RADIOTRONICS ## TECHNICAL BULLETINS, 1939 ## INDEX | | | | | | | | | | Page | |--|----------------|--------|------------------|----------|---------|-----------------|---------|---------------|-----------------| | Amplifier, with Negative Feedback over | 3 stag | es: | possible | causes | of Pa | rasitics | (A145B) | 82200 | 43 | | Amplifier, 13.5 Watts, using 2A3's (A5 | 03) | | | | | | , , , | | 48 | | Attenuation, High Frequency, due to S | hunt (| Capa | citance | | | | | | 4 | | Attenuation, High Frequency, due to S | | | | | | | | 200001 | 54 | | Attenuation, Low Frequency, due to Gr | id Cou | ıplin | g Conde | nser | | | | 38395 | 60 | | Attenuation, Low Frequency, due to Sci | reen B | ypas | sing | | | | | $\{ (0,0) \}$ | 34 - 35 | | A.V.C. Curves, Two Methods for | | | | | | | | Wie: | 41 - 43 | | | | | | | | | | | | | Bantam Valves, 1.4 Volt | | | 9202 | 202 | | (4) | 3.0 | 18.0 | 56 | | Bass Boosting, with Pickup, Filter for | | | 500 | 200 | 100 | 99000
P# 1#6 | 05 °C | 10.00m | 62 | | Battery Valves, 1.4 Volt, in Battery/A.C. | . Recei | vers | 36734 | *25 | 0.000 | 200.6 | 58 85 | 9004 | 63 | | Bias, Grid Leak | | | *0* | 808 | 2.56 | 34. 60 | 360.65 | 4.14 | 3 | | | | | 909 | *38 | 636 | 09/700 | (4 D) | 223 | 25 | | Bypassing, Screen, Formula for | | | \$338 | \$3150 | 1000 | 5. 1 | 27/20 | | 34 | | | | | | | | | | | | | Capacitances, Shunt, Effect of | | | 404 | 202 | 17.15 | S == | | | 4 | | Cathode Ray Tubes, Interchangeable | | | | 707 | 12.00 | 3 5 | 2000 | 15115 | $\overline{14}$ | | Coils for 2 Volt Battery Receiver (1C7 | -G) | 81.5 | 505 | 100 | 100000 | 0 6 | 300 ¥0 | (404 | 25 - 26 | | Coils for 6K8-G | | 505 | *** | 100m | 0.00 | SF 40 | 9000 | | 38 | | | | *00 | 8.9 | 659 | (47) | 54.40 | • 6 | *** | 8 | | Crystal Microphones, see under "Microphones, | phones | ¥) | Distortion, see under "Harmonic Distor | tion" | | | | | | | | | | Dropping Resistors, see under "Resistor | | | | | | | | | | | | - | | | | | | | | | | Filament Voltage Limits | | | | | | | | 0 | 00 00 | | Filter for Bass Boosting, with Pickup | *::4 | | *20 | F | (0) | ⊕ €3 | \$000 S | | 22, 32 | | Flutter, Method for Reduction of | 808 | 1000 | VC54 | 6.040 | 24 82 | 3.6 | *** | (4) | 62 | | riditel, method for iteddetion of | 5.3 | 100 | **** | 250 | (2(2) | 1 | *. | * | 22 | | Construction D. 1.1. The construction | | | | | | | | | | | Gaseous Voltage Regulators, Use of | | | * * | | 2.2 | (2.00) | *** | 3585 | 35 | | Grid Bias Voltage, Limits of | | | tot | 15:35 | 200,000 | 25 (25) | * 4 | 300 | 33 | | Grid Blocking, with 6K8-G, To avoid | | | 8000 | 595 | 36.80 | 39.00 | (656 | 909 | 25 | | Grid Circuit Impedance for Microphone | Pre-a | mpl | ifiers | 1096 | 34 10 | 30.00 | 5664 | 400 | 21 | | Grid Coupling Condenser, Attenuation d | lue to | | \$25\$ | | 9.50 | * 4 | 24 | 900 | 60 - 61 | | Grid Current, Oscillator, Limits of | | | #11000
#11000 | 1212 | 3.5 | | | 805 | 26 - 27 | | Grid Leak Bias | | | | | 05.50 | (5)(5) | *** | *05 | 3 | | Grid Leak Bias, Receiver using | | | 2020 | 1.00 | 25.50 | (888) | * 1 | 8000 | 39 - 43 | | Grid Resistors, Maximum Values of | | (C) | *(3) | (0)(0) | 98.63 | 9090 | *** | **** | 33 | | , | | | | | | | | | | | Harmonic Distortion, Third, Graphical N | I ethod | for | 8006 | 0.000 | 34 40 | 200 | 1955 | 2.52 | 2 | | Heater Voltage, Limits of | | | 7. EG | 74.14 | 66 12 | 2020 | (A) (A) | 274 | 32 - 33 | | Hum, Two Causes and their Diagnosis | | | F 30 | | 9.3 | 3.4 | | 2000
2004 | 22 | | | | | | | | | | | | | I.F. Amplifier, using 6SK7, etc. (R.C.A | . Appl | ica.t. | ion Note | () | | 34334 | | | 51-53 | | Input Loading of Receiving Valves (R. | C.A. A | nnli | cation No | nte) | 36.60 | | #85 | *11* | 15-19 | | | | F P | | 19190 | 28 EC | 9090 | 90.0 | 9000
9000 | 67 | | Inverse Feedback, see under "Negative F | | ck''. | | 0.00.00 | 2.5 | 0.000 | | *::*: | -01 | | | | | | | | | | | | | Kinescope, Definition of | | | | | | | | | | | minescope, Demittion Of 11 | 100 | 1414 | | 9.1 | | * .* | 8.00 | 100 | 14 | | | | | | | | | | | | | Maximum Ratings, see under "Ratings" | | | | | | | | | | | Microphone Amplifier, Resistance in Gri- | d Circi | uit | 10-16 | 34.00 | 160.60 | *:* | 9/39 | | 21 | | Mounting Position, 1.4 Volt Series | | . 99 | and the same of | 29 82 | 9000 | 36.0 | 168 | | 25 | | | | | 300 | | | | | | | | Negative Feedback: | | | | | | | | | | | Parallel Feedback Circuit | | | | | 5000 | | | | 5 | | Feedback over three stages. Possil | | | of Para | sitics w | ith | 35.5 | 5.3 | 162 | 43 | | Oscillator (| Grid Current I | Limits | 3 220 | | 991 | \$50 | 100 | 44 | 14 F | 200 | 26 - 27 | |--|--|---------------|----------|----------------|---------------------|--------------|----------------|----------------|-----------------|--------------------|--| | Darositios | with Negative | Foodback o | war th | raa etap | ec Possi | ible can | gag of | | | | 43 | | Phago Spli | tter, Low Imp | adanca usi | ng 6V | 6-G as | es, 10ss.
