
0 1 1 =Closed 
1 1 1 =Closed 

Boolean Function F=A+B 
Fig. 3. OR Circuit 

The operation of complementing means that the circuit is closed when 
the switch is NOT operated as illustrated in fig. 4. 
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Truth Table 
p —~~— q A A Circuit State 

0 1 1=Closed 
A 1 0 0 =Open 

Fig. 4. NOT Circuit 

It is now possible to interpret the theorems of Boolean algebra in terms 
of switching circuits, as the following examples show. 

Theorem 3 is shown in fig. 5. 

3a 

3b 

p ~~ O~ q = P ---0~ 
A A A 

A.A 

A 

A 

A+A 

A 

= p —~~ 

A 

Fig. S. Circuit for Theorem 3 

A 

q 

q 

From fig. 5 it may be seen that Theorem 3 states that identical switches 
wired in series or in parallel can be replaced by a single switch. It should 
be emphasised that the literals used in any theorem can represent single 
variables or complex expressions. For instance, Theorem 3 may be 
employed to simplify the following expression: 

(A. C. C+B) . (A. C+B+B) _ (A. C+B) . (A. C+B+B) 

_ (A. C+B) 

Theorem 8 is illustrated in fig. 6. 

Theorem 8a states that any circuit consisting of a switch wired in series 
with a parallel circuit containing the same switch, may be replaced by a 
circuit consisting of the switch alone. Theorem 8b states that any circuit 
consisting of a switch wired in parallel with a series circuit containing the 
same switch, may be replaced by a circuit consisting of the switch alone. 
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8a 

Sb 

B 
A.(A+B) 

q = p--0~—q 
A 

A 

= p —~~-- q 
A 

Fig. 6. Circuit for Theorem 8 
A 

If the logic convention employed is inverted, that is to say a closed 
circuit is represented by 0 and an open circuit by 1, then for a given circuit 
arrangement the AND and OR functions are interchanged. For example, 
the parallel arrangement of switches in fig. 7 is required for the AND 
function, while a series circuit is necessary for the OR function as shown 
i n fig. 8. 

B 
Fig. 7. AND Circuit -Inverted Logic 

P A 
B 

q 

Fig. 8. OR Circuit -Inverted Logic 

Truth Table 
A B Circuit State 
0 0 0 =Closed 
1 0 0 =Closed 
0 1 0 =Closed 
1 1 1=Open 

Truth Table 
A B Circuit State 
0 0 0 =Closed 
1 0 1=Open 
0 1 1=Open 
1 1 1=Open 

From the Truth Tables given it is clear that in this case minimum 
transmission or maximum hindrance is obtained when the circuit is open, 
and this implies a high impedance path between p and q, which does not 
permit an easy flow of current through the circuit. 
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A similar result can be obtained without inverting the logic if the 
Boolean function is complemented, as illustrated by De Morgan's 
Theorem in fig. 9 below. 

Thus the complement of 

p —o~--o~—o~ q 
A B C 

7a A,B.0 

And the complement of 

C

7b A+B+C = A.B.0 
Fig. 9. Circuit for de Morgan's Theorem 

Worked Examples 

Example 1. Simplify (A+B+C). (A+B+C). (A+B+C)andexpress 
as a sum of products. 

is 

is 

P q 
A B C 

Let 
S = (A+B+C) . (A+B+C) . (A+B+C) 

Then by De Morgan's Theorem 7a 
S=A.B.C+A.B.C+A.B.0 

=A.B(C+C)+A.B.0 by theoreml0a 
= A. B.1 + A. B. C since (C+ C) = 1 by theorem 4b 
=A.B+A.B.0 since A. B.1 =A.Bbytheorem2a 

Now 
S =the complement of S 

=A.B+A.B.0 
_ (A+B) . (A+B+C) by theorem 7b 
= A+B(B+C) bytheorem lOb 
= A+B. B+B. C but B. B= 0 by theorem 4a 

Thus S= A+B.0 

The solution given above is deliberately arranged to include as many 
theorems as possible. 
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An alternative solution is as follows: 

S= (A+B+C) . (A+B+C) . (A+B+C) 

_ (A+B) . (A+B+C) by theorem 9a 
= A+B. C by theorems lOb and 4a as before. 

Thus S=A+B.0 

C C C 

(A+ B + C).(A+ B+C).(A+B+C) 

Fig. 10. Circuit for Example 1 

A + B.0 

Example 2. SimplifyB.C.A+B.B.C+B.C.C+B.C+A.B.C+A.C.0 
and express as a product of sums. 

