RADIOTRONICS TECHNICAL BULLETINS, 1937

INDEX

									-	Page
Absolute Sensitivity, Tests for			1327				0.00	12 E3	9595	8, 15
Accumulator Operation, Receiver f	or (see	unde	er Rece	erver)						
Air Cell, Operation, Dual Wave R	eceiver	for				6000	(4)(4)	24 €	\$600	6.9
Receivers, Valves for	+ k					100	0.00	34 61	404	25
Resistors for use with Valve Combinations for	- 1			+ 29			7414		* *	96
Valve Combinations for								1-	9.9	27
Amplified A.V.C.	a Decel	D., 11	Division dis	• •		* (*	1.535	3000		56
Amplifiers, Class AB, Operation o	I Pusn-	-Pun	Triode			5.00	5.65.65	2.0	1133	64
Class B, Matching for Multi-Stage						5.05	(e) (e)	9.45	4 (41)	
Pentode, Resistance Coupled		•	• •		• •	6000	102	3956	0.77	
Pentode, Resistance Coupled, B	v.nage (Yonder	 neere in			£33	202	100		50, 87 39
Triode Operating Conditions	for	Jonacı	10016 111			100			(5,15)	7.0
Triode, Operating Conditions Triode, Push-Pull, Part I—Th Triode, Push-Pull, Part II—Gr	eoretic	 al	35	: 1			5.5	(4.5)	(0.0)	0.4
Triode Pugh-Pull Part II—Gr	anhical	Annli	cation			505	1909	25.49	(4)	78
Triode, Push-Pull, Power Outp	ut and	Optim	um Loa	ad for		500	#530 R3#	(4.4)	3000	65
7 Watt. Fidelity (A115)	. 4				5	5.	69	4.1	(2)(2)	
7 Watt, Fidelity (A115) 13.5 Watt, Fidelity (A120)						630	5 19793	8.8	3.0	53
30 Watt Transformer Coupled	6L6G.	with	Negati	ve Fee	edback	200		3.5	317/	4.0
Attenuation Function of Stage				1	4	100	75.55	00 tu	98080	0.0
Automatic Volume Control						100	6.191	/9 / 10	9090	47
Automatic Volume Control Diode Load						100	sand.	33 40	26.60	86
Distortion with Filter Circuits, Design of Filter, Purpose of Operation of Converter or I.F. Special Arrangement to Avoid System Time Constant of						VIX.	A 20	10000	90.00	55
Filter Circuits, Design of						\$(50)	20125	Fe 15	(2)(2)	86
Filter, Purpose of					- 86		202			86
Operation of Converter or I.F.	Stage	with					500	37.(2)	2.12	86
Special Arrangement to Avoid	Overloa	ding		16			F-100	35 5	4.1	6 9
avstem, time constant of			1000			1 - 1	1000	29.00		86
Balanced Tone Band Width, Variable Barretter 302, Application of Bass Boosting						500 8	C.S.	9.80	(9.14)	
Band Width, Variable			1.1			10 (0)		3885	14 13	
Barretter 302, Application of			2.600			P	alla live	100		67, 80
Bass Boosting	· ·					F-18	100		3 (5.5)	
Battery, B, Conditions for Lower I B Class Amplifier (See under Ampli				• •			5000	45.50	(2) (2)	61
Blocking, Grid, in Battery Receive	ners)									F.0.