Triode | ibie cau | | 100 | 35/37 | 85.85 | 48 | | | lter for Bass I | | | | | | | 5035
E000 | 38783 | 85555 | 62 | | | ritching Metho | | | | | | | 400 | 60.00 | 06.60 | 41 | | Plate Volta | age, Limits of | | | | | | | 200 | 74174 | 57 (3) | 32 - 33 | | | | | | | | | | | | | | | Radiotron | Designer's Har | ndbook | | | | | | | | 7.5 | 59 | | Ratings, D | ual, for Trans | mitting Va | lves . | | | | | | | 35 50 | 67 | | Ratings, M | aximum, Sign | meance or | | | | | | | | 20.50 | 32 - 33 | | Receiver, A | A.C., Tuner U | nit for (R2 | (01) | | | | | | | W 60 | 50 | | Receiver, A | A.C., 5 valve a | Simple (RL | 144) . | | • • | • • | • • | • • | | 24.5 | $\begin{array}{c} 39 - 43 \\ 24 \end{array}$ | | Receiver, I | Sattery, 5 Val | ve vibratoi | (A59) | , | | • • | • • | | | 9.6 | 25 | | Receivers. | A.C., Tuner Un
A.C., 5 valve S
Battery, 5 Val
Battery, 5 Val
Battery/A.C., | Use of 1.4 | Volt V | alves in | | | | | | 8.6 | 63 | | Resistance | Coupled Amp | lifier, Atter | nuation | due to | Grid Co | oupling | Conde | nser in | | | 60 - 61 | | | in Grid Circu | | | | | | | | | 9.8 | 21 | | | Screen Droppin | | | | | | | | | | 21 | | | ifier Valves, In | | | | | | | | | | 15-19 | | R.F. Ampi | ifier Valves, L | amited Gri | 1 Input | voitag | e with S | uper-coi | itroi C | пагаете | ristics | 8.6 | 45 | | Canaa- D | nnino Desiste | na Dootstate | long w-1 | th Guna | n control | We less - | | | | | 0.1 | | | opping Resistor
cassing, Formu | | | | | | | 100 | 3000 | 88.56 | $\begin{array}{c}21\\34\end{array}$ | | Screen Vol | tage, Limits o | ia ioi | | | | | 200 | | 30.80 | 0X 1855
1941-20 | 33 | | Shunt Capa | acitances, Effe | ct of (see | also | below) | | | \$000
\$000 | | 24.44 | | 4 | | Shunt Capa | acitances, Cori | rected Data | | | | | 272 | 202 | (2020) | | $5\overline{4}$ | | Super-conti | rol Characteris | stics, Limit | ed Gri | d Input | Voltage | with | ** | 6.06 | | | 45 | | | | | | | | | | | | | | | Tone Conti | rol, Continuou | sly Variabl | е | 65 959 | * * | **** | *50.00 | 505 | 2016 | 20.00 | 41 | | | rol, Three Pos | | | 1000 | 9.90 | | 90090 | 4000 | 39033 | 30.00 | 41 | | Transmittii | ng Valves, Aus | tralian mae | de 🦡 | 60 | 4.40 | 3634 | 3000 | \$1181 | | 94.40 | 54 | | | | | | | | | | | | | | | | Numbers, Me | | | | | | *:* | • | 500 | 35-50 | 64 | | Voltage Re | gulators, Gase | ous, Use of | ľ. | 5 (5.2) | 35.183 | 353 | *53* | 185 | 1503 | 0.5 | 35 | | | | | | | | | | | | | | | 1A7-G | Mounting Pos | ition | | 90.0 | *:* | | | | 91.00 | 30.45 | 46 | | 1A7-GT, | Announcemen | t | | | 202 | 4000 | 70 | | | (V. 165) | 46 | | 1050 | Mounting Pos
Shortwave Op | | | 2012 | | 100 | 505 | | | 4 3 | 46 | | 1C7-G | Used in Recei | | | | | • • |
7.77 | | 200 | 05.50 | 24 - 25 | | 1D8-GT | Announcemen | | | 9997 | 765
805 | 707
108 | 605
604 | | S1.8
Sept. | at. (5)
64 - 63 | 46 | | 120 - | Data | | | 16016 | 808 | ¥3.00 | *** | | 993.98 | 0 8 | 55 | | 1F5-G | Maximum Gri | id Resistor | | 86.6 | 909 | €:: | 200 | | 914 | 9 8 | 33 | | 1G4-G | Announcemen | | | 12774 | 272 | 100 | • • | | | N2 20 | 22 | | | Data | | | | | | *3 | 500 | 0.00 | 9.0 | 36 | | 1050 | Mounting Pos
Maximum Gri | | | (*) *
(*) * | 5-3 | 160 | 2.15 | | 5878 | 3.5 | $\begin{array}{c} 46 \\ 33 \end{array}$ | | 1G5-G
1G6-G | Announcemen | | WILII | *** | 676 | 535
636 | **** | | 0000
0000 | 90.00
90.00 | $\frac{33}{22}$ | | 100-0 | Data | | | *** | *** | e 8 | 274
274 | | 2018
2018 | S4 42 | 36-37 | | | Mounting Pos | | | | 272 | | 272 | | 22 | 16 20 | 46 | | $1 \mathrm{H} 5 \mathrm{-G} \mathrm{T}$ | Announcemen | t | | | 979 | | 41.5 | * * | 2.5 | | 46 | | | Mounting Pos | | | 200 | 202 | 100 | 25.05 | tet | 1835 | 21 to | 46 | | 1K7-G | Used in Rece | | | (*) | 888 | *10 | ** | 630 | 0.00000 | 28 55 | 24-25 33 | | 1L5-G | Maximum Gri
Used in Rece | | with | 919 | 809 | * * * | 808
808 | 200
200 | 19090 | 94 45
94 46 | 24 - 25 | | 1M5-G | Used in Rece | | | 272 | 200 | F-1 | 17 | 2.2 | 0404 | 24 10 | 24 - 25 | | 1N5-GT | Announcemen | | | 9.5 | 272 | 100 | 2. | 100 | (0)(0) | 8.8 | 46 | | | Mounting Pos | | | 2002 | 500