Let 
S = B. C. A+B. B. C+B. C. C+ B. C+A. B. C+A. C. C 

Now 
B .Band C . C = 0 by theorem 4a 

Therefore 
B.B.C=0.C=0 and 

A. C. C = A. 0 = 0 by theorem 1 a 
Also 

C. C = C by theorem 3a 
Thus 

S= B. C. A+B. C+B. C+A. B. C 
But 

B.C+B.C.A=B. C and 
B. C+B. C. A = B . C by theorem 8b 

Thus S = B. C+B. C 

The function is required in the form of a product of sums, and this may 
be achieved as follows: 

Add the terms B .Band C . C to the expression. Since both these are 
equivalent to zero, the function will not be changed. 
Then 

S=B.C+B.B+B.C+C.0 
=B(B+~+c(B+c) 

Thus S = (B+C) . (B+C) 
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Alternatively, the product of sums can be obtained by employing De 
Morgan's Theorem. 
Since 

S=B.C+B.0 

S=B.C+B.0 

= B. B+B. C+B. C+C. C 
= B. C+B. C 

Now 
S =the complement of S 

= B.C+B.0 
Thus S = (B+C) . (B+C) as before. 

B.C.A+ B.B.0 + B.C.0 + B.0 + A.B.0 + A.C.0 

28 
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3.1. DIODE GATES 

Introduction 
Although logic circuits may be constructed from any device which 

has two stable states, modern computers invariably use semiconductors 
rather than electro-mechanical relays or thermionic valves. The choice of 
solid state components leads to a smaller physical size, longer life, high 
speed, generally better reliability and a comparatively low power require-
ment. For convenience in manufacture, a few types of basic elements are 
mass-produced as standard packages, and these form the logical building 
blocks for a given system, whether it be a computer or a complicated 
switching circuit to control an industrial process. 

The basic elements are usually called "gates" and fall broadly into two 
main classes 

(a) passive networks providing an output power less than the input 
needed to drive them. Semiconductor diodes are widely used in 
this category. 

or (b) active networks in which transistors perform logic functions 
and also give power amplification. 

In both cases, the semiconductors are employed as high speed electronic 
switches, but it should be noted that the switching action is not perfect. 
For instance, in the conducting state a diode has a small forward re-
sistance, and when it is cut off, a quite high back resistance, but not 
infinitely high. In general this leads to small fluctuations in the output 
potentials, which are obviously undesirable, but despite these limitations 
circuits can be designed to function satisfactorily. It is important to 
realise that in electronic circuits the values 0 and 1 are usually assigned to 
two different levels of potential, and a "signal" is normally taken to mean 
the particular potential used to represent a 1. 

Circuit Descriptions 
Before describing the action of the basic diode gating circuits, the con-

ditions under which a diode will conduct should be clearly understood. 
Fig. 12 shows the circuit symbol for a semiconductor diode, and to avoid 
any possible ambiguity the anode and cathode are marked on the diagram. 
In practice, the manufacturer usually indicates the polarity by means of a 
coloured spot or band near the cathode terminal. 

anode cathode 

Fig. 12. Diode Circuit Symbol 
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Conventional current flows in the direction of the arrow when the 
anode is at a potential positive with respect to the cathode, or conversely 
when the cathode is negative with respect to the anode. In this condition 
the diode is said to be "forward" biased, and its resistance is low, thus 
allowing an easy flow of current. If the anode is negative with respect to 
the cathode (or the cathode positive with respect to the anode), the diode 
is "reverse" biased and its resistance becomes very high, and hence the 
reverse current is small. 

The basic diode gate is shown in fig. 13 and the action of the circuit is 
illustrated by the Truth Tables. It may be seen that the circuit functions 
as an AND gate when the higher voltage level represents a 1. Since the 

1 --+12V 

0 — — OV 

output A.B for 
positive logic 

0 

1 --

+12V 

-- OV 

Positive Logic 
Truth Table 

Negative Logic 
Truth Table 

A B Output Diodes A B Output Diodes 
0 0 0 Both conduct 0 0 0 Both cut off 
1 0 0 D2 conducts 1 0 1 D1 conducts 
0 1 0 D1 conducts 0 1 1 D2 conducts 
1 1 1 Both cut off 1 1 1 Both conduct 

AND Gate OR Gate 

Fig. 13. Basic Diode Gate (Positive AND) 
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signals are then indicated by positive going pulses, this convention is 
known as positive logic. If the logic is inverted the circuit functions as an 
OR gate. 

The signals could be applied to the diode gate using the following 
potentials. 

1 ----- OV 

0 —12V 

In this case, however, although the circuit still performs as an AND 
gate for positive logic (or an OR gate for negative logic), the diodes are 
never cut off simultaneously, assuming there is no loading effect due to 
any following circuit. Clearly when the output potential is at —12V, the 
current flowing through R is a maximum, and this value is approximately 
halved when the output potential is at zero volts. 