Broadcast Band, Operation of 106	on			1.0	- 81	535	K (#)		9 -	59
Coils for Operation of 106 on	OH			12.		E-90	F24	26. 27		63 63
Coils for Operation of 1C6 on Buffer I.F							100	09:40	. 8	
By-pass Condensers in Resistance C	oupled	 Pento	de Amr	olifiers						39
Cathode Ray Oscillograph for Tes	ting					(4)		32.(2)		35, 42
Cathode Resistor, Prediction of, for I	Push-Pu	ll Tric	ode Ami	plifiers			2015 1000	1222		
Characteristic Curves, Operating Co							E26	54.6		64
Dynamic, Drawing of				4.4			101	3658	130	78
Dynamic for Zero Plate Circui	t Distor	rtion					810	G II		74
Coils for Battery Amateur Receiv	er (A7	3)								84
Operation on Broadcast Band	· 16						5.5	10.00		63
Short Wave 1C6 Operation							606	55.785		63
Primary High Impedance							***	39393		93
Coil Winding Data for Amateur Rec	eiver						400	(459)		34
Computation of Third Harmonic Conversion A.C./D.C. using 866 Converter, Operation of, with A.V.C.							\$550			78
Conversion A.C./D.C. using 866						1.0	200	(4)(4)		9
Converter, Operation of, with A.V.C	3.	4)	.020							86
Converter valves, Dimeuity in linin	gup.						505	85.50	1000	60
I.F. Sensitivity Measurement				• •		5.8	100	38.85		10
		200					100		- EC	10
						• (4)	90.0			56
Crystal Bridge Circuit Decoupling with Multi-Stage Ampli		•				- 90	184	16.0		32
Degeneration, Harmonic Distortion		l baz								28
		тру					5/15.	0.00		93
~						• •	2014	100		86 93
See also under Diode, etc.	• •					• •	*: 4	:(*(*)		90
Differential Loading, Distortion du	e to						457			= 56
Diode Detectors, Compensated Circu						¥	202	(14) (g)	4.5	21
Distortion in			20	(4)		202	F/F		8.5	11, 20
Need high input voltage			30.00				505	1555 118	12.71	58
Diode, Load, A.V.C		0.40	2020		200	*0*	#0.00 #0.00	KOK:	20.00	86
Load Resistance, A.C. Shuntin	g of	100	24 47	1000	196	X Car	80%	1836	5 6	11
Separate, for A.V.C				1900	40E		459	1875	(2.4)	60
Dissipation, Plate and Screen, in Ter							*17	202	4.2	76
Distortion, Criterion of							200	.55	- 6.6	78
Determination of, and Power O	utput						5.5	150	25 10	75
Determining Power Output, wh						• (5)	8//8	199081	12.55	74
Dynamic Characteristics for Z	ero Pla	ate Ci	ircuit				200 -	::0:00	(8.8)	74
Effect of Speaker Resonance	on .						808	F1543	241.42	3
						. 90	100	1414	9.1	78
						4.5			9.0	2-3
Harmonic, reduced by Degenerat							20.2	(2)(0)	81.5	93
In Diode Detectors							2000	54036	0.6	11, 20

In Desistance Coupled Destade	A 252.151	l flore								age 39
In Resistance Coupled Pentode Predicition of, in Push-Pull 7	,rioge	Ampli	fiers		- X	9.6	通報		474	64
With A.V.C.						7.1		83. VV	.507 F35	55
Dropping Resistors, Voltage Dividers	and					1.5		9000	(e)((e	95
Dynamic Characteristic, Drawing of			• •			94 (6)	9.8	* *	900	78 74
For Zero Plate Circuit Distort Resistance					127 127	72	2 N 2 D	30 30	24 24	90
Feedback, No Instability caused by,	from	a Pus		Stage		3 -		(A) 20 (A) 20		65
Fidelity, Amplifier Single 2A3 (D41	Rece	iver)	- 98				3. 6	0.00	201	5
Amplifier, 7 Watt 2A3 (A115).			*)*	(6)	100	1.90	(4.4)	9.0	(K) (8	$\frac{45}{53}$
Amplifier, 13.5 Watt 2A3 (A1 Receiver, Testing for			10			9.0	54 #8 54 #8	9690 86740	200	2-3
Filament Circuit Regeneration	F	-51	272			4.6	3.8	22	22	83
Filament Circuit Regeneration Filter Circuits, Design of A.V.C.		123		T)(T)		4.0	St. 10	300		86
Purpose of A.V.C.			1.25	*::*:	• •	. 5	3.63	200	3.55	86 86
Time Constant of Frequency Characteristics of Tuned	d Circ	uits				1.55	9 E	28(18)) (8(18))	000 a 000 a	89
Response, Resistance Coupled	Pentod	e Amp	olifier	X.58:		9	9.40	9.00	5004	38
Graphical Method, Push-Pull Triode						• ¥/	S 25		***	64
Push-Pull Triode Amplifiers, Pa Grid Bias, Graphical Prediction of,	rt II— for Pi	-Appno	ation 1 Triod	 Le Amni	 lifiere	S	9.5		64,	78 78
Blocking, Battery Receivers .		isii-i ui		te Amp	itilet 8	100	55.00	(5.00) (5.00)	THE UT,	59
G Series, Radiotron				- 1	+ (6)	- 5	3 6	-0.00 -0.00	9337 933 2	88