505 | *6* | 500
800 | 506
505 | 1909 | 85 E3 | 46 | | 1Q5-GT | Announcemen | | | (E)58 | XIII | 6:0 | 9000 | 1(15) | (4)(4) | 17 12 | 46 | | | Mounting Pos | | 1.5 | (*) (A | *118 | 6700 | 889 | | 10000 | 29 (8) | 46 | | 1T5-GT | Announcemen | | • • | 19134 | 200 | 4100 | 25.5 | 1000 | (4)(4) | 34 43 | 7 0
6 3 | | 2 A 3 | Data Application . | | | × 4 | 274 | | 555 | 500 | 0202 | HE AT | 48 | | art o | Maximum Gri | | with | (7)(1 | 5.5 | | 88
88 | 100 | | 3.5 | 33 | | 2V3-G | Announcemen | | | 2557
2555 | 5.5
6.6 | \$65
IROS | ALC
ROR | 1000
1000 | 3838 | 15 52 | 14 | | 2X2/879 | Announcemen | | | 1515
1616 | \$000
\$000 | 633 | 13 | 600 | 09000 | 0.5 | 46 | | 0.1.70 | | | | 984 | \$5.0 | 400 | 202 | 4000 | (*)X | 0 E | 53 | | 3AP1/906- | | | | | 878 | 100 | 272 | 100 P | 74.14 | 8 48 | 46 | | 3AP4/906-3Q5-GT | | | • • | 757 | 55.5 | 0.6 | *** | * | (*)* | 3.5 | $\frac{46}{70}$ | | owo-cr | Announcemen Data | ι | • • | 3511 | 5375 | EEE | 555 | #.5#
11.00 | 05051 | (A A) | 64 | | 5AP4/1805 | | | | . 77 | 808
808 | 635
636 | 903
903 | #0(#)
#0(#) | 98083
(1808) | 29 50 | 58 | | 5BP1/1802 | | | | 0.5 | 217 | 155 | #37
#37 | #390
#390 | 100000 | 14 10 | 46 | | | | | | | 232 | | ¥/02 | 2002 | 19137 | 32 30 | 46 | | 5BP4/1802
5U4-G | -P4 Annound | ement | | * 2 | | | | | | | 48 | | 5 V 4-G | Note on Characteri | istics | | | 20.0 | ¥/4 | 2002 | 2012 | | 5.5 | 37 | |---|--|---------------------------------------|----------|--|--|--
--|--|--|---|--| | 5 Y 3-G | Use in Receiver | | | | 8.05 | 515 | 900 | 808 | 5.6 | 241 to | 39 - 43 | | 6A8 | Input Loading | | | | 3012 | ¥.5% | *** | 6000 | F (4) | 29.06 | 16 | | 6A8-G | Use in Receiver | | | | 909 | 877.6 | 12712 | 200 | 60040 | (4.9) | 39 - 43 | | 6A8-GT | Announcement | | | | 272 | 200 | 4074 | | 200 | 34.00 | 6 | | 6AB7/185 | 3 Announcement | | | | | * * * | 23 | * 4 | *22 | | 38 | | 6AC7/1852 | | | | | 202 | tet | 18.00 | ###
| 500 | (2.2) | 38 | | 6AE5-GT | Announcement | | | | 200 | 16th
#55# | W 18 | 758
858 | 1808 | (3) (7) | 70 | | 6AG7 | Announcement | | | | 909 | FOR | 90.74 | 2015
2015 | 10000
10000 | 190.90 | 46 | | 01101 | Data and Applicati | | | | 989 | ¥34 | 533 | 900 | 0.00 | 54 AS | 6.5 | | 6B6-G | Grid Leak Bias | | | | 272 | 0.79 | 200 | 277 | 297 | 34.4 | 3 | | 000 0 | Use in Receiver | | | | | | | 83 | 552 | 22.00 | 39-43 | | | With Parallel Feed | | | | 27/2 | 800 | *11 | | | 10.18 | 5 | | 6B8-G | With Parallel Feed | | | | 1569 | 1335 | 2.3 | 75.5 | 5000 | | 5 | | 6F5-GT | Announcement | | | | *: * | 300 | 97.9 | 305 | 1/35 | (#1.00) | 38 | | 6F6-G | Maximum Grid Res | | with | | 3000 | *** | 90.9 | 808 | 600 | 00000
54 40 | 33 | | 01 0-C | | | W 1011 | | 19774 | 200 | 202 | \$0.8
\$0.9 | 600 | Se 45 | 39-43 | | 6G8-G | Dropping Resistor | | | | • • | | | | | | 21 | | 6J5-GT | Announcement | | | | | • • | | *.* | | | 38 | | 6J7 | | • • | • • | | 303 | *00 | (5)\2 | 202 | 50.5 | 27,175 | 16 | | 6J7-G | Input Loading of | | | • • | *10 | 858 | (5))\$ | 200 | 5000 | 351.63 | 48 | | 001-CT | Application | lhook | | | * 33* | *23 | 14119 | 90(4) | 500 | 0.600 | 5 | | 6J7-GT | With Parallel Feed
Announcement | | | • • | *** | 339
600 | 8034 | 9004 | #31#3
F31#3 | 20003 | 38 | | 6K6-GT | | | • • | • • | • • | | 1404
2400 | 200 | \$200
0000 | 36368 | 38 | | 6K7 | Announcement | | | | 0.7/2 | 202 | 9.9 | | 2112 | 7.0 | 51 - 53 | | 0.17.1 | As I.F. Amplifier | • • | • • | • • | 207 | 5.0 | 707 | 500 | 5.05 | 20 | 16 | | 6K7-GT | Input Loading of | | | | 908 | **** | 203 | 101 | 2.3 | 3 16 | 6 | | | Announcement | | | | (a) (a | 9000 | 0.19 | * | (530) | (10.535 | 38 | | 6K8-G | Coils for | | | | 45.4 | 202 | 900 | 904 | 636 | | | | | Heater Voltage of | | T 2 14. | | 12774 | 2772 | 54.54 | 9129 | *11 | (47.4) | $\begin{array}{c} 33 \\ 26-27 \end{array}$ | | | Oscillator Grid Cui | | | | 2.3 | | 0.04 | 202 | | Tatla: | 26-27 | | | To Avoid Grid Blo | | | | 25.25 | | 5.5 | * * | 100 | | _ | | 6L6-G | Maximum Grid Res | | | | (#01 <u>9</u> | 3.03 | 353 | * .