If the diodes are reversed and the supply voltage changed to —12 volts, 
the circuit of fig. 14 is obtained, and in this case positive logic results in an 
OR gate. 

If the signal potential is + 12V and 0 is represented by zero volts, the 
circuit will still perform as a positive logic OR gate (or negative logic 
AND). 

Under these conditions, the diodes are never cut off simultaneously, 
assuming there is no loading effect due to any following circuit, and the 
circuit action is similar to that noted previously for the positive logic 
AND gate. 

In both circuits (figs. 13 and 14), the value of R is chosen to be large 
compared to the diode forward resistance, but small in relation to the 
back resistance. Thus, although the volt drop across the forward re-
sistance of a conducting diode is small, the output voltage must be less 
than that applied at the input. Furthermore, if both diodes are conducting 
then the effective forward resistance is reduced, allowing a slight increase 
in the output potential. Clearly this leads to small fluctuations in the 
output signal which are undesirable. In addition, however, the signal is 
degraded each time it passes through a diode gate and it becomes neces-
sary to include transistor amplifiers at salient points in a long logical 
chain of passive elements, in order to restore the original level. 
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0 —12V 

output A+B for 
positive logic 

A B 

Positive Logic 
Truth Table 

Output Diodes A B 

Negative Logic 
Truth Table 

Output Diodes 
0 0 0 Both cut off 0 0 0 Both conduct 
1 0 1 D1 conducts 1 0 0 D2 conducts 
0 1 1 D2 conducts 0 1 0 D 1 conducts 
1 1 1 Both conduct 1 1 1 Both cut off 

OR Gate AND Gate 

Fig. 14. Basic Diode Gate (Positive OR) 

So far the AND and OR gates described have been shown with two 
inputs only, but more diodes may be added so that several signals can be 
gated in the same circuit. However a practical limit is reached at five or 
six diodes for any one gate, but of course if the number of inputs demand-
ed exceeds this practical limit, the circuit must be rearranged to perform 
the gating in several smaller groups. 
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3.2. TRANSISTOR GATES 

The symbols commonly used for p-n-p and n-p-n transistors are shown in 
fig. 15, from which it may be seen that they are complementary to each 
other, since both the polarity of the supply voltage and the direction of 
current flow are reversed. In the diagram the arrows on the emitter indi-
catethe direction of conventional current flow. 

p-n-p 

-Ve supply 

COLLECTOR 

BASE / 1' ~ BASE 

EMITTER 

+Ve supply 

Fig. 15. Transistor Symbols 

n-p-n 

+Ve suPP1Y 

COLLECTOR 

EMITTER 

— Ve supply 

Normally a transistor conducts when the emitter-base junction is for-
ward biased, and the collector-base junction reverse biased. For a 
p—n—p transistor, this occurs when the base is negative with respect to the 
emitter. Due to the forward bias, the emitter-base junction has a low 
impedance, and hence small changes of potential give rise to compara-
tively large current variations, and owing to the geometry of the structure 
more than 90% of the emitter current flows out of the collector terminal. 
Since the collector-base junction is reverse biased and has a high im-
pedance, the transistor provides a power gain. A similar argument can be 
developed for the n—p—n transistor except that the base must be positive 
with respect to the emitter to allow current to flow in the collector circuit. 

Since the device has three terminals, there are three possible ways of 
connecting the transistor in a circuit and these are : — 

(a) Grounded or common base, 
(b) Grounded or common emitter, 
(c) Grounded or common collector. 

The method of connection for each case is illustrated in fig. 16 and 
although p—n—p transistors are shown, similar arrangements can be used 
for n—p—n devices if the supply polarity is reversed. 
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input 

input 
v 

common emitter connection 

-ve

output Supply 

common base connection 
+fie 

output Supply 

+ ~e 

output Supply 

common collector connection 

Fig. 16. Methods of connecting a p-rt p Transistor 
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In switching circuits, the common collector configuration is quite 
frequently employed, but the common emitter is by far the most widely 
used circuit and provides the basis for a number of transistor gates. In 
general, the complement of any p—n—p circuit may be obtained by 
reversing the polarity of the supply and substituting an n—p—n transistor, 
and therefore only one type need be considered in detail. A simple p—n—p 
inverter is shown in fig. 17. 