Handbook 464					9000		9.40	* *	* *	25
Harmonic Analysis, Value of Plate Components of Plate Current.						14		3000	315	75 75
Distortion (See under Distortion				102		2.17	100	(419F)	****	10
Third, Computation of		*: 4	10.5	500	1.50	.,	2.5	000		79
High Impedance Primary Coils				100	(8) E)	. 8	25.51	939		93
Reflex Detector	6						39.00	0.00	• •	$\frac{93}{28}$
Injection							64 A0 Shi 60	9090 9090		27
I.F., Amplifier, A.V.C. applied to .			262					20.20		86
Buffer		535	. 3		· 👳	· 🖺	3.5			90
Sensitivity, Reading of	(0)		8.00			12. 63	25.50	* 6		$\frac{10}{13}$
Input Capacity due to Miller Effect . Inverse Feedback, Resistance Coupli	ing An	plied t	o 1D4		100	- 61 - 61	29 50 20 60	* * * ·		7
Series							9 40	36745	18,	
Series, applied to 43 in 5-6 va						• 6	7. 4	1100		67
Series, applied to 6V6G .						100	9.5	1.0	81- 36, 82,	
Series, Arrangement (D42), (1 Series, applied to 1D4 and 1				· ·		15 34 H	55 55 25 76	(E) (E) I U ,	30, 04,	70
Series, Reduction of Effective							01.50	95(#).	19	87
Series, See-saw Voltage Effect .							Si (i)	0.782	• 5(e	87
Series, Why a Pentode First Transformer Coupling Applied						• #1		00 P	¥ .	87 7
30 Watt 6L6G Push-Pull Ampli						- M		4.6		43
Level Indicator using Radiotron 6				_			251050	500 500		77
							0.00(0.00	2.5		74
Diode, A.V.C	on Du	 sh Dull	Tried		ifiore	8 10	(a. 4)	90(40 907)	. (0)	$\begin{array}{c} 86 \\ 64 \end{array}$
Optimum, for Pentodes, Deter						3 E	92 BS	7.1		74
Optimum, for Triodes										75
Reduction of Effective, by Series							2.40	2.5		87
Resistance Calculations, Plate Resistance, Diode, A.C. Shuntin	to P	late				4		****		$\frac{17}{11}$
Resistance, Prediction of, for P						00 04 - 61	096000 096000	9 E	- 24	64
Load Line				_		200	24.45	***		72
						9.0		W 10	. 4	74
Plate to Plate, used as Basis Position, Approximation to						2.0	3 8	• 0		$\frac{64}{75}$
Shifting of, for Improved Accur						* 10	251.89	35 PS		75
Loud Speaker, Loading, Effect of Va							3.0	***		76
See under Speaker								0.0	77 09	0 =
Magic Eye Tuning Indicator . Matching of Output Valves					* *	- 8	2 F		77, 82,	. 95
Mercury, Vapour Rectifier (See under	er Rec	tifier)		2020	0.0	1.5	(* n)	5.0		9
Miller Effect					(6)(2.5	2.5	35 (\$15)	13,	90
Modulated Amplifier (See under Ser										G A
Modulation, by Ripple Voltage in C Rise						8 2	(S. 1)	(# 16) (# (#)	969 484	$\frac{64}{55}$
Series						10	(a. i)	5000	232	51
Plate,			118	1.00	1.8	3 5	24	3.50		59
Negative Feedback (See Inverse Fe										2.0
Noise Silencer						00 C 00 A	29 W	906 9 62	904	$\frac{33}{64}$
For Push-Pull Triode Amplifier	's						in at	14.14	0034 9134	79
Oscillation in Power Valves			• 13	- 60		of to		(10)		60
Oscillograph for Testing Absolute	Sensit	ivity	• 92		7.5		10.05	0.5	94 05	15
913 and Corrected Circuit . Output Valves, Matching of	•		174					05 55 02.000	35,	4 Z 8
Pass Band Response			- 794 - Si			0 0 7 ii	(3.000) (3.000)	96065 96183	*(14 *(14	90
Pentode Amplifiers (See under Ampl	lifiers)						-		w	
Pentodes, Determining Optimum Load	d for			lotus d		7	(2)(5)	8.6	9.0	74 - 76
Effect of Variation in Loudspe Plate and Screen Dissipation i	aker . n	Loadin,	g on T	etrodes	and		81 87	21.150	***	$\frac{76}{76}$
Fine with percent Dissipation 1.	**						3000	(6) (6)	**	10

									Page
Power, Matching						(0)		9392	8
Resistance Coupled, in Multi-Stage Self Compensating	Amplifi	ers			• •	34.40	1637	\$01	27
Use of Zero Bias Characteristics of		.0				- 5	***	***	23 76
Photo Tube Types							12.0	***	17
Plate, Current, D.C. Compensating for R Curent, Harmonic Components of					1588		1000	* *	75
Current, Value of, in Harmonic An						. 8	100	212	75 75
Dissipation in Tetrodes and Pentodes			- (4)		2.00	02 20	237		76
Family Characteristics in Valve Outpo	ıt Calcu				. 150			***	72
Regulation, Effects of					8 B	• •	1.50	868	59 76
Regulation, Effects of					1928		100	(A) (A)	74
Delivered to Plate Circuit Output and Distortion, Determination	. ::+						-30	974	76