* | 1665 | 12.1 | 33 | | 6L7 | Input Loading of | | | | 934 | 800 | 3553 | ** | 1000 | (*) * | 16 | | 6P5-G | Announcement | 1.17 | | | | 20.0 | 900 | | 4000 | 0.00 | 70 | | 6Q7-G | Parallel Feedback | | | | 2014 | | 542.04 | 3600 W | 6000 | | 5 | | 6Q7-GT | Announcement | 1.0 | | | | | 12/2 | 47.4 | * - * | 741.4 | 6 | | 6SA7 | | | | | *27 | 200 | | | • • | | 6 | | | Data and Applicati | | | | 0.0 | 808 | 90 | 50.5 | 5.00 | (3)(3) | 8-12, 14 | | | Input Loading of | | | | | 0.00 | 15050 | *::: | \$200 | 1,9000 | 16 | | 6SC7 | Announcement | | | | 10014 | 47.4 | (8030) | • • | 101 | | 6 | | 0078 | Data | | | | | | | | | | 14 | | |
| | | | | • • • | 4.14 | 9004 | \$57% | 10.0 | | | 6SJ7 | Input Loading of | . = | | · § | | • | 3030
3030 | | 474 | 6.9 | 16 | | 6SJ7
6SK7 | Input Loading of
Input Loading of | . = | 1.2 | · § | | | | | | | $\begin{array}{c} 16 \\ 16 \end{array}$ | | 6SK7 | Input Loading of
Input Loading of
I.F. Amplifier usin | g (R | .C.A. No | · § | | * * | 2012 | * 4 | 1774 | 6.9 | $ \begin{array}{r} 16\\ 16\\ 51-53 \end{array} $ | | 6SK7
6U5 | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5 | . = | .C.A. No | · § | 230 | 61/3
61/3 | (a) | | 100 | 0.4 | $ \begin{array}{r} 16 \\ 16 \\ 51-53 \\ 6 \end{array} $ | | 6SK7
6U5
6U5/6G5 | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement | g (R | .C.A. No | ote) | 930
930
93 | 61/5
61/5
7:65 | (40)
(40)
(53) | | 200
100
100 | 08 | $ \begin{array}{r} 16\\ 16\\ 16\\ 51-53\\ 6\\ 6 \end{array} $ | | 6SK7
6U5 | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement
Dropping Resistors | g (R | .C.A. No | ote) | ***

*** | 61/5
61/5
61/6 | (()
() | ***

*** | 1000
1000
1000 | 64
64
72.4
55.8 | $ \begin{array}{r} 16 \\ 16 \\ 51-53 \\ 6 \\ 6 \\ 21 \end{array} $ | | 6SK7
6U5
6U5/6G5 | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement
Dropping Resistors
Improved Stability | g (R

for
with | .C.A. No | ote) | 1000
1000
1000
1000
1000 | 51/5
51/5
51/5
51/6
51/8 | 2002
(400)
2001
(400) | 100 A
100 A
100 A
100 A | 100
100
100
100 | 2.4
2.4
2.4
2.4
2.4 | $ \begin{array}{r} 16\\ 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement
Dropping Resistors
Improved Stability
Use in Receiver | g (R | .C.A. No | ote) | 930
93
93
93
93 | 6.05
6.05
8.08
8.08 | 30 (a)
(c)
(c)
(c)
(c)
(c)
(c)
(c) | 60.0
60.0
60.0
60.0
80.0 | 100
100
100
100
100
100 | 16 G
12 A
32 A
32 A
36 G | $ \begin{array}{r} 16\\ 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43 \end{array} $ | | 6SK7
6U5
6U5/6G5 | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement
Dropping Resistors
Improved Stability
Use in Receiver
Heater Voltage of | g (R for with | .C.A. No | ote) | 930
43
43
43
43
43 | 616
616
616
618
618
618 | 2000
(6(9)
9081
1608
1608
3000
2000 | 100
100
100
100
100
100
100 | #100
1007
1008
1008
1008
1008 | 1000
7500
7500
1000
1000
1000 | $ \begin{array}{c} 16 \\ 16 \\ 51-53 \\ 6 \\ 6 \\ 21 \\ 58 \\ 39-43 \\ 33 \\ 33 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G | Input Loading of
Input Loading of
I.F. Amplifier usin
In place of 6G5
Announcement
Dropping Resistors
Improved Stability
Use in Receiver
Heater Voltage of
Maximum Grid Res | g (R for with | .C.A. No | ote) | 9.90
9.90
9.90
9.90
9.90
9.90
9.90 | 515
515
516
618
518
511
515 | | #10
#10
#10
#10
#10
#10
#10 | 1000
1000
1000
1000
1000
1000
1000
100 | 10 40
(10 40
(10 40
(10 40
(10 40
(10 40
(10 40
(10 40) | 16
16
5153
6
6
21
58
39-43
33 | | 6SK7
6U5
6U5/6G5
6U7-G | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restricted Operation | g (R for with | .C.A. No | ote) | # (4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4) | 5.05
5.05
5.05
6.06
9.08
9.08
5.05
5.05 | (a)
(b)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c) | #19
#19
#19
#19
#19
#19 | 100 000 000 000 000 000 000 000 000 000 | 1000
(200
(200
(200
(200
(200
(200
(200 | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Retariode Operation Announcement | g (R for with sistor | .C.A. No | ote) | 9.90
9.90
9.90
9.90
9.90
9.90
9.90
9.90 | 505
505
506
608
608
608
506
507
507 | (a)
(b)