input 

—ov 

-12v 
A=010 

Fig. 17. Simple p-n p Inverter 

+12 V 

ov 

~_ `-12V 
A=101 

If the input is A the output is A, thus the inverter provides a means of 
obtaining the complement of a Boolean expression. When the transistor 
is turned off (base positive to the emitter), the collector current is very 
small, and since the collector impedance is high, the output voltage is 
virtually that of the supply —12V. On the other hand, when the base is 
negative with respect to the emitter, the collector current is large and the 
output voltage rises. If the transistor saturates, that is to say a further 
increase in the base current provides little or no corresponding increase in 
the collector current, then the collector voltage remains constant. 
Typically this is about —0.2 volts with respect to the emitter and hence 
in this case the output voltage is almost at ground potential. If A = 0 1 0 
and the supply (-12~ represents a 1, the output waveform will be as 
shown in fig. 17. In practice, it is important to ensure that the base is 
positive to the emitter when the transistor is turned off, in order to avoid 
the effects of high collector leakage current. It should also be realised that 
the transistor is essentially a current amplifier, which therefore requires 
an input current rather than an input voltage. 
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A common method of packaging logical elements is to combine diode 
gating with a transistor inverting amplifier. Consider the circuit given in 
fig. 18. 

Fig. 18. Positive AND Gate with Inverter 

12V 

A.B 

+12V 

If either input is 0 (-12V), one of the diodes is conducting, driving the 
base of the transistor negative. Thus the transistor saturates and the 
output voltage from the collector rises almost to ground potential. When 
both inputs are at 1, the potential applied to the base of the transistor is 
sufficiently positive to reduce the collector current to zero. The inverter 
output is therefore at —12 volts. Clearly under these conditions the com-
binedelement performs the Boolean function A . B and is therefore known 
as a NOT/AND or NAND gate. 

For negative logic: 0 = 0 volts. 
1 = —12 volts. 

The circuit action is very similar to that described above except that the 
diode gate now provides an OR function,  and hence the combined ele-
ment performs the Boolean function A+Band is known as a NOT/OR 
or NOR gate. 
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A NOR gate can also be realised with the configuration shown in fig. 
19 if positive logic is employed. 

Fig. 19, Positive logic NOR Gate 

If both inputs are at 0 (-12V), the diodes are reversed biased and the 
base of the transistor goes negative. The transistor saturates driving its 
collector almost to ground potential. Thus the inverter output is a 1 when 
both the inputs are at 0. If either or both the inputs are 1, the transistor 
base is driven positive and the collector current is cut off, allowing the 
inverter output to fall to —12 volts. Hence the combined element per-
forms the Boolean function A+B. If negative logic is applied the circuit 
behaves as a NAND gate. 

In the design of the inverter stage, the collector load resistor should be 
kept to as low a value as possible, since the following stages may draw 
current through it when the transistor is cut off, and the volt drop across 
the load resistor must be as small as possible. For a similar reason the base 
current required for each stage can be minimised by making the base 
resistor comparatively large. However a compromise must be reached since 
the base current must be adequate under the worst loading condition likely 
to occur on the previous stage. The capacitor across the base input 
resistor is provided to improve the transient switching condition. 
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A considerable economy can be achieved if the input signals arc applied 
through resistors instead of diodes, particularly when it is realised that 
generally the basic elements are used in large numbers for a typical in-
stallation. For obvious reasons this is known as "Resistance" logic and the 
circuit arrangement is shown in fig. 20. 

—12V 

output A.B for 
positive logic 

+12V 

Fig. 20. Resistance logic gate 

Normally, the input resistors are all equal, and may be chosen so that 
if any one input signal is at the lower voltage level, the base current is 
high enough to saturate the transistor, thus giving an output potential of 
almost zero volts. When more than one input is at the lower level, the 
base current increases driving the transistor further into the saturation 
region. This is a disadvantage since the switching speed is reduced under 
these conditions. A reverse bias is applied only when all the inputs are at 
ground potential, and as the transistor is cut off the output voltage falls to 
—12 volts. Hence the circuit is a NAND gate for positive logic, and a 
NOR for negative logic. The input resistors may also be chosen so that 
the transistor can conduct only when all the inputs are at —12V. In this 
case, any one input signal changing to zero volts is sufficient to apply 
a reverse bias to the transistor, and the gate now becomes a NOR for 
positive logic. 

40 



An important class of transistor logic circuits can be fabricated by 
direct simulation of a contact switching network, for example two 
transistors in series can be used as a NAND or a NOR gate depending on 
the logic convention employed. In general the practice is rather unecono-
mical since one transistor is necessary for each input signal fed to the gate 
as shown in fig. 21. 

12V 

output A+B for 
positive logic 

+12V 

Fig. 21. Transistor series gate 
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Alternatively, a parallel arrangement can be used as shown in fig. 22. 
In this case, the output is almost at ground potential when either or both 
of the transistors conduct, and hence the circuit operates as a NOR gate 
for negative going signals. Positive logic will of course result in the circuit 
performing the NAND function. 