Output and Optimum Load for Pu	sh-Pull	Triode	 Amnli	fiers	12020				$\begin{array}{c} 75 \\ 65 \end{array}$
Output Calculations, Use of the Plat	e Fami	lv for			100		-050	505	72
Output, Change in, with Load Output, Determining, when Distortion		12 00 2 10 1 0	1.5		200		100	30.00	74
Output, Maximum, Class AB ₁ Cond	n is neg itions i	necessa.	rv for		1085 867		+ 4	1250	$\begin{smallmatrix}74\\64\end{smallmatrix}$
Output, Maximum, Determination of	f Work	ing Co	nstants	for .				\$35\$ \$15\$	78
Output, Prediction of, by graphical	means	for Pu					· (i)		64
Power, Peak Alternating, in Load Power Supply Resistance, Effects of	• •				12			53	$\frac{74}{76}$
Power Valves, Oscillation in		1.8			ere:	200	9859	(4)4) (0)	60
See also under Pentodes and Triodes	3								
Primary Coils, High Impedance Problem of Variable Selectivity	• •	- 40			1.62		*: *	150	93
Push Pull Stage, No instability caused	by Fee	dback	from	a .	020	• •	902	* 33	$\frac{89}{64}$
Triode Amplifiers (See under Ampli	fiers)						100	700	0.1
Q Factor of Coupled Circuits Radiotron G Series		70.			0.00		1(6)	• (4)	90
Receiver Air Cell Valves for	• •			* *);	100	96(6)	6004	20	
Amateur Battery Receiver (A73) Amateur Junior (C71) Amateur Senior (C111)				100					4.0
Amateur Battery Receiver (A73)	. 8				. 14		- 85		83
Amateur Senior (C111)	+ 1k				ara i Ala	3835	- 88		33 30
T.R.F. High Quality Output (D71) 5 valve A.C. Fidelity (D41)			55	of 10	53 198		39		92
5 valve A.C. Fidelity (D41) 5 Valve A.C. with Inverse Feedback	 (D40)								
5 Valve A.C. with Inverse Feedback 5 Valve A.C. with Series Inverse Fe	edback	using	6V6G (D43)	190				19, 36
5-6 Valve A.C./D.C. with Series Inve	erse Fe	edback	(E51)	210)	. 20		1:0		$\begin{array}{c} 82 \\ 67 \end{array}$
E TT-1 TO-11 () EE (
5 Valve Battery (A55)			. 2						26
5 Valve Dual Wave, for Accumulato	r, Air C	 Cell, or	 Vibrate	 or Oper	 ation	(Á56)	and	(A57)	$\begin{array}{c} 2\ 6 \\ 6\ 9 \end{array}$
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866	r, Air (. 2	or Oper		(Å56)	and	(A57)	$\begin{array}{c} 26 \\ 69 \\ 9 \end{array}$
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance	r, Air (Cell, or 	Vibrato 	or Oper	ation	(A56)	and	(A57)	$\begin{array}{c} 2\ 6 \\ 6\ 9 \end{array}$
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit	r, Air (Cell, or	Vibrato	or Oper	ation	(A56) 	and	(A57)	26 69 9 57 93 83
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour	r, Air (Cell, or	Vibrato	or Oper	ation	(A56)	and	(A57) 	26 69 9 57 93 83 76
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier	r, Air C	Cell, or	Vibrato	or Oper	ation	(A56) 	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4	r, Air (Cell, or	Vibrato	or Oper	ation	(A56)	and 2. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5	(A57) 37,	26 69 9 57 93 83 76 94 50, 87
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells	r, Air (Cell, or	Vibrate	or Oper	ation	(A56)	and 40% 1. 5. 5. 5. 5. 5. 5. 5. 5. 5.	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 7
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Incompleted the second completed resistors.	r, Air (Cell, or	Vibrato	or Oper	ation	(A56)	and 2. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5	(A57) 37,	26 69 9 57 93 83 76 94 50, 87
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifier	r, Air C	Cell, or	Vibrato	Oper	 ation 	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 7 96 90 65 64
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB _I Amplifier Rise in D.C. Plate Current, Compensation	r, Air (Cell, or	Vibrato	Oper	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 96 65 64 75
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat	r, Air C	Cell, or	Vibrato	Oper	 ation 	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 7 96 90 65 64 75 76 23