(b)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c | 200
200
200
200
200
200
200
200 | 100
100
100
100
100
100
100
100
100
100 | 10.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00 | 16
16
51-53
6
6
21
58
39-43
33
33
48, 50
58 | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri | g (R for with sistor | .C.A. No | ote) | #360
#360
#360
#360
#360
#360
#360
#360 | 505
505
506
608
608
608
506
507
507 | (a)
(b)
(b)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c | 200
200
200
200
200
200
200
200 | 100
100
100
100
100
100
100
100
100
100 |
10.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00
(2.00 | 16
16
51-53
6
6
21
58
39-43
33
48, 50
58
46 | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6 | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor | .C.A. No | ote) | #360
#360
#360
#360
#360
#360
#360
#360 | 5.05
5.05
6.05
6.05
6.05
6.05
6.05
6.05 | (C) | 200
200
200
200
200
200
200
200
200
200 | 2000
2000
2000
2000
2000
2000
2000
200 | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48,50\\ 58\\ 46\\ 70 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7 | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restricted Operation Announcement Revised Characteri Announcement Announcement | g (R for with sistor | .C.A. No | ote) | 2000
2000
2000
2000
2000
2000
2000
200 | 500
500
500
500
600
600
500
500
500
500 | (C) | \$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25 | 200
200
200
200
200
200
200
200
200
200 | 100
000
000
000
000
000
000
000
000
000 | $ \begin{array}{r} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 58\\ 46\\ 70\\ 70 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement Announcement Announcement Announcement | g (R for with sistor stics | .C.A. No | | 2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000 | 505
505
505
606
406
406
507
507
507 | | 500
500
500
500
500
500
500
500
500
500 | 100
100
100
100
100
100
100
100
100
100 | 100
000
000
000
000
000
000
000
000
000 | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ \end{array}$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Retriode Operation Announcement Revised Characteri Announcement Announcement Announcement Announcement Announcement Announcement Announcement Announcement | g (R for with sistor stics | .C.A. No | . 60
ote)
. 60
. 60
. 60
. 60
. 60
. 60
. 60 | | 505
505
505
505
505
505
505
505
505
505 | | \$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25 | 200 200 200 200 200 200 200 200 200 200 | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-G
7A6
7A7
7A7-LM
7A8
7AP4 | Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | .C.A. No | | 600 (100 (100 (100 (100 (100 (100 (100 (| 500
500
500
500
500
500
500
500
500
500 | (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) | \$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25
\$25 | 100 mm m | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7 | Input Loading of
Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | . 60 ote) *** . 60 | 500
500
600
600
600
600
600
600
600
600 | 505
500
500
500
500
500
500
500
500
500 | \$1.40
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50
\$1.50 | 200
200
200
200
200
200
200
200
200
200 | 100 100 100 100 100 100 100 100 100 100 | | $ \begin{array}{c} 16\\ 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | .C.A. No | . 60 ttl 6 | 500
500
500
500
500
500
500
500
500
500 | 505
505
505
505
505
505
505
505
505
505 | (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | 200
200
200
200
200
200
200
200
200
200 | 200 200 200 200 200 200 200 200 200 200 | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48\\ 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | . 60 ote) | 500 (100 (100 (100 (100 (100 (100 (100 (| 500
500
500
500
500
500
500
500
500
500 | | 200
200
200
200
200
200
200
200
200
200 | 200 200 200 200 200 200 200 200 200 200 | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | | 500 (100 (100 (100 (100 (100 (100 (100 (| 500
500
500
500
500
500
500
500
500
500 | | 200
200
200
200
200
200
200
200
200