A o--~ 1 

B 

b +12V 

 o -12v 

output A.B for 
positive logic 

Fig. 22. Transistor parallel gate 
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The grounded collector, or as it is more often termed, the emitter 
follower, is primarily an impedance changing circuit and provides an 
output in phase with the input. Briefly, the main characteristics are high 
input impedance, low output impedance, a voltage gain of very nearly 
unity and a current gain similar to that obtained for the grounded emitter 
stage. Single emitter followers do not perform a logical function, but they 
can be used in multiples or combined with diode gates as shown in fig. 23. 

12V 

output A+B for 
positive Logic 

+12 V 

Fig. 23. Diode gate with Emitter Follower 
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Two emitter followers are shown in fig. 24 with the emitters connected 
to a common load resistor, and for positive logic the circuit provides an 
AND function. 

Fig. 24. Emitter.Follower gate 

—12 V 

A.B 

+12V 
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3.3. BISTABLE CIRCUITS 

Simply speaking a bistable circuit is a circuit which has two stable states, 
but in actual fact it is an extremely versatile device, capable of performing 
many of the functions necessary within a digital computer. Basically the 
circuit constitutes a rapid access single digit store, but it can also be used 
for counting and the production of control pulses. Consider the circuit 
given in fig. 25. 

output 

Fig. 25. Bistable Circuit 

12V 

output 

+12V 

If the transistor TRl conducts, the potential at the output terminal is 
almost at zero volts, and due to the resistor network the base of TR2 is 
held positive with respect to the emitter. Transistor TR2 is therefore 
cut off, and the output terminal is almost at the negative supply potential. 
Under these conditions, the base of TRl remains sufficiently negative to 
hold this transistor on and the state is stable. A change of state can be 
initiated by driving TRl towards cut off by applying a positive pulse to its 
base. The initial fall in potential at the output terminal causes a propor-
tional fall to occur at the base of TR2, which then commences to conduct 
driving the output terminal and therefore the base of TRl positive. The 
action is cumulative, resulting in a second stable state being rapidly 
attained, with transistor TR2 conducting and TRl cutoff. Clearly the 
output terminal is now almost at ground potential. 

Since either transistor may be initially in the conducting state, the 
positive trigger pulse must be properly routed, and this is achieved by 
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means of a steering circuit. In fig. 26 the steering circuit is formed by the 
components Ri, RS, Cl, and C2 together with the diodes Dl and Ds. The 
junction of Cl and C2 is the common input point to which positive going 
pulses are supplied, while d.c. levels are applied at A and B representing 
0 and 1 respectively. 

positive C~ 
pulses o 

~ C 2 

R2 
D 2 

Fig. 26. Bistable shift register stage 

Assume positive logic:— 1 = 0 volts 
0 = —12 volts 

Consider the case when the transistor TRl conducts, TR2 is cut off and 
the output potential is at zero volts representing a 1. The d.c. potentials 
on the bases of the transistors only vary about earth by a small amount, 
the cathode of the diode Di being slightly negative, whereas that of Dz 
is somewhat positive. Thus the bias condition of the diodes will depend 
largely on the complementary d.c. input levels applied at A and B. If A 
is 0 (-12V), D1 as cutoff but since B is then at 1 (OV), the reverse bias on 
Dz is comparatively small. When a positive pulse is applied to the junction 
of the capacitors Cl and Cz, Dl remains cut off but Ds conducts allowing 
the trigger pulse to reach the base of TRz. No change takes place since 

J 

P 
f 
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a 

input 
O 

this transistor is already cut off, and hence the output potential remains at 
the level representing a 1. However, if A is 1 and B is 0, the diode Dl will 
conduct to transfer the positive pulse to the base of TRl, which is then 
driven towards cutoff. Thus TR2 is turned on and the bistable changes 
state, the output potential now being at —12V representing a 0. Clearly if 
the trigger pulse is applied to the base of TRl a 0 is set, and conversely 
when it is transferred to the base of TR2 a 1 is set. Since the transfer occurs 
when the signal is present on the appropriate terminal, the input at A can 
be called "Set 0", and similarly that at B "Set 1". The rate at which alter-
nate 0 and 1 conditions can be transferred is limited by the switching 
speed of the transistors and also the time constant of the components Rl
and Cl in the steering circuit. Usually Rl equals R2 and Cl equals C2. The 
capacitors Ca and C4 are provided to improve the transient switching 
conditions. It can readily be seen that two consecutive positive pulses must 
be applied in order to pass a 1 through the bistable stage, and of necessity 
the time required is precisely the interval between two such pulses. Since, 
within a computer, a central oscillator is used to generate short duration 
pulses to initiate and synchronise the movement of digits from one part of 
the machine to another, the time interval is called a "digit period". One 
bistable element is capable of storing one digit, and hence several stages 
connected in series are required to retain a complete number. The inter-
connection of one element to the next is accomplished by means of the 
steering circuit as shown in fig. 27 and the trigger pulses are applied 
simultaneously to all stages. When this occurs, the state of each stage is 
transferred to the next succeeding stage, and after several pulses the num-
ber stored may be shifted out of the register. 