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB, Amplif Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat Regulation, Effects of	r, Air C	Cell, or	Vibrato	Operation Operation	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 96 90 65 64 75 76 23 76
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat	Push-Puers g for todes ion wit	Cell, or	Vibrato	Operation Operation	ation	(A56)	and	(A57)	26 69 57 93 83 76 94 50, 87 96 90 65 64 75 76 23 76 95
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB, Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for I.F. Amplifiers	Push-Puers g for todes ion wit	Cell, or	Vibrato	Operation	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 96 96 64 75 76 23 76 95 95
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for R.F. Amplifiers	Push-Puers g for todes ion wit	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57)	26 69 57 93 83 76 94 50, 87 96 90 65 64 75 76 95 95 95
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB, Amplif Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for I.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inver	Push-Pu ers g for todes ion wit	Cell, or	Vibrate	Operation Operation	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 94 50, 87 96 90 65 64 75 76 23 76 95 95 95 95 87
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB, Amplification in Tetrodes and Pen Dropping Resistor gives Compensation Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensation Regulation, Effects of Supply for Resistance Coupled Audit Supply for Converter Valves Supply for R.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Invertigations Selectivity, Problem of Variable Self Bias, Compensation with Pentodes	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57)	26 69 9 57 93 83 76 90 65 64 75 76 23 76 95 95 95 95 95 87 89
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Individual Modulation by, in Class AB, Amplified Screen Dissipation in Tetrodes and Pentopoping Resistor gives Compensation Regulation, Effects of Supply for Resistance Coupled Audit Supply for Resistance Coupled Audit Supply for R.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Invertigation Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T	Push-Pulers g for todes ion with see Feed	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57)	26 69 57 93 83 76 94 50, 87 96 99 65 47 75 76 23 76 95 95 95 95 87 87 88 87 88 88 88 88 88 88 88 88 88
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by F Modulation by, in Class AB, Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensat Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inver Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for	Push-Pu lers g for todes ion wit	Cell, or	Vibrate	Operation Operation	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 90 65 64 75 76 23 76 95 95 95 95 95 87 89
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Individual of the Modulation by, in Class AB, Amplification in D.C. Plate Current, Compensation Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensation Regulation, Effects of Supply for Resistance Coupled Audit Supply for Converter Valves Supply for I.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Invertication Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull Tentodes Invertication Series Inverse Feedback (See under Invertication)	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57)	26 69 57 93 83 76 94 50, 87 96 90 66 47 76 95 95 95 95 95 87 82 83 78 84 87 88 87 88 88 87 88 88 88 88 88 88 88
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Industry Modulation by, in Class AB, Amplification in D.C. Plate Current, Compensation Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensation Regulation, Effects of Supply for Resistance Coupled Audit Supply for Converter Valves Supply for I.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inverselectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull Tentodes Inverse Feedback (See under Inverseries Modulation	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 90 65 64 75 76 23 76 95 95 95 95 95 87 88 78 10