200 | 200 200 200 200 200 200 200 200 200 200 | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 46\\ \end{array}$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Ret Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | . 60 ote) *** . 60 . 60 . 60 . 60 . 60 . 60 . 60 . 60 | | 500
500
500
500
500
500
500
500
500
500 | | 200
200
200
200
200
200
200
200
200
200 | 200 200 200 200 200 200 200 200 200 200 | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48, 50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 46\\ 6\\ \end{array}$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | . 60 ote) *** . 60 · 60 · 60 · 60 · 60 · 60 · 60 · 60 | 500
500
600
600
600
600
600
600
600
600 | 505
500
500
500
500
500
500
500
500
500 | | \$10 | | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 46\\ 46\\ \end{array}$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | . 60 to |
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000 | 505
500
500
500
500
500
500
500
500
500 | | | 200 200 200 200 200 200 200 200 200 200 | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 46\\ 6\\ 46\\ 30\\ \end{array}$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8
12F5-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | | 500 1 100 1 | 505
506
506
506
506
507
507
507
507
507
508
508
508
508
508
508
508
508
508
508 | | 200
200
200
200
200
200
200
200 | 200 200 200 200 200 200 200 200 200 200 | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48,50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 46\\ 6\\ 46\\ 30\\ 70 \end{array} $ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8
12F-GT
12J5-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics | with | | 500 (100 (100 (100 (100 (100 (100 (100 (| 500
500
500
500
500
500
500
500
500
500 | | 200 | 200 | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8
12F5-GT
12J5-GT
12J7-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt | with | . 60 ote) *** . 60 . 60 . 60 . 60 . 60 . 60 . 60 . 60 | | 500
500
500
500
500
500
500
500
500
500 | | | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8
12F5-GT
12J5-GT
12J7-GT
12K7-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt | with | | | | | \$10 | | | $ \begin{array}{c} 16\\ 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
9AP4/180
12A8-GT
12AP4/18
12C8
12F5-GT
12J5-GT
12J7-GT
12K7-GT
12Q7-GT | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | with | | | 500
500
500
500
500
500
500
500
500
500 | | | | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7
6U5
6U5/6G5
6U7-G
6V6-G
6V6-GT
6Y6-G
7A6
7A7
7A7-LM
7A8
7AP4
7B7
7C6
7Y4
9AP4/180
12A8-GT
12AP4/18
12C8
12F5-GT
12J5-GT
12J7-GT
12K7-GT
12SA7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Ret Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | with | | | 500
500
500
500
500
500
500
500
500
500 | | | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-G 6V6-GT 6Y6-G 7A6 7A7 7A7-LM 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J7-GT 12K7-GT 12SC7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | with | · · · · · · · · · · · · · · · · · · · | |
500
500
500
500
500
500
500
500
500
500 | | 200 | | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48, 50\\ 58\\ 46\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-G 6V6-GT 6Y6-G 7A6 7A7 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J7-GT 12J7-GT 12SA7 12SE7 12SF5 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor | with | · · · · · · · · · · · · · · · · · · · | | 500
500
500
500
500
500
500
500
500
500 | | 200 | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-G 6V6-GT 6Y6-G 7A6 7A7 7A7-LM 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J5-GT 12J7-GT 12SA7 12SA7 12SF5 12SJ7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Res Triode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | with | · · · · · · · · · · · · · · · · · · · | | 500
500
500
500
500
500
500
500
500
500 | | ### ### ### ### ### ### ### ### ### ## | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-GT 6Y6-G 7A6 7A7 7A7-LM 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J7-GT 12SC7 12SC7 12SC7 12SK7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | .C.A. No | · · · · · · · · · · · · · · · · · · · | | 500