23 2Z 2' 2°

positive 
O 

B OP 

A OP 

—~ 

---► 

B 

A 

OP 

OP 

—►B 

--► 

—~ A 

OP 

OP 

—~ 

clock pulses 

B 

A 

Fig. 27. Block diagram of Four-stage shift register 

—► 
output 

By means of the shifting action, the output from the final stage is a 
series of pulses appearing in a time sequence synchronised to the repetition 
speed of the central oscillator which is known as the "clock". Thus the 
number is represented by a train of pulses passed along the output wire, 
and this method of representation is known as "serial". Normally the least 
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significant digit is the first in the sequence, the remainder following at 
intervals of one digit period. Since serial operation is envisaged, only one 
wire is required to carry the output signal, and in order to maintain com-
patibility the input should also be by means of a single connection. How-
ever the steering circuit described needs dual complementary inputs, and 
it is therefore necessary to employ an inverter before the first stage of a 
shift register as illustrated in fig. 27. 

From the foregoing remarks it is clear that each stage of the register 
introduces a time delay of one digit period, and therefore the same circuit 
can be used for delay purposes, the total delay being proportional to the 
number of bistable elements employed. 

If the triggering arrangements are modified as shown in fig. 28, the 
circuit can be employed as a binary counter. It may be seen that the dual 
complementary inputs to the steering circuits are now derived from the 
collectors of the bistable transistors in the same stage, and the input 
stimulus is applied to the junction of the capacitors Cl and C2. Two input 
pulses are required for each output pulse, so that each stage operates as a 
"divide-by-two" circuit. It is convenient to arrange the circuit so that the 
count is displayed with the least significant digit on the right, as shown. 

Notice that the output is used to give a positive pulse from the first 
bistable to drive the second stage. If both stages are initially at zero when 
the first pulse is received a 1 is set into the first bistable. The next pulse 
to arrive will set this stage to zero, and the output provides a positive 
pulse to seta 1 into the second bistable. The procedure is repeated, the 
third pulse setting stage one to 1 and the fourth resetting both stages to 
zero. Additional elements can of course be used to increase the capacity 
of the counter. 

Binary counters are extremely important in a computer, not only for 
arithmetical processes, but also for control and timing purposes. For 
example, a predetermined count can be detected by a suitable gate, 
which then provides an output pulse to initiate some further action at 
precisely the right time. Alternatively, the counter can be arranged 
specifically to produce control waveforms, and this may be achieved by 
applying the inverted output to the input. Such a device is known as a 
"ring" counter, although the individual stages are wired as a shift register 
rather than a binary counter. If initially all the stages of a ring counter 
are set to zero, a 1 will be set into the first stage on receipt of the first 
clock pulse, and successive pulses finally cause all stages to be at 1. When 
this occurs, the next clock pulse sets a 0 into the first stage, and subse-
quently all the stages are at 0. In this manner a particular digit pattern 
circulates around the counter, and the repetitive waveforms thus pro-
duced may be used for control purposes. 

I 
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4.1. LOGIC DESIGN 

The logic elements described can be used as basic building blocks in a 
system, and it is now a matter of logic design to establish the particular 
configurations required. 

Clearly it is essential for a computer to perform arithmetic, and if the 
numbers are represented serially, the digits will appear in a time sequence. 
Hence the process of addition, for example, is carried out just as one would 
add two numbers on paper, commencing with the least significant digits 
and dealing with pairs of digits at successive time intervals. If a pair of 
digits are represented by A and B respectively and their sum by S, all the 
possible values for A, B, and S can be _tabulated in a Truth Table as 
shown below. 

A B S 
0 0 0 
1 0 1 Boolean Function 
0 1 1 S=A OR B AND NOT (A AND B) 

Truth Table for addition of A and B 

An examination of the Truth Table reveals that S is at 1 when A or B is 1, but 
not when both A and B are 1. Thus the Boolean function for S may be 
written 

It should be noted that the Boolean function is formed by considering 
only the input signals, that is to say the input conditions representing 1 in 
the Truth Table. When the Boolean expression is obtained, it must be 
translated into a logical arrangement of elements which will provide the 
required function, in this case the sum of the two digits A and B. 