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Individual Modulation by, in Class AB, Amplified in D.C. Plate Current, Compensating Screen Dissipation in Tetrodes and Pendopping Resistor gives Compensating Regulation, Effects of Supply for Resistance Coupled Audit Supply for Resistance Coupled Audit Supply for R.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Invertigation Series Compensation with Pentodes Operating Conditions for Push-Pull Tensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Invertigation Series Modulation Series Operation, Heating Time with	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 90 65 64 75 76 23 76 95 95 95 95 95 87 88 10 10
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Industry Modulation by, in Class AB, Amplification in D.C. Plate Current, Compensation Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensation Regulation, Effects of Supply for Resistance Coupled Audit Supply for Converter Valves Supply for I.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inverselectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull Tentodes Inverse Feedback (See under Inverseries Modulation	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 90 65 64 75 76 23 76 95 95 95 95 95 87 88 78 10
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplification D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensatin Regulation, Effects of Supply for Resistance Coupled Audit Supply for Resistance Coupled Audit Supply for I.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inverselectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Inverseries Modulation Series Operation, Heating Time with Short Wave Operation, 1C6 Coils for Shunt Feedback with Resistance Coupling	Push-Pulers g for todes ion with the control of the	Cell, or	Vibrato	Operation of the control of the cont	ation	(A56)	and	(A57) 37,	26 69 57 93 83 76 94 50, 87 96 99 65 64 75 76 95 95 95 95 95 95 87 89 23 88, 10 63 7
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by Individual of the Modulation by, in Class AB, Amplification in D.C. Plate Current, Compensation Screen Dissipation in Tetrodes and Pendopping Resistor gives Compensation Regulation, Effects of the Supply for Resistance Coupled Audion Supply for Converter Valves to Supply for I.F. Amplifiers to Supply for R.F. Amplifiers to Supply for R.F. Amplifiers to See-saw Voltage Effect with Series Inverselectivity, Problem of Variable to Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull To Sensitivity, Absolute Tests for the I.F. to Series Inverse Feedback (See under Inverseries Modulation to Series Operation, Heating Time with Short Wave Operation, 1C6 to Coils for Shunt Feedback with Resistance Coupling Signal Generator, Reading Sensitivity	Push-Pulers g for todes ion with se Feed	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 9 57 93 83 76 90 65 64 75 76 95 95 95 95 95 95 87 88 10 61 63 710
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplification D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensatin Regulation, Effects of Supply for Resistance Coupled Audit Supply for Resistance Coupled Audit Supply for I.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inverselectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Inverseries Modulation Series Operation, Heating Time with Short Wave Operation, 1C6 Coils for Shunt Feedback with Resistance Coupling	Push-Pulers g for todes ion with se Feed	Cell, or	Vibrato	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 57 93 83 76 94 50, 87 96 99 65 64 75 76 95 95 95 95 95 95 87 89 23 88, 10 63 7