500
500
500
500
500
500
500
500
500 | | | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-G 6V6-GT 6Y6-G 7A6 7A7 7A7-LM 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J5-GT 12J7-GT 12SA7 12SA7 12SF5 12SJ7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt | with | · · · · · · · · · · · · · · · · · · · | | | | | | | $\begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 33\\ 48, 50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 6SK7 6U5 6U5/6G5 6U7-G 6V6-GT 6Y6-G 7A6 7A7 7A7-LM 7A8 7AP4 7B7 7C6 7Y4 9AP4/180 12A8-GT 12AP4/18 12C8 12F5-GT 12J7-GT 12SC7 12SC7 12SC7 12SK7 | Input Loading of Input Loading of Input Loading of I.F. Amplifier usin In place of 6G5 Announcement Dropping Resistors Improved Stability Use in Receiver Heater Voltage of Maximum Grid Restriode Operation Announcement Revised Characteri Announcement | g (R for with sistor stics nt nt | with | · · · · · · · · · · · · · · · · · · · | | | | | | | $ \begin{array}{c} 16\\ 16\\ 51-53\\ 6\\ 6\\ 21\\ 58\\ 39-43\\ 33\\ 48,50\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$ | | 25L6-GT | Announcement | | | | 141.47 | \$4.70 | 100 | 701.00 | 92.00 | 0.00 | 6 | |---|-----------------|------------|--------|--------------|------------------------------|------------------|--------------|---------|----------|-------------|-----------| | 25Z6-GT | Announcement | | | | | 8.0 | | | 3. 5 | 17.00 | 6 | | 35A5 | Announcement | | | | | | | | | | 70 | | 35A5-LT | Announcement | | | | $(\mathcal{I}/\mathcal{O})$ | 27 (6) | F(0.00) | 9,500 | 8 8 | 3535 | 70 | | 35L6-GT | | 1000 | | * * | 5505 | 54 40 | 6 (3) | 0000 | | 0.150(0) | | | | Announcement | | | | E:(E) | 09000 | 41.4 | 200000 | 20.00 | 40.00 | 30 | | 35 Z 3 | Announcement | | | | 100 | 04/000 | *:(*) | 5.00 | 34 45 | | 70 | | 35Z3-LT | Announcement | | | | 2.0 | 78.181 | 2000 | | 74 17 | * 12 | 70 | | $35\mathbf{Z4}\text{-}\mathbf{GT}$ | Announcement | | | | F (6) | 26.30 | 100 | 12/2/ | 3.6 | 9.00 | 30 | | $35\mathbf{Z}5\text{-}\mathbf{G}\mathbf{T}$ | Announcement | | | | 5.00 | 1,07,00 | 100 | 1896 | CF 80 | 080380 | 38 | | 45 | Maximum Grid | Resistor | with | | 600 | 100000 | 6006 | 500000 | E 40 | 9000 | 33 | | 45Z5-GT | Announcement | | | | 06000 | 34.40 | **** | 1979 | 79 67 | 9090 | 70 | | 50 | Maximum Grid | Resistor | | | 636 | | | 2020 | 20 00 | | 33 | | 50L6-GT | Announcement | it constor | | 12: | | 100.007 | 4110 | | 29 47 | * 14 | 46 | | 75 | With Grid Leak | | | | DEW. | 3 1 | 202 | | 01 5 | 12/04 | 3 | | 10 | | | | | | | | | 3 S | 8.0 | | | 0.037 | With Parallel F | | | 1.5 | 15030 | 8 5 | | 85. 56 | 25.53 | 3555 | 5 | | 83V | Note on Charac | | 1.15 | 535 | 5287 | 9.6 | 5100 | 0.000 | 28 63 | (8) (8) | 37 | | VR105-30 | Application | | + (9 | • 18 | 100(6) | 9.80 | 100 | 34(34) | 30.00 | 900 | 35 - 36 | | VR150-30 | Application | | (4)(4 | | (16/4) | 9.48 | 2000 | 04/000 | 20 82 | 34274 | 35 - 36 | | 806 | Photograph | 1000 | | | 10.40 | 94.40 | | Carratt | W.163 | 1000 | 23 | | 807 | Data with Phot | ograph | | 77. | 4.10 | 02 - 20 | | | 3 E | 4.34 | 31 | | 809 | Data | | 277 | | | 9.41 | 15.54 | 187189 | 10.00 | 150 | 7 | | 810 | Photograph | | 900 | | | | | (12)(2) | | | i | | 811 | Announcement | 200 | 7.0 | 50 | 7.57.55 | 2.10 | 5:30 | | 10 55 | 3535 | 70^{-1} | | > | Data | | | | | 87 19 | 636 | 09190 | 0.50 | 16.39 | 67 | | | Photograph | *5341 | | . 30 | 16.0 | 0000 | £30 | 31.45 | 29 (0) | 1000 | 68 | | 812 | Announcement | | | | (4)(4) | 34.65 | 4000 | 0.00 | 24 E | 883 | | | 014 | | | . 87 | | 4 4 | | | | G 13 | 14.5 | 70 | | 0.0.0 | | | | | | 3 8 | | 55. 