Let S = X . Y where X = (A + B) and Y = A . B 

Clearly the sum S will be the output from an AND gate. whose inputs are 
X and Y, and in turn these will be the outputs from elements forming 
(A+B) and A . B respectively. Thus X will be the output from an OR 
gate whose inputs are A and B, and iii a similar manner a NAND ele-
ment is necessary to obtain Y. Rather than draw the complete circuit, it is 
convenient to produce a logic diagram using symbols for the gating 
elements. Since many different symbols are employed in current literature 
and textbooks, and to avoid any possible confusion, in this booklet all 
logic elements will be denoted by a circle inscribed with the appropriate 
function as shown in fig. 29. 
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Ao 

BO 

A• 

BO 

OR ~=CA+B)

NAND 

AND 

Y=A.B 

Fig. 29. Logic Diagram for the sum of A and B 

An alternative arrangement can be obtained by manipulation of the 
Boolean expression as follows: 

_ (A+B) . (A+B) by De Morgan's Theorem 7a 
=A.A+A.B+A.B+B.B 
=A.B+A.B since bothA.AandB.B=O 

Thus S=A.B+A.B 

If C = A. B and D = A. B then S = C+D and the logic diagram given 
in fig. 30 may be deduced from these relationships. 

Fig. 30. Logic Diagram for S=A.B+A.B 

Inverters are necessary if A and B are not directly available. Notice 
that fig. 30 provides a solution involving the basic functions AND, OR 
and NOT, whereas fig. 29 uses AND, OR and NAND elements. 

The logical statement made by both arrangements is "A OR B AND 
NOT (A AND B)" and thus the function is known as an `Exclusive OR'. 
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In contrast, the basic OR function which states "A OR B OR both" is 
often called an "Inclusive OR". 

The summation of two digits in any scale can produce a carry, which 
must be taken into account for the process to be accurate. Employing the 
rules for binary addition, the complete Truth Table is given below. 

A B Sum Carry 
0 0 0 0 
1 0 1 0 
0 1 1 0 
1 1 0 1 

Truth Table for addition of A and B with carry 

An examination of the Truth Table shows that the carry is available 
when coincidence occurs between A and B, and hence an AND gate is 
required to provide the carry signal. Under these conditions, the arrange-
ment iscalled a "Half Adder" because it can deal with the summation of 
any pair of binary digits, but not with the complete addition of two num-
bers. For the Half Adder the expressions for the sum and carry must be 
satisfied simultaneously. 

Sum S = (A+B) . A. B 
Carry C = A . B 

Fig. 31 shows one method of achieving a Half Adder. 

Fig. 31. Half Adder 

Of course many other configurations are possible, for example a Half 
Adder can be constructed using only NAND gates, or alternatively only 
NOR gates, since all the basic logic functions can be simulated by 

r 
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either of these elements. This versatility makes either the NAND or the 
NOR gate eminently suitable as a standard logic building block. Some 
manipulation of the Boolean expression is necessary, and a NAND 
solution for the Half Adder can be obtained as follows: 

Now A . B = (A+B)
Therefore (A+B) = A . B 

Hence S= A. B. A. B 

f 

t 
1 
r 

Now 

Therefore 

S= A. B.A.B 

S= A.B.A.B 
C= A.B
C= A. B 

C= A. B 

Six NAND gates are necessary for the sum circuit, one of which may be 
included in the carry signal path since the term A . B is common, and 
hence a total of seven elements is required altogether. Notice that in both 
the sum and carry circuits, a double inversion is necessary to retain the 
AND function. While this is unavoidable in the case of the carry, it does 
indicate some redundancy in the sum circuit, and a solution involving 
fewer elements should be possible. 

Consider the following: 

= A. B+A. B as shown previously 
=A.A+A.B+A.B+B.B since bothA.AandB.B=O 

= A. (A . B)+B. (A . B) by De Morgan's Theorem 

Therefore 

= A . (A . B) . B. (A . B) 

Again 

S=S 

=A.(A.B).B.(A.B) 

C=A. B 

Since each NAND element provides one inversion, some indication of the 
total number of gates required is given by the number of "bars" in the 
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Boolean expression, but in this case only one element is necessary for 
the term A . B which appears several times. The circuit is given in fig. 32 
and it may be seen that only five gates are needed. 

4 

~

r
l 

a 
t 

Fig. 32. Half Adder using NAND elements. 