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifixie in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensatin Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inver Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Inver Series Modulation Series Operation, Heating Time with Short Wave Operation, 1C6 Coils for Shunt Feedback with Resistance Coupling Signal Generator, Reading Sensitivity Speaker Resonance, Effect of, on Disto Stable D.C. Voltage for Oscillators Stability in Multi-Stage Amplifiers	Push-Puers g for todes ion with rtion	Cell, or	Vibrate	Operation of the state of the s	ation	(A56)	and	(A57) 37,	26 69 57 93 83 76 90 65 4 75 90 66 95 95 95 95 95 87 82 88, 10 63 76 10 63 71 10 63 71 10 10 10 10 10 10 10 10 10 10 10 10 10
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplification in D.C. Plate Current, Compensating Screen Dissipation in Tetrodes and Pener Dropping Resistor gives Compensating Regulation, Effects of Supply for Resistance Coupled Audit Supply for Resistance Coupled Audit Supply for I.F. Amplifiers Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Invertigation with Pentodes Operating Conditions for Push-Pull Toles Seef Bias, Compensation with Pentodes Operating Conditions for Push-Pull Toles Invertigation, Heating Time with Short Wave Operation, Heating Time with Short Wave Operation, Reading Sensitivity Speaker Resonance, Effect of, on Disto Stable D.C. Voltage for Oscillators Stability in Multi-Stage Amplifiers Stability, 6D6, Improved	Push-Pulers g for todes ion with rtion	Cell, or	Vibrate	Operation Operat	ation	(A56)	and	(A57)	26 69 57 93 83 76 94 77 99 65 47 76 95 95 95 95 95 95 87 82 88 10 63 71 94 28 67
5 Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB ₁ Amplifixie in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensatin Regulation, Effects of Supply for Resistance Coupled Audi Supply for Converter Valves Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inver Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Inver Series Modulation Series Operation, Heating Time with Short Wave Operation, 1C6 Coils for Shunt Feedback with Resistance Coupling Signal Generator, Reading Sensitivity Speaker Resonance, Effect of, on Disto Stable D.C. Voltage for Oscillators Stability in Multi-Stage Amplifiers	Push-Pulers g for todes ion with rtion sation	Cell, or	Vibrate	Operation of the state of the s	ation	(A56)	and	(A57)	26 69 957 93 83 76 94 50, 87 96 96 95 95 95 95 95 95 87 89 10 63 76 10 63 71 94 28
S Valve Dual Wave, for Accumulato Rectifier, High Voltage, 866 Mercury Vapour Reflex Detector, High Impedance Regeneration, Filament Circuit Regulation, Effects of Plate and Screen Regulator, Voltage Resistance, Coupled Pentode Amplifier Coupling, Shunt Feedback with 1D4 Resistors for Air Cells Response, Pass Band Ripple Voltage, Effects of, reduced by I Modulation by, in Class AB, Amplifi Rise in D.C. Plate Current, Compensatin Screen Dissipation in Tetrodes and Pen Dropping Resistor gives Compensati Regulation, Effects of Supply for Resistance Coupled Audi Supply for Resistance Coupled Audi Supply for R.F. Amplifiers Supply for R.F. Amplifiers See-saw Voltage Effect with Series Inver Selectivity, Problem of Variable Self Bias, Compensation with Pentodes Operating Conditions for Push-Pull T Sensitivity, Absolute Tests for I.F. Series Inverse Feedback (See under Inver Series Modulation Series Operation, Heating Time with Short Wave Operation, 1C6 Coils for Shunt Feedback with Resistance Coupling Signal Generator, Reading Sensitivity Speaker Resonance, Effect of, on Disto Stable D.C. Voltage for Oscillators Stability in Multi-Stage Amplifiers Stability, 6D6, Improved Tapped Volume Control for Tone Compen Testing for Fidelity Tetrodes, Plate and Screen Dissipation in	Push-Pulers of a for todes of a for	Cell, or	Vibrato	Operation Operat	ation	(A56)	and	(A57)	26 69 57 93 83 76 90 65 64 75 95 95 95 95 95 87 87 10 61 37 10 61 37 10 10 10 10 10 10 10 10 10 10 10 10 10

r ...