86 | (5.12) | 200 | 67 | | 828 | Announcement | 1.00 | | | $(\mathcal{T})(\mathcal{T})$ | NT TA | 535 | 890.90 | 95.155 | 55/55 | 70 | | 0.05 | Data with Phot | | 101 | | 1000 | 81.10 | 1000 | 9.25 | 25 (6) | 303 | 69 | | 833 | Data with Phot | - | | 105E | 14000 | 2.6 | 0636 | 54.30 | (C)(C) | 900 | 29 | | 893 | Announcement | | - 100 | | (6) % | S 43 | 2003 | 0.00 | 90.0 | 34224 | 46 | | | Data | | | | 1989 | 94.47 | | 15.40 | 02/02/2 | 12775 | 68 | | 899 | Announcement | | | 27. | 3100 | V4 123 | 100 | | | 909 | 70 | | | Data | | | • (¥) | | | | 15 TO | | | 68 | | 903 | Deleted from L | | | 8 | | | 896 | | 85 ES | 3555 | 70 | | | Note on Interch | | | 1.00 | 30.00 | at 15 | 5037 | 356 380 | 39.792 | 9551 | 14 | | 905 | Note on Interch | | | | 3650 | 22.27 | | (4) | 34.00 | | 14 | | | Note on Interch | | | • : | 0.00 | 08.80 | 10.0 | (4-(2) | 35 83 | 90.00 | | | 906 | | | | 6.1 | (4)(4) | 14 == | 6.34 | 4.19 | 92 - 52 | 3974 | 14 | | 906-P4 | Note on Interch | | | . (4) | 1414 | 38 50 | | | (4.6) | | 14 | | 907 | Note on Interch | | | | 0.0 | | 15 (5) | 0.5 (5) | # S | 100 | 14 | | 908 | Note on Intercl | | | • (8) | (5.05) | 57 50 | 15000 | 28383 | 05 56 | 10(19) | 14 | | 909 | Note on Interch | | | F | (0.0) | (8.8) | 100 | 3000 | 4 61 | 909 | 14 | | 910 | Note on Interch | | ity | | 09000 | 34 E | 14000 | 0.00 | 19 (0) | 2009 | 14 | | 911 | Deleted from L | ist | | | 19075 | 4.40 | 1.65% | 9.49 | 30.00 | (4) 4 | 70 | | 924 | Announcement | 1.74 | . 66 | ¥3.40 | | 4 2 | | 9.8 | 2020 | 204 | 58 | | | Photograph | | 992 | 29. | 92.92 | 9.2 | | 7.1 | 200 | | 5.8 | | 925 | Announcement | .6 | | | 41.5 | | | | | 20.0 | 58 | | 926 | Announcement | | 1.00 | - 141 | | | 1828 | 25.50 | 8.00 | | 58 | | 927 | Announcement | 1,55 | | | 351.85 | it is | **** | 38.80 | 16(6) | (0)(0) | 58 | | 954 | Input Loading | | | - 30 | 34 (4) | 57 55 | 1000 | 3 42 | 36000 | 4 - 4 | 16 | | 957 | Announcement | | 303 | | (4)(6) | 54 65 | 7.07.00 | 5. 43 | 79.16 | 0.74 | | | 001 | Data | • • | | 53.00 | 34.4 | 9 10 | - | | 3.5 | 909 | 6 | | 958 | | 112 | | | | W 20 | 10.0 | 25.50 | 70.00 | (0)/7 | 20, 30 | | J U O | Announcement | 1.0 | 9.3 | | (*1.5) | (F 25) | 16.8 | 31.55 | 85 (88) | 300 | 6 | | 0.50 | Data | • 15 | * (4) | 1 (5) | 31.83 | 8.5 | 0.00 | 29 63 | (0)(0) | 3500 | 20, 30 | | 959 | Announcement | 1.19 | | | 39-30 | 58 ES | (600) | 3 H | 600a): | · : | 6 | | 1010 | Data | | | RO:- | (y)(y) | 09 IEC: | * * | (4.4) | 200 | * - * | 20, 30 | | 1616 | Data | • 10 | | iS. | 34 165 | 2 kg | 19797 | 4.2 | 9.00 | 204 | 2 | | 1620 | Announcement | | | | S 2 | 24 82 | V . | | Garage. | | 30 | | | Data | | 100 | | | (F) (F) | 0.000 | DF 40 | 2010 | 2000 | 27 | | 1621 | Announcement | | 1.35 | 535 | 78 85 | 28. 89 | 1041049 | 12 M | 1.00(00) | 303 | 30 | | | Data | + 104 | 311 | 531 | 34 40 | 26.063 | 0000 | 0.00 | 2000 | 979 | 27-28 | | 1622 | Announcement | .15 | | 10. | 59 92 | 28 82 | 74/47 | 9.6 | *** | 3.54 | 30 | | | Data | -15 | | - 35 | Sa 15 | | 0.00 | | | | 28 | | 1623 | Data | | | | 100 | 94.040
94.040 | | 25 10 | | | 7 | | 1624 | Announcement | | | | | | | 3. 10 | 3.00 | 5.17 | | | | Data (see also | helow) w | ith Ph |
otograph | 8. 2 | 55.75 | | 87 16 | 3000 | 1500 | 46 | | | , | , , | | otograph | 0.00 | 31.5 | (4)(4) | 9 10 | 1000 | *10 | 56-57 | | | Correction to D | | | | 2 % | 28 - 62 | | 9-8 | (4)(4) | 90/9 | 68 | | 1803-P4 | Announcement | • 100 | + (9) | | 9.40 | 26. 63 | (*) * | * 6 | * * | * - * | 14 | | 1804 - P4 | Announcement | • (6 | | | 9.40 | 64 MB | 141.4 | % 00 | | 909 | 14 | | 1849 | Announcement | | | | 5.10 | 8.8 | 19.18 | 9.97 | 55(15) | 2.1 | 38 | | 1850 | Announcement | • 19E | ¥). | | 22.20 | 8.5 | 12.00 | 20.00 | 06063 | 0039 | 38 | | 1851 | Input Loading | • 1* | * * | | 25.50 | 38 83 | 10000 | 29 (2) | 00000 | *1* | 16 | | 1852 | Input Loading | | | | 28.00
 94 +0 | 0.000 | 9 6 | 46.65 | 903 | 16 | | 1853 | Input Loading | | | | 9 10 | 94 M2 | 0.00 | 8 45 | *** | 00.0 | 16 | | 1898 | Announcement | | | | 8 48 | 9.63 | 1000 | 0.00 | 9.62 | | 70 | | 2050 | Announcement | - 12 | | | 2 2 | | | | | | 46 | | 2000 | Data | | | | | *** | | 97. 19 | (*)(*) | 2.77 | | | 2051 | Announcement | | | | (21.7) | (0.10) | (9.18) | Nº 10 | 15(15) | 2005 | 37 | | 2001 | TO 1 | | • • | | 2.8 | 05-3% | (4)(4) | 9 10 | 0.00 | 3036 | 46 | | | Data | | | | 390.00 | 36(*): | 2,63,95 | 0.0 | * * | *:* | 44 - 45 |