It may be shown that the serial addition of two binary numbers re-
quires two half adders and a delay element arranged so that any carry 
produced from either half adder is taken into account correctly in the 
next significant digit place. Such a device is called a "Full Adder". It can 
also be shown that fundamentally all the processes of binary arithmetic 
can be carried out by means of addition or subtraction. As an alternative, 
therefore, the arithmetic unit of the computer could just as easily be 
designed to perform subtraction as the basic operation. The Truth Table 
for subtracting B from A is given below, where D is the difference between 
A and B, and C represents a "borrow" rather than a carry signal. 

A B D C 
0 0 0 0 Boolean Function 
0 1 1 1 D = A OR B AND NOT (A AND B) 
1 0 1 0 
1 1 0 0 C=B AND NOT A=B. A 

Truth Table for Subtraction. 

An examination of the Truth Table shows that the function required for 
D is precisely the same as that previously obtained for the sum circuit of 
the half adder, but the borrow function is different. An arrangement 
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using the basic connectives to achieve the functions given above is 
relatively straightforward, but some manipulation is necessary to obtain 
a solution involving only one type of element. It is proposed to find a 
solution using NOR logic:-

i 

r 

i 

Now 

Therefore 

Thus 

A.B=A+B 

A. B=A+B 

D = (A+B)+(A+B) 

D = (A+B)+(A+B) 
C=A. B=A+B 

The circuit for this arrangement is given in fig. 33. 

Fig. 33. Half Subtractor using NOR elements 

Conclusion 
Although the theory given is considered more than adequate to cover 

the work on basic logic, this booklet is not intended to be a complete 
treatise on the entire field of digital computing. For more advanced 
study, a selected bibliography is shown in Appendix A. 

57 





APPENDICES A AND B 

Appendix A —References and Bibliography. 

i 

1. George Boole. 

2. C. E. Shannon. 

Hollingdale, S.H. 

Gould, I. H. and 
Ellis, F. S. 
Siegel, P. 

Caldwell, S. H. 

Marcus, M. P. 

Karnaugh, M. P. 

"The Mathematical Analysis of Logic", Cambridge, 
1947. 
"An Investigation of the Laws of Thought", London, 
1854. 
"A Symbolic Analysis of Relay and Switching Cir-
cuits", Trans. A.LE.E. Vol. 57 pp. 713-723, 1938. 

Bibliography 

"High Speed Computing —Methods and Applica-
tions", The English Universities Press, Ltd., London, 
1959. 
"Digital Computer Technology" 
Chapman and Hall, Ltd., London, 1963. 
"Understanding Digital Computers" 
John Wiley and Sons, Inc., New York, 1961. 
"Switching Circuits and Logical Design" 
John Wiley and Sons, Inc., New York, 1958. 
"Switching Circuits for Engineers" 
Prentice-Hall International, Inc., London, 1962. 
"The Map Method for Synthesis of Combinational 
Logic Circuits" 
Trans. A.LE.E. Vol. 72, Pt. 1, pp. 593-599, 1953. 

59 



J 

Appendix B 

AND Gate 

Base. 
Binary. 
Binary Point. 

Bistable. 

Bit. 
Carry. 

Clock. 

Complement. 
Digit. 

Exclusive OR. 

Gate. 
Half Adder. 

Memory. 
OR Gate. 

Parallel Mode. 

Programme. 

Register. 

Serial Mode. 

Store. 
Word. 

Glossary of Terms used in Digital Computing. 

A device which produces an output only when all the 
inputs are present. Sometimes called a "Coincidence" 
gate. 
Number of digits used in a positional number system. 
Involving the integer two. 
The point which separates the integral from the frac-
tional powers of two in the binary system. 
A device which remains in one of two stable states until 
an external stimulus triggers it into the other stable state. 
An abbreviation for "binary digit". 
The digit to be taken into account at the next higher 
place when the sum of the digits in a column is greater 
than the base. 
A timing device which produces pulses at a steady rate 
for synchronising purposes. 
The inverse of a logical expression. 
A symbol used to represent one of the elements in a 
positional number system. 
A device which produces an output only when either of 
two inputs is present, but not when both are present. 
Term used to describe a switching circuit. 
A device which produces signals representing the sum 
and carry for the addition of two binary numbers. 
An initial store controlled by the computer. 
A device which produces an output if any or all the 
inputs are present. Also known as an "Inclusive OR" 
gate. 
When all the bits of a computer word are available at the 
same time, they are said to be in parallel. 
A detailed set of instructions for the solution of a 
problem. 
A device capable of storing a group of digits, usually one 
computer word. 
When all the bits of a computer word are available in a 
time sequence, they are said to be in serial. 
That part of the computer in which information is held. 
The maximum number of bits which the computer can 
handle in one group. Such a group may represent an 
instruction or numerical data for a problem. 
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