-

•									
Tone Compensation				. ,					Page 5, 22
Transformer Coupling, Inverse Feed			135		04.40	14 (8)		tet so co so	
			• •			+ 62		(G 8)	. 57
Input, to Class AB, Amplifiers .			• •		* AS			404 90	0.0
Output, Air Gap in Power, Current Rating of .			. 6		74750	1 IS 72 7		en e	F 0
Triode Amplifiers (See under Amplifi							8 8	55. 5	
Triodes, Power, Operating Data on .			1 (6)	520	- 50	***	5197	507 60	
Tuned Circuit, Form of Attenuation Frequency Characteristic of .	F'unct	10n of		6.79	(*)(*)	0.6		69 80 80	
			202	• ®	• •	9 8		ES .	0.0
Tuning Indicator, Magic Eye .						7a at		68, 77	
U.H.F., Water Cooled Valves for .						8 5	2020	507	
				535				528 ±	0.0
Vibrator, Operation, 5 valve Dual				RC06	100	• 85 - 1985		654 654	0.0
Sets, High Output from 1D4 .					- 10	(4 t)		ES 45	. 56
Voltage Dividers and Dropping Resis			. 7			6 16		FG 25	0 (
Voltage Regulator				• •	- (1)	(2)	• •		9 4
Tapped, for Tone Compensation			K -	N200		(* 11	DC 0451 1		. 5
Water Cooled Valves for U.H.F.	(4)					0.10		60 80	. 71
Wave Analyser								69 8	
Working Constants for Maximum P Zero Bias Characteristics of Pentode					on or	nean Mai		224 25	- 0
Bias, Improved Conditions for						W 41		10 E 20	0.4
1C6 Operation on Broadcast Band .								006 500 108 \$6	63
106 Short Wave Operation, Coils for				 Diag		05.00		105 50	0.1
1C6 Short Wave Operation, Improved 1D4 With Series Inverse Feedback	ı Cono	litions i						OK 183	4.0
1D4 With Series inverse Feedback .	,					10801 2000		69 - 45 69 - 45	_
1D4 With Transformer Coupling and					- 8	-100		102 203	-
2A3 As Fidelity Amplifier						· (rin		W 6	
				• •		6			0.0
2A3 Voltage Regulator		804		(27) PC	1.6	2021		525 - 62 63 - 63	0.4
2A3 3.5 Watt Single Amplifier (D41				9. 9.		909		64 6	
2A3 7 Watt Fidelity Amplifier (A1			. (6)		N 12	-79	4.5	F9 .	
2A3 13.5 Watt Fidelity Amplifier (A	120)			9 (9)		77			
6AC5G Announcement 6C6 For Tone Compensation .	•					000		9	0.00
6D6 Greater Stability of		1.5				0.0		C.E.	O
6D8G Announcement						363		109 6:	
6G5 Applications						•10			82, 95
6G5 Level Indicator using 6L5G Announcement						000 is			
6L6G 30 Watt Amplifier with Neg	gative	 Feedba		1 in 200					
6N5 Announcement				2.2				980 988	
6S7G Announcement		535						100	
6T7G Announcement								(9)	~ =
6V6G Data			. 30		90945		454 4 Vod :	100	57 81,82
6V6G In Class AB,				1 10		.30	417.		0.1
6V6G Use of in Public Address	Ampl	ifier							. 81
6V6G With Inverse Feedback (See					/	· (5)	EX. 1		, 82, 87
6V6G 30 Watt Amplifier with Ne 6ZY5G Announcement	0					- 19.		38	
42 With Series Inverse Feedbac						k)		18	8-19, 36
50 Matching						. i			· · · · · ·
75 Inability to give High Volta	_	-				· (8)		38 38	
302 Barretter, Announcement . 806 Data								(8)	
806 Data								080 · •	
808 Data		X(B)						545	4.0
Announcement and Data .						. 87		2	. 85
845 Dynamic Characteristics of 845 Matching of						575 C			
845 Matching of Self Bias Operating Condition				. (94)				185 E	e 0
866 High Voltage Rectifier .								1046	
868 Photo Tube								100	17
887 Announcement—Data								·	E 4
888 Announcement—Data 913 Application to Oscillograph								¥	
921 Announcement and Data.								(5)	
922 Announcement							12/2 U.S.		= 0
1603 Announcement	*						**		80
1603 Less Microphonic than 6C6								SS	= 0
1608 Announcement, Data 1609 Announcement, Data								100	- 0
1610 Announcement, Data								· · ·	- 0
1612 Announcement								885 1.1 1000	
1800 Announcement	*							196	96
1801 Announcement		• 80 · · ·	e a c	000	*****	\$C(4)	10